帳號:guest(3.146.221.144)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳育伸
作者(外文):Chen, Yu-Shen
論文名稱(中文):開發複合式固體鹼觸媒之製備與分析技術用於高效催化轉酯化反應
論文名稱(外文):Synthesis and Characterization of Basic Nanocomposite Catalysts for High Performance Transesterification
指導教授(中文):蔡德豪
指導教授(外文):Tsai, De-Hao
口試委員(中文):呂世源
汪上曉
口試委員(外文):Lu, Shih-Yuan
Wong, Shan-Hill
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032564
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:67
中文關鍵詞:固體鹼觸媒氣溶膠合成轉酯化反應生質柴油
外文關鍵詞:catalystaerosoltransesterificationbiodiesel
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1132
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
此研究工作目的為開發複合式固體鹼觸媒之製備與分析技術用於高效催化轉酯化反應。首先,我們以初濕含浸法的方式製備出不同鹼觸媒擔載量的複合式CaO@Al2O3載體觸媒,用以合成丙酸十八酯作為代表之轉酯化反應,並建立材料分析與活性測試平台。在第二階段研究我們選擇以氣相誘導自組裝法製備具有孔洞的Mg-Al-O複合式奈米觸媒,改善觸媒的穩定性和減少瀝濾的情況發生,並應用於催化大豆油轉酯化反應合成出生質柴油。
材料分析技術上我們使用掃描式電子顯微鏡、穿透式電子顯微鏡、電移動度分析儀、X光繞射儀、比表面積測定儀和二氧化碳程溫脫附來分析複合式固體鹼觸媒的型態、晶徑、比表面積、孔洞大小和表面鹼度,探討觸媒之化學及物理表面性質,特別是鹼度對轉酯化反應的催化活性的影響,產物分析上使用氣相層析儀分析轉酯化反應之轉化率,以評估所製備之觸媒的活性表現。
由第一階段結果顯示出,我們可以成功藉由初濕含浸法精確地控制CaO@Al2O3觸媒的載量,由CO2-TPD分析結果顯示,CaO@Al2O3觸媒的鹼度隨著氧化鈣的載量提升而增加,且由活性測試結果,觸媒的表面強鹼性位與轉化率成正比。而由第二階段結果顯示出,Mg-Al-O複合式奈米觸媒的孔洞、孔徑和化學組成可透過前驅物的設計進行調整,且與傳統液相合成法相比,使用氣相誘導自組裝法合成的Mg-Al-O奈米粒子有較高的比表面積(提高1.8倍)和較小的孔徑(減小20%),並藉由添加不同型態的Al2O3前驅物分別配置勻相和非勻相前驅液,控制奈米粒子的表面積、孔洞大小和鹼度來達到最適化條件。以勻相前驅物所製備的複合式奈米觸媒在Mg/Al = 4時具有最好的活性,且操作穩定性(FAME產率下降< 4%)和化學穩定性(觸媒瀝濾的量<觸媒總質量的0.06 wt%)良好。由CO2-TPD材料分析結果顯示,觸媒表面鹼度的提升與轉酯化反應催化活性有正相關性。研究結合了複合式固體鹼觸媒之製備與分析技術,透過了解反應機制,我們可開發具有高穩定性與高活性的固體觸媒用於催化轉酯化反應。
In this study, a facile controlled synthesis of basic nanocomposite catalysts (CaO, MgO) is demonstrated for the catalysis of the transesterification. In the first part, incipient wet impregnation method was employed to fabricate CaO@Al2O3 with different loadings of CCa. In the second part, an aerosol-based controlled synthesis of porous Mg-Al-O composite nanoparticle was demonstrated for developing solid base catalysts with high performance for transesterification of soybean oil to biodiesel. We utilized Mg-Al-O composite nanoparticle to improve the stability and performance of catalysts.
Complementary characterization methods, including scanning electron microscopy, transmission electron microscopy, CO2 temperature-programmed desorption, Brunauer-Emmett-Teller surface area analysis, differential mobility analysis, X-ray diffractometry and gas chromatography installed with a flame ionization detector were employed to provide information of materials properties of the synthesized catalysts. The result show that the basicity of CaO@Al2O3 support catalyst is proportional to the catalytic activity toward the transesterification of soybean oil to biodiesel. A significantly higher specific surface area (by 1.8 times) and a smaller pore size (i.e., decreased by 20%) of the Mg-Al-O composite particle achieved by using the aerosol-based synthesis than the samples produced via a conventional solution-based method. Hybridization with Al2O3 remarkably increased surface area of the MgO particle by decreasing pore size using homogenous Al precursor or increasing pore volume via choosing heterogeneous Al precursor. The fatty acid methyl esters (FAME) yield catalyzed by Mg-Al-O composite particle was significantly higher in comparison to the results without catalysts (i.e., a maximum of 3.4×). The FAME field was proportional to methanol-to-oil molar ratio, and the highest yield was identified at Mg/Al = 4, in accordance to the highest number of strong basic site quantified via a CO2-based temperature-programmed desorption study. The study also shows promise to further enhance strong basicity and corresponding catalytic activity through a mechanistic understanding at the interface of the designed composite nanocatalyst.
摘要 I
Abstract III
誌謝辭 V
目錄 VI
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 轉酯化反應 1
1.2 非勻相鹼性觸媒於轉酯化反應的應用 2
1.3 固體觸媒的製備 5
1.4 實驗目的與方法 7
第二章 實驗方法及儀器 9
2.1 實驗藥品 9
2.2 觸媒製備 11
2.1.1初濕含浸法 11
2.1.2氣相誘導自組裝法 12
2.3 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 15
2.4 高解析度穿透式電子顯微鏡 (High-Resolution Transmission Electron Microscopy, HR-TEM) 15
2.5 靜電收集器(Electrostatic Precipitator) 16
2.6 電移動度分析儀(Differential mobility analyzer , DMA) 17
2.7 X光繞射儀(X-ray diffraction, XRD) 18
2.8 比表面積測定儀(Brunauer-Emmett-Teller , BET) 19
2.9 感應耦合電漿發射光譜儀(Inductively Coupled Plasma Optical Emission Spectrometry, ICP-OES) 20
2.10 熱重量分析儀 (Thermogravimetric Analyzer, TGA) 20
2.11 二氧化碳程溫脫附分析(CO2 Temperature-Programmed Desorption, CO2-TPD) 21
2.12 轉酯化反應測試系統 22
2.13 氣相層析儀 (Gas Chromatography - Flame Ionization Detector) 24
第三章 實驗結果及討論 27
3.1 運用氧化鈣-氧化鋁載體觸媒催化轉酯化反應 27
3.1.1 材料分析 28
3.1.2 鹼度分析 34
3.1.3 轉酯化反應活性測試 36
3.2 運用氣相誘導自組裝法製備Mg-Al-O複合式奈米觸媒催化轉酯化反應 39
3.2.1 材料分析 40
3.2.2 鹼度分析 49
3.2.3 轉酯化反應活性測試 51
第四章 結論 58
第五章 未來展望 59
第六章 參考文獻 62
[1] O. Brede, H. Orthner, V. Zubarev, R. Hermann, Radical Cations of Sterically Hindered Phenols as Intermediates in Radiation-Induced Electron Transfer Processes, The Journal of Physical Chemistry, 100 (1996) 7097-7105.
[2] M. Schmittel, A. Burghart, Understanding Reactivity Patterns of Radical Cations, Angewandte Chemie International Edition in English, 36 (1997) 2550-2589.
[3] H. Wu, J. Zhang, Q. Wei, J. Zheng, J. Zhang, Transesterification of soybean oil to biodiesel using zeolite supported CaO as strong base catalysts, Fuel Processing Technology 109 (2013) 13-18.
[4] I.M. Atadashi, M.K. Aroua, A.A. Aziz, Biodiesel separation and purification: A review, Renewable Energy, 36 (2011) 437-443.
[5] A. Kawashima, K. Matsubara, K. Honda, Development of heterogeneous base catalysts for biodiesel production, Bioresource Technology, 99 (2008) 3439-3443.
[6] P. Zhang, X. Chen, Y. Leng, Y. Dong, P. Jiang, M. Fan, Biodiesel production from palm oil and methanol via zeolite derived catalyst as a phase boundary catalyst: An optimization study by using response surface methodology, Fuel, 272 (2020) 1176-1180.
[7] R. Jothiramalingam, M.K. Wang, Review of recent developments in solid acid, base, and enzyme catalysts (heterogeneous) for biodiesel production via transesterification, Industrial & Engineering Chemistry Research, 48 (2009) 6162-6172.
[8] M. Zabeti, W.M.A.W. Daud, M.K. Aroua, Optimization of the activity of CaO/Al2O3 catalyst for biodiesel production using response surface methodology, Applied Catalysis A: General, 366 (2009) 154-159.
[9] M. Di Serio, R. Tesser, M. Dimiccoli, F. Cammarota, M. Nastasi, E. Santacesaria, Synthesis of biodiesel via homogeneous Lewis acid catalyst, Journal of Molecular Catalysis A: Chemical, 239 (2005) 111-115.
[10] M. Di Serio, M. Ledda, M. Cozzolino, G. Minutillo, R. Tesser, E. Santacesaria, Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts, Industrial & Engineering Chemistry Research, 45 (2006) 3009-3014.
[11] M. Kouzu, A. Fujimori, T. Suzuki, K. Koshi, H. Moriyasu, Industrial feasibility of powdery CaO catalyst for production of biodiesel, Fuel Processing Technology, 165 (2017) 94-101.
[12] M. Kouzu, M. Tsunomori, S. Yamanaka, J. Hidaka, Solid base catalysis of calcium oxide for a reaction to convert vegetable oil into biodiesel, Advanced Powder Technology, 21 (2010) 488-494.
[13] P. Zhang, H. Wu, M. Fan, W. Sun, P. Jiang, Y. Dong, Direct and postsynthesis of tin-incorporated SBA-15 functionalized with sulfonic acid for efficient biodiesel production, Fuel, 235 (2019) 426-432.
[14] M. Dorado, E. Ballesteros, J. Arnal, J. Gomez, F. Lopez, Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil, Fuel, 82 (2003) 1311-1315.
[15] M. Kouzu, T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka, J. Hidaka, Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production, Fuel, 87 (2008) 2798-2806.
[16] N. Pasupulety, K. Gunda, Y. Liu, G.L. Rempel, Production of biodiesel from soybean oil on CaO/Al2O3 solid base catalysts, Applied Catalysis A: General, 452 (2013) 189-202.
[17] H.J. Kim, B.S. Kang, M.J. Kim, Y.M. Park, D.K. Kim, J.S. Lee, K.Y. Lee, Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst, Catalysis Today, 93 (2004) 315-320.
[18] Y. Liu, Q. Tu, G. Knothe, M. Lu, Direct transesterification of spent coffee grounds for biodiesel production, Fuel, 199 (2017) 157-161.
[19] E.K. Sitepu, D.B. Jones, Y. Tang, S.C. Leterme, K. Heimann, W. Zhang, C.L. Raston, Continuous flow biodiesel production from wet microalgae using a hybrid thin film microfluidic platform, Chemical Communications, 54 (2018) 12085-12088.
[20] E.K. Sitepu, D.B. Jones, Z. Zhang, Y. Tang, S.C. Leterme, K. Heimann, C.L. Raston, W. Zhang, Turbo thin film continuous flow production of biodiesel from fungal biomass, Bioresource Technology, 273 (2019) 431-438.
[21] Z. Salimi, S.A. Hosseini, Study and optimization of conditions of biodiesel production from edible oils using ZnO/BiFeO3 nano magnetic catalyst, Fuel, 239 (2019) 1204-1212.
[22] H.L. Wang, C.Y. Hsu, K.C. Wu, Y.F. Lin, D.H. Tsai, Functional nanostructured materials: Aerosol, aerogel, and de novo synthesis to emerging energy and environmental applications, Advanced Powder Technology, 31 (2020) 104-120.
[23] X. Liu, H. He, Y. Wang, S. Zhu, X. Piao, Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst, Fuel, 87 (2008) 216-221.
[24] L.C. Meher, D. Vidya Sagar, S.N. Naik, Technical aspects of biodiesel production by transesterification—a review, Renewable and Sustainable Energy Reviews, 10 (2006) 248-268.
[25] M.C.G. Albuquerque, J. Santamaría-González, J.M. Mérida-Robles, R. Moreno-Tost, E. Rodríguez-Castellón, A. Jiménez-López, D.C.S. Azevedo, C.L. Cavalcante, P. Maireles-Torres, MgM (M=Al and Ca) oxides as basic catalysts in transesterification processes, Applied Catalysis A: General, 347 (2008) 162-168.
[26] J. Barrault, S. Bancquart, Y. Pouilloux, Selective glycerol transesterification over mesoporous basic catalysts, Comptes Rendus Chimie, 7 (2004) 593-599.
[27] R. Sree, N. Seshu Babu, P.S. Sai Prasad, N. Lingaiah, Transesterification of edible and non-edible oils over basic solid Mg/Zr catalysts, Fuel Processing Technology, 90 (2009) 152-157.
[28] M. Savonnet, S. Aguado, U. Ravon, D. Bazer-Bachi, V. Lecocq, N. Bats, C. Pinel, D. Farrusseng, Solvent free base catalysis and transesterification over basic functionalised Metal-Organic Frameworks, Green Chemistry, 11 (2009) 1729-1732.
[29] Y. Tang, J. Xu, J. Zhang, Y. Lu, Biodiesel production from vegetable oil by using modified CaO as solid basic catalysts, Journal of Cleaner Production, 42 (2013) 198-203.
[30] A.C. Alba-Rubio, J. Santamaría-González, J.M. Mérida-Robles, R. Moreno-Tost, D. Martín-Alonso, A. Jiménez-López, P. Maireles-Torres, Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts, Catalysis Today, 149 (2010) 281-287.
[31] Z. Yang, W. Xie, Soybean oil transesterification over zinc oxide modified with alkali earth metals, Fuel Processing Technology, 88 (2007) 631-638.
[32] N.S. Babu, R. Sree, P.S.S. Prasad, N. Lingaiah, Room-Temperature Transesterification of Edible and Nonedible Oils Using a Heterogeneous Strong Basic Mg/La Catalyst, Energy & Fuels, 22 (2008) 1965-1971.
[33] F. Ma, M.A. Hanna, Biodiesel production: a review, Bioresource Technology, 70 (1999) 1-15.
[34] C.L. Chen, C.C. Huang, D.T. Tran, J.S. Chang, Biodiesel synthesis via heterogeneous catalysis using modified strontium oxides as the catalysts, Bioresource Technology, 113 (2012) 8-13.
[35] M.C.G. Albuquerque, I. Jiménez-Urbistondo, J. Santamaría-González, J.M. Mérida-Robles, R. Moreno-Tost, E. Rodríguez-Castellón, A. Jiménez-López, D.C.S. Azevedo, C.L. Cavalcante, P. Maireles-Torres, CaO supported on mesoporous silicas as basic catalysts for transesterification reactions, Applied Catalysis A: General, 334 (2008) 35-43.
[36] L. Du, Z. Li, S. Ding, C. Chen, S. Qu, W. Yi, J. Lu, J. Ding, Synthesis and characterization of carbon-based MgO catalysts for biodiesel production from castor oil, Fuel, 258 (2019) 116-122.
[37] L. Liu, Z. Wen, G. Cui, Preparation of Ca/Zr mixed oxide catalysts through a birch-templating route for the synthesis of biodiesel via transesterification, Fuel, 158 (2015) 176-182.
[38] N. Shibasaki-Kitakawa, H. Honda, H. Kuribayashi, T. Toda, T. Fukumura, T. Yonemoto, Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst, Bioresource Technology, 98 (2007) 416-421.
[39] Y.M. Park, D.W. Lee, D.K. Kim, J.S. Lee, K.Y. Lee, The heterogeneous catalyst system for the continuous conversion of free fatty acids in used vegetable oils for the production of biodiesel, Catalysis Today, 131 (2008) 238-243.
[40] M. Shi, P. Zhang, M. Fan, P. Jiang, Y. Dong, Influence of crystal of Fe2O3 in magnetism and activity of nanoparticle CaO@Fe2O3 for biodiesel production, Fuel, 197 (2017) 343-347.
[41] M. Fan, Y. Liu, P. Zhang, P. Jiang, Blocky shapes Ca-Mg mixed oxides as a water-resistant catalyst for effective synthesis of biodiesel by transesterification, Fuel Processing Technology 149 (2016) 163-168.
[42] S.H. Teo, Y.H. Taufiq-Yap, U. Rashid, A. Islam, Hydrothermal effect on synthesis, characterization and catalytic properties of calcium methoxide for biodiesel production from crude Jatropha curcas, RSC Advances, 5 (2015) 4266-4276.
[43] M. Kouzu, J.-s. Hidaka, Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review, Fuel, 93 (2012) 1-12.
[44] Y.C. Sharma, B. Singh, J. Korstad, Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel: A review, Fuel, 90 (2011) 1309-1324.
[45] D.Y.C. Leung, X. Wu, M.K.H. Leung, A review on biodiesel production using catalyzed transesterification, Applied Energy, 87 (2010) 1083-1095.
[46] M. Zabeti, W.M.A. Wan Daud, M.K. Aroua, Activity of solid catalysts for biodiesel production: A review, Fuel Processing Technology, 90 (2009) 770-777.
[47] M.E. Borges, L. Díaz, Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review, Renewable and Sustainable Energy Reviews, 16 (2012) 2839-2849.
[48] N. Kondamudi, S.K. Mohapatra, M. Misra, Quintinite as a bifunctional heterogeneous catalyst for biodiesel synthesis, Applied Catalysis A: General, 393 (2011) 36-43.
[49] H.Y. Chang, G.H. Lai, C.Y. Lin, C.Y. Lee, C.C. Chia, C.L. Hwang, H.-M. Chang, D.-H. Tsai, Reductive amination of polypropylene glycol using Ni-CeO2@Al2O3 with high activity, selectivity and stability, Catalysis Communications, 127 (2019) 15-19.
[50] K. Okuyama, I. Wuled Lenggoro, Preparation of nanoparticles via spray route, Chemical Engineering Science, 58 (2003) 537-547.
[51] D.A. Firmansyah, S.G. Kim, K.S. Lee, R. Zahaf, Y.H. Kim, D. Lee, Microstructure-Controlled Aerosol–Gel Synthesis of ZnO Quantum Dots Dispersed in SiO2 Nanospheres, Langmuir, 28 (2012) 2890-2896.
[1] O. Brede, H. Orthner, V. Zubarev, R. Hermann, Radical Cations of Sterically Hindered Phenols as Intermediates in Radiation-Induced Electron Transfer Processes, The Journal of Physical Chemistry, 100 (1996) 7097-7105.
[2] M. Schmittel, A. Burghart, Understanding Reactivity Patterns of Radical Cations, Angewandte Chemie International Edition in English, 36 (1997) 2550-2589.
[3] H. Wