帳號:guest(18.119.135.0)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莫錦和
作者(外文):Mac, Cam-Hoa
論文名稱(中文):具有多功能作用的徑向排列膠原蛋白支架用於增強骨癒合之效果
論文名稱(外文):Radially Aligned Collagen Scaffold with Multifunctional Effects for Enhanced Bone Healing Process
指導教授(中文):宋信文
指導教授(外文):Sung, Hsing-Wen
口試委員(中文):詹益聖
王麗芳
賴柏宏
許源宏
口試委員(外文):Chan, Yi-Sheng
Wang, Li-Fang
Lai, Po-Hong
Hsu, Yuan-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032707
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:44
中文關鍵詞:放射狀排列纖維氫氣矽離子細胞遷移抗發炎成骨細胞分化
外文關鍵詞:Radially aligned fibersHydrogen gasSilicon ionsCell migrationAnti-inflammationOsteogenic differentiation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:398
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
骨科疾病被認為是全世界第二大的致殘原因。其中,骨缺損是由外傷、感染等因素引起的常見病症之一。儘管骨骼具有獨特的自癒能力,仍有約10%的骨缺損無法正常修復,此情況被稱作延遲癒合或不癒合。因此,目前迫切需要發展新穎的方式以加速骨缺損處的癒合過程。本研究中,我們製備出一摻雜矽奈米顆粒(nSi)之礦化膠原蛋白(MC)支架,他具有引導宿主細胞遷移、促進成骨細胞分化及抗氧化/抗發炎等多重功能,並且能夠促進骨缺損處之骨再生效率。我們以單向凍乾法製備出具有放射狀排列結構之MC-nSi支架(RA-nSi支架),該支架能夠以其結構提供誘導,促進細胞遷移到骨缺損內的支架上。有趣的是,相比於應用生長因子及消炎藥物,支架中摻雜的矽奈米顆粒能夠提供良好的協同作用,即透過矽與水產生的氫氣提供抗發炎效果,以及透過與水反應後於矽表面形成的二氧化矽(SiO2)層的降解而釋放之矽離子達到促進週圍成骨細胞分化的目的。與結構為隨機排列的支架(R支架)相比,RA-nSi支架能夠更明顯的令前驅成骨細胞(MC3T3-E1)沿纖維方向遷移。此外,支架所釋放的氫氣可以透過抑制過度產生的細胞內活性氧物質(ROS)及促炎細胞因子(包含白细胞介素IL-6和IL-1β)以減輕巨噬細胞的氧化壓力及炎症。同時,RA-nSi支架分泌的矽離子可以促進细胞增殖及成骨細胞分化,此結果可從鹼性磷酸酶(ALP)和骨鈣素(OCN)等成骨分化指標物的增加看出。將RA-nSi支架植入小鼠臨界尺寸的顱骨缺損模型中,於8週後顯示最佳的骨再生效果。研究結果表明,RA-nSi支架可被用於加速骨癒合過程,為一種極具發展潛力的策略。
Bone diseases are recognized as the second greatest cause of disability worldwide. Among them, bone defect is one of the most common injuries derived from traumas, infections, and so on. Although bone has the unique ability of self-healing, approximately 10% of the defects will not heal normally, termed non-union or delayed union. Hence, the development of novel modalities for accelerating the healing process at the defect is greatly urgent. In this work, a nanosilicon (nSi) incorporated mineralized collagen (MC) scaffold with radially aligned fibers, which has multifunctions of guiding host-cell recruitment, osteogenic differentiation and anti-oxidative/anti-inflammatory effects that can promote the regeneration process of bone defects is proposed. The unidirectional freezing dry method was used to fabricate a radially aligned MC-nSi scaffold (RA-nSi scaffold) that can provide a topographical cue to promote cell migration into the scaffold on bone defect. Interestingly, instead of using or combining growth factors or anti-inflammatory drugs, the incorporated nSi can effectively provide synergistic effects which are anti-inflammation effects by generated hydrogen gas from the reaction of nSi with water and osteogenic effects of recruited cells by released Si ions through the dissolution of the formed silica (SiO2) layer on nSi surface after reaction with water. The prepared RA-nSi scaffold demonstrates significantly high pre-osteoblasts (MC3T3-E1 cells) recruitment and cells orientation compared with random scaffolds (R scaffold). Additionally, the released hydrogen can attenuate oxidative stress and inflammation in macrophages by the suppression of overproduced intracellular reactive oxygen species (ROS) and pro-inflammatory cytokines including interleukin (IL)-6 and IL-1β. Meanwhile, the secretion of Si ions from RA-nSi scaffolds can enhance the cells proliferation and especially osteogenic differentiation of pre-osteoblasts evidenced by increased osteogenic markers including alkaline phosphatase (ALP) and osteocalcin (OCN). The RA-nSi scaffolds were then implanted into mouse critical-size cranial bone defects, which showed the best bone regeneration outcome at 8 weeks. The findings suggest that RA-nSi scaffolds can be utilized as a promising strategy for enhanced bone healing process.
Abstract....................................................................................................................ii
Contents...................................................................................................................iii
List of Figures..........................................................................................................vi
Chapter 1: Introduction........................................................................................1
1.1. Bone healing and bone tissue engineering.............................................1
1.2. Cell migration and its effects on bone healing process........................2
1.3. The effects of radially aligned structure on bone healing....................3
1.4. Methods to fabricate radially aligned substrate.....................................4
1.5. Inflammation and bone regeneration.......................................................5
1.6. Hydrogen therapy and hydrogen generation from nanosilicon particles .....................................................................................................................6
1.7. Degradation of silica layer on silicon surface and further osteogenic
differentiation effect...............................................................................................7
1.8. Introduction of mineralized collagen (collagen and hydroxyapatite)8
1.9. Our design and purpose of the research....................................................9
1.10. Tree chart of experiment design................................................................11
Chapter 2: Materials and methods......................................................................12
2.1. Synthesis and characterization of MC and MC-nSi..................................12
2.1.1. Materials..........................................................................................................12
2.1.2. The preparation of MC................................................................................12
2.1.3. Characterization of MC................................................................................12
2.1.4. The preparation of MC-nSi.........................................................................13
2.2. Fabrication of MC/MC-nSi with random/radially aligned structure.....13
2.3. Optimization of RA-nSi scaffolds..................................................................14
2.3.1. Compressive test............................................................................................14
2.3.2. Porosity.............................................................................................................14
2.3.3. SEM and elemental mapping.....................................................................14
2.3.4. Live/Dead Staining........................................................................................15
2.4. Hydrogen release profile................................................................................15
2.5. Si ions release profile.......................................................................................15
2.6. Cell Migration Studies.....................................................................................16
2.6.1. MC3T3-E1 cells culture.................................................................................16
2.6.2. Cell migration test and cell alignment......................................................16
2.7. Anti-inflammation studies ...............................................................................17
2.7.1. RAW 264.7 cells culture................................................................................17
2.7.2. Cell viability.....................................................................................................17
2.7.3. Cellular ROS scavenging test......................................................................17
2.7.4. Determination of cytokine production.....................................................17
2.8. Osteogenic differentiation studies................................................................18
2.8.1. Cell proliferation............................................................................................18
2.8.2. Evaluation of ALP activity and OCN protein levels................................18
2.9. In vivo studies.....................................................................................................19
2.9.1. Animal experiments.......................................................................................19
2.9.2. Micro-CT analysis...........................................................................................19
2.9.3. Histological analysis......................................................................................19
2.10. Statistical Analysis...........................................................................................19
Chapter 3: Results and discussion........................................................................20
3.1. Characterization of MC...................................................................................20
3.2. Optimization of RA-nSi scaffolds.................................................................21
3.2.1. Morphology of RA scaffolds with different concentration of MC.....21
3.2.2. Porosity of RA scaffolds with different concentration of MC..............22
3.2.1. Mechanical properties of RA scaffolds with different concentration of MC and different amounts of nSi.........................................................................23
3.3. SEM images of RA scaffolds incorporated with different amounts of nSi................................................................................................................................23
3.4. Live/Dead staining...........................................................................................24
3.5. Elemental mapping (EDS) and the whole SEM images of optimized RA-40nSi scaffolds.................................................................................................25
3.6. Cell migration and alignment.......................................................................26
3.7. Hydrogen release profile...............................................................................29
3.8. Si ions release profile......................................................................................30
3.9. In vitro anti-inflammatory and anti-oxidative effects by hydrogen gas ......................................................................................................................................31
3.9.1. RAW cells viability.........................................................................................31
3.9.2. Cellular ROS scavenging test.....................................................................31
3.9.3. Pro-inflammatory cytokines suppression................................................32
3.10. In vitro osteogenic differentiation effects by Si ions.............................33
3.10.1. MC3T3-E1 cells proliferation...................................................................33
3.10.2. ALP activity and OCN protein levels.......................................................33
3.11. In vivo studies..................................................................................................34
3.11.1. Micro-CT analysis........................................................................................34
3.11.2. Histological analysis...................................................................................35
Chapter 4: Conclusion.............................................................................................37
References.................................................................................................................38
[1] Lutz Claes, Stefan Recknagel, Anita Ignatius (2012). Fracture healing under healthy and inflammatory conditions. Nature Reviews Rheumatology, 8, 133-143.
[2] Thomas A. Einhorn, Louis C. Gerstenfeld (2014). Fracture healing: mechanisms and interventions. Nature Reviews Rheumatology, 11(1), 45-54.
[3] Rozalia Dimitriou, Elena Jones, Dennis McGonagle, Peter V Giannoudis (2011). Bone regeneration: current concepts and future directions. BMC Medicine, 9, 66.
[4] K.D. Hankenson, K. Gagne, M. Shaughnessy (2015). Extracellular signaling molecules to promote fracture healing and bone regeneration. Advanced Drug Delivery Reviews, 94, 3-12.
[5] Gabriel Fernandez de Grado, Laetitia Keller, Ysia Idoux-Gillet, Quentin Wagner, Anne-Marie Musset, Nadia Benkirane-Jessel, Fabien Bornert, Damien Offner (2018). Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects
management. Journal of Tissue Engineering, 9, 1-18.
[6] Marc A. Fernandez-Yague, Sunny Akogwu Abbah, Laoise McNamara, Dimitrios I. Zeugolis, Abhay Pandit, Manus J. Biggs (2014). Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Advanced Drug Delivery Reviews, 84, 1-29.
[7] Joon Yeong Park, Seung Hun Park, Mal Geum Kim, Sang-Hyug Park, Tae Hyeon Yoo, Moon Suk Kim (2018). Biomimetic scaffolds for bone tissue engineering. Biomimetic Medical Materials. Advances in Experimental Medicine and Biology, 1064, 109-121.
[8] Zhiwei Zheng, Yahong Chen, Bing Guo, Yun Wang, Wei Liu, Jian Sun, Xiansong Wang (2020). Magnesium-organic framework-based stimuli-responsive systems that optimize the bone microenvironment for enhanced bone regeneration. Chemical Engineering Journal, 396, 125241.
[9] Mingliang Zhou, Xiaolin Wu, Jiaxin Luo, Guangzheng Yang, Yuezhi Lu, Sihan Lin, Fei Jiang, Wenjie Zhang, Xinquan Jiang (2021). Copper peptide-incorporated 3D-printed silk-based scaffolds promote vascularized bone regeneration. Chemical Engineering Journal, 422, 130147.
[10] Lihuan Wang, Yuyou Qiu, Haijun Lv, Yang Si, Lifang Liu, Qi Zhang, Jianping Cao, Jianyong Yu, Xiaoran Li, Bin Ding (2019). 3D superelastic scaffolds constructed from flexible inorganic nanofibers with self-Fitting capability and tailorable gradient for bone regeneration. Advanced Functional Materials, 29(31), 1901407.
[11] Yahong Chen, Zhiwei Zheng, Renpeng Zhou, Huizhong Zhang, Chuhsin Chen, Zhezhen Xiong, Kai Liu, Xiansong Wang (2019). Developing a strontium-releasing graphene oxide-/collagen-based organic−inorganic nanobiocomposite for large bone defect regeneration via MAPK signaling pathway. ACS Applied Materials & Interfaces, 11, 15986-15997.
[12] Kathleen Schütz, Florian Despang, Anja Lode, Michael Gelinsky (2016). Cell-laden biphasic scaffolds with anisotropic structure for the regeneration of osteochondral tissue. Journal of Tissue Engineering and Regenerative Medicine, 10, 404-417.
[13] Chia-Yu Wang, Po-Da Hong, Ding-Han Wang, Juin-Hong Cherng, Shu-Jen Chang, Cheng-Che Liu, Tong-Jing Fang, Yi-Wen Wang (2020). Polymeric gelatin scaffolds affect mesenchymal stem cell differentiation and its diverse applications in tissue engineering. International Journal of Molecular Sciences, 21, 8632.
[14] Young Min Shin, Wan-Geun La, Min Suk Lee, Hee Seok Yang, Youn-Mook Lim (2015). Extracellular matrix-inspired BMP-2-delivering biodegradable fibrous particles for bone tissue engineering. Journal of Materials Chemistry B, 3, 8375-8382.
[15] Rina Elimelech, Nizar Khoury, Tal Tamari, Israel Blumenfeld, Zvi Gutmacher, Hadar Zigdon-Giladi (2019). Use of transforming growth factor-β loaded onto β-tricalcium phosphate scaffold in a bone regeneration rat calvaria model. Clinical Implant Dentistry and Related Research, 21(4), 593-601.
[16] Caroline M. Curtin, Gráinne M. Cunniffe, Frank G. Lyons, Kazuhisa Bessho, Glenn R. Dickson, Garry P. Duffy, Fergal J. O’Brien (2012). Innovative collagen nano-hydroxyapatite scaffolds offer a highly efficient non-viral gene delivery platform for stem cell-mediated bone formation. Advanced Materials, 24(6), 749-754.
[17] Yimin Hu, Shujun Cao, Jingdi Chen, Yao Zhao, Fupo He, Qian Li, Lin Zou, Chao Shi (2020). Biomimetic fabrication of icariin loaded nano hydroxyapatite reinforced bioactive porous scaffolds for bone regeneration. Chemical Engineering Journal, 394, 124895.
[18] Jae Yong Lee, Hyunwoong Lim, Jae Won Ahn, Dongsik Jang, Seung Hee Lee, Kyeongsoon Park, Sung Eun Kim (2018). Design of a 3D BMP-2-delivering tannylated PCL
scaffold and its anti-Oxidant, anti-Inflammatory, and osteogenic effects in vitro. International Journal of Molecular Sciences, 19, 3602.
[19] Chris E.P. Goldring, Paul A. Duffy, Nissim Benvenisty, Peter W. Andrews, Uri Ben-David, Rowena Eakins, Neil French, Neil A. Hanley, Lorna Kelly, Neil R. Kitteringham, Jens Kurth, Deborah Ladenheim, Hugh Laverty, James McBlane, Gopalan Narayanan, Sara Patel, Jens Reinhardt, Annamaria Rossi, Michaela Sharpe, B. Kevin Park (2011). Assessing the safety of stem cell therapeutics. Cell Stem Cell, 8(6), 618-628.
[20] Ye-Rang Yun, Jun-Hyeog Jang, Eunyi Jeon, Wonmo Kang, Sujin Lee, Jong-Eun Won, Hae-Won Kim, Ivan Wall (2012). Administration of growth factors for bone regeneration. Regenerative Medicine, 7(3), 369-385.
[21] Young Min Shin, Hee Seok Yang, Heung Jae Chun (2020). Directional cell migration guide for improved tissue regeneration. Bioinspired Biomaterials. Advances in Experimental Medicine and Biology, 1249, 131-140.
[22] Mingyu Zhu, Haixia Ye, Ju Fang, Chuanxin Zhong, Junyi Yao, Jaewon Park, Xiong Lu, Fuzeng Ren (2019). Engineering high-resolution micropatterns directly onto titanium with optimized contact guidance to promote osteogenic differentiation and bone regeneration.
ACS Applied Materials & Interfaces, 11(47), 43888-43901.
[23] Xiaoran Li, Mengyuan Li, Jie Sun, Yan Zhuang, Jiajia Shi, Dongwei Guan, Yanyan Chen, Jianwu Dai (2016). Radially aligned electrospun fibers with continuous gradient of SDF1α for the guidance of neural stem cells. Small, 12(36), 5009-5018.
[24] Hoon Seonwoo, Beomyong Shin, Kyoung-Je Jang, Myungchul Lee, Oak-Sung Choo,
Sang-Bae Park, Yeong Cheol Kim, Mi-Jin Choi, Jangho Kim, Pankaj Garg, Jeong Hun Jang,
Yun-Hoon Choung, Jong Hoon Chung (2019). Epidermal growth factor-releasing radially aligned electrospun nanofibrous patches for the regeneration of chronic tymp. Advanced Healthcare Materials, 8(2), 1801160.
[25] Shixuan Chen, Hongjun Wang, Yajuan Su, Johnson V. John, Alec McCarthy, Shannon L. Wong, Jingwei Xie (2020). Mesenchymal stem cell-laden, personalized 3D scaffolds with
controlled structure and fiber alignment promote diabetic wound healing. Acta Biomaterialia, 108, 153-167.
[26] Lingfei Xiao, Minhao Wu, Feifei Yan, Yuanlong Xie, Zhibo Liu, Huayi Huang, Zhiqiang Yang, Shiyi Yao, Lin Cai (2021). A radial 3D polycaprolactone nanofiber scaffold modified by biomineralization and silk fibroin coating promote bone regeneration in vivo. International Journal of Biological Macromolecules, 172, 19-29.
[27] Jeong-Kee Yoon, Hong Nam Kim, Suk Ho Bhang, Jung-Youn Shin, Jin Han, Wan-Geun La, Gun-Jae Jeong, Seokyung Kang, Ju-Ro Lee, Jaesur Oh, Min Sung Kim, Noo Li Jeon, Byung-Soo Kim (2016). Enhanced bone repair by guided osteoblast recruitment using topographically defined implant. Tissue Engineering: Part A, 22(7-8), 654-664.
[28] Xue Feng, Peifang Xu, Tao Shen, Yihan Zhang, Juan Ye, Changyou Gao (2020). Influence of pore architectures of silk fibroin/collagen composite scaffolds on the regeneration of osteochondral defects in vivo. Journal of Materials Chemistry B, 8, 39-405.
[29] Pengfei Chen, Jiadong Tao, Shouan Zhu, Youzhi Cai, Qijiang Mao, Dongsheng Yu, Jun Dai, HongWei Ouyang (2015). Radially oriented collagen scaffold with SDF-1 promotes
osteochondral repair by facilitating cell homing. Biomaterials, 39, 114-123.
[30] Pengfei Chen, Lin Zheng, Yiyun Wang, Min Tao, Ziang Xie, Chen Xia, Chenhui Gu, Jiaxin Chen, Pengcheng Qiu, Sheng Mei, Lei Ning, Yiling Shi, Chen Fang, Shunwu Fan, Xianfeng Lin (2019). Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics, 9(9), 2439-2459.
[31] Linpeng Fan, Jing-Liang Li, Zengxiao Cai, Xungai Wang (2018). Creating biomimetic anisotropic architectures with co-aligned nanofibers and macrochannels by manipulating ice crystallization. ACS Nano, 12, 5780-5790.
[32] Gaofeng Shao, Dorian A. H. Hanaor, Xiaodong Shen, Aleksander Gurlo (2020). Freeze casting: from low-dimensional building blocks to aligned porous structures—a review of novel materials, methods, and applications. Advanced Materials, 32(17), 1907176.
[33] Emmanuel Gibon, Laura Y. Lu, Karthik Nathan, Stuart B. Goodman (2017). Inflammation, ageing, and bone regeneration. Journal of Orthopaedic Translation, 10, 28-35.
[34] Ines Fasolino, Maria Grazia Raucci, Alessandra Soriente, Christian Demitri, Marta Madaghiele, Alessandro Sannino, Luigi Ambrosioa (2019). Osteoinductive and anti-inflammatory properties of chitosan-based scaffolds for bone regeneration. Materials Science & Engineering C, 105, 110046.
[35] D. C. Lacey, P. J. Simmons, S. E. Graves, J. A. Hamilton (2009). Proinflammatory cytokines inhibit osteogenic differentiation from stem cells: implications for bone repair during inflammation. Osteoarthritis and Cartilage, 17, 735-742.
[36] Limei Li, Mali Yu, Yao Li, Qing Li, Hongcai Yang, Meng Zheng, Yi Han, Di Lu, Sheng Lu, Li Gui (2021). Synergistic anti-inflammatory and osteogenic n-HA/resveratrol/chitosan composite microspheres for osteoporotic bone regeneration. Bioactive Materials, 6, 1255-1266.
[37] Gaoxin Zhou, Ekta Goshi, Qianjun He (2019). Micro/nanomaterials-augmented hydrogen therapy. Advanced Healthcare Materials, 8, 1900463.
[38] Wei-Lin Wan, Yu-Jung Lin, Hsin-Lung Chen, Chieh-Cheng Huang, Po-Chien Shih, Yu-Ru Bow, Wei-Tso Chia, Hsing-Wen Sung (2017). In situ nanoreactor for photosynthesizing H2 gas to mitigate oxidative stress in tissue inflammation. Journal of the American Chemical Society, 139, 12923-12926.
[39] Wei-Lin Wan, Yu-Jung Lin, Po-Chien Shih, Yu-Ru Bow, Qinghua Cui, Yen Chang, Wei-Tso Chia, Hsing-Wen Sung (2018). An in situ depot for continuous evolution of gaseous H2 mediated by a magnesium passivation/activation cycle for treating osteoarthritis. Angewandte Chemie International Edition, 57(31), 9875-9879.
[40] Hasliza Bahruji, Michael Bowker, Philip R. Davies (2009). Photoactivated reaction of water with silicon nanoparticles. International Journal of Hydrogen Energy, 34, 8504-8510.
[41] Folarin Erogbogbo, Tao Lin, Phillip M. Tucciarone, Krystal M. LaJoie, Larry Lai, Gauri D. Patki, Paras N. Prasad, Mark T. Swihart (2013). On-demand hydrogen generation using nanosilicon: splitting water without light, heat, or electricity. Nano Letters, 13, 451-456.
[42] Yuki Kobayashi, Shinsuke Matsuda, Kentaro Imamura, Hikaru Kobayashi (2017). Hydrogen generation by reaction of Si nanopowder with neutral water. Journal of Nanoparticle Research, 19, 176.
[43] Gauhar Mussabek, Sergei A. Alekseev, Anton I. Manilov, Sergii Tutashkonko, Tetyana Nychyporuk, Yerkin Shabdan, Gulshat Amirkhanova, Sergei V. Litvinenko, Valeriy A. Skryshevsky, Vladimir Lysenko (2020). Kinetics of hydrogen generation from oxidation of
hydrogenated silicon nanocrystals in aqueous solutions. Nanomaterials, 10, 1413.
[44] Yuki Kobayashi, Ryoichi Imamura, Yoshihisa Koyama, Makoto Kondo, Hikaru Kobayashi, Norio Nonomura, Shoichi Shimada (2020). Renoprotective and neuroprotective effects of enteric hydrogen generation from Si-based agent. Scientific Reports, 10, 5859.
[45] Jonas G. Croissant, Yevhen Fatieiev, Niveen M. Khashab (2017). Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Advanced Materials, 29(9), 1604634.
[46] K R Martin (2007). The chemistry of silica and its potential health benefits. The Journal of Nutrition, Health & Aging, 11(2), 94.
[47] Jin-long Sun, Kai Jiao, Li-na Niu, Yang Jiao, Qun Song, Li-juan Shen, Franklin R. Tay, Ji-hua Chen (2017). Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration. Biomaterials, 113, 203-216.
[48] D.M. Reffitt, N. Ogston, R. Jugdaohsingh, H.F.J. Cheung, B.A.J. Evans, R.P.H. Thompson, J.J. Powell, G.N. Hampson (2003). Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone, 32, 127-135.
[49] Xianfeng Zhou, Fouad M. Moussa, Steven Mankoci, Putu Ustriyana, Nianli Zhang, Samir Abdelmagid, Jim Molenda, William L. Murphy, Fayez F. Safadi, Nita Sahai (2016). Orthosilicic acid, Si(OH)4, stimulates osteoblast differentiation in vitro by upregulating miR-146a to antagonize NF-jB activation. Acta Biomaterialia, 39, 192-202.
[50] Lixia Mao, Lunguo Xia, Jiang Chang, Jiaqiang Liu, Lingyong Jiang, Chengtie Wu, Bing Fang (2017). The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Acta Biomaterialia, 61, 217-232.
[51] Shao-Jie Wang, Dong Jiang, Zheng-Zheng Zhang, You-Rong Chen, Zheng-Dong Yang,
Ji-Ying Zhang, Jinjun Shi, Xing Wang, Jia-Kuo Yu (2019). Biomimetic nanosilica–collagen scaffolds for in situ bone regeneration: toward a cell-free, one-step surgery. Advanced Materials, 31(49), 1904341.
[52] Tuan-Wei Sun, Wei-Lin Yu, Ying-Jie Zhu, Ri-Long Yang, Yue-Qin Shen, Dao-Yun Chen, Yao-Hua He, Feng Chen (2017). Hydroxyapatite nanowire@magnesium silicate core-shell hierarchical nanocomposite: synthesis and application in bone regeneration. ACS Applied Materials & Interfaces, 9, 16435-16447.
[53] Kaili Lin, Dawei Zhang, Maria Helena Macedo, Wenguo Cui, Bruno Sarmento, Guofang Shen (2019). Advanced collagen-based biomaterials for regenerative biomedicine. Advanced Functional Materials, 29(3), 1804943.
[54] Shuai Wei, Jian-Xiong Ma, Lai Xu, Xiao-Song Gu, Xin-Long Ma (2020). Biodegradable materials for bone defect repair. Military Medical Research, 7, 54.
[55] Li Chen, Jingxiao Hu, Jiabing Ran, Xinyu Shen, Hua Tong (2016). Synthesis and cytocompatibility of collagen/hydroxyapatite nanocomposite scaffold for bone tissue engineering. Polymer Composites, 37(1), 81-90.
[56] W. Su, X. Ma, X. Sun, X. Li (2016). Physicochemical characterisation and thermal decomposition of synthetic collagen based nanocomposites in comparison with natural bone. Advances in Applied Ceramics, 115(1), 29-35.
[57] Tuan-Wei Sun, Ying-Jie Zhu, Feng Chen (2018). Hydroxyapatite nanowire/collagen elastic porous nanocomposite and its enhanced performance in bone defect repair. RSC Advances, 8, 26218-26229.
[58] Anton Ficai, Ecaterina Andronescu, Georgeta Voicu, Cristina Ghitulica, Bogdan Stefan Vasile, Denisa Ficai, Viorica Trandafir (2010). Self-assembled collagen/hydroxyapatite composite materials. Chemical Engineering Journal, 160, 794-800.
[59] Jong Min Kim, Valentina Guccini, Kwang-dong Seong, Jiseop Oh, German Salazar-Alvarez, Yuanzhe Piao (2017). Extensively interconnected silicon nanoparticles via carbon network derived from ultrathin cellulose nanofibers as high performance lithium ion battery anodes. Carbon, 118, 8-17.
[60] Alexandre Magasinski, Bogdan Zdyrko, gor Kovalenko, Benjamin Hertzberg, Ruslan Burtovyy, Christopher F. Huebner, Thomas F. Fuller, Igor Luzinov, Gleb Yushin (2010). Toward efficient binders for li-ion battery si-based anodes: polyacrylic acid. ACS Applied Materials & Interfaces, 2(11), 3004-3010.
[61] Sung-Tsuen Liu (1999). Thin mineralized collagen membrane and method of making same. US 6,417,166 B2.
[62] Yingnan Liu, Yaqing Xiao, Yuanyuan Cao, Zhirong Guo, Fan Li, Li Wang (2020). Construction of chitosan-based hydrogel incorporated with antimonene aanosheets for rapid capture and elimination of bacteria. Advanced Functional Materials, 30(35), 2003196.
[63] Lin Zhang, Yunsheng Dong, Yueming Xue, Jie Shi, Xiangyun Zhang, Yufei Liu, Adam C. Midgley, Shufang Wang (2019). Multifunctional triple-layered composite scaffolds combining platelet-rich fibrin promote bone regeneration. ACS Biomaterials Science & Engineering, 5(12), 6691-6702.
[64] Shao Ching Chao, Ming-Jia Wang, Nai-Su Pai, Shiow-Kang Yen (2015). Preparation and characterization of gelatin-hydroxyapatite composite microspheres for hard tissue repair. Materials Science and Engineering C, 57, 113-122.
[65] Rui Chen, Hang-Bo Chen, Peng-Peng Xue, Wai-Geng Yang, Lan-Zi Luo, Meng-Qi Tong, Bin Zhong, He-Lin Xu, Ying-Zheng Zhao, Jian-Dong Yuan (2021). HA/MgO nanocrystal-based hybrid hydrogel with high mechanical strength and osteoinductive potential for bone reconstruction in diabetic rats. Journal of Materials Chemistry B, 9, 1107-1122.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *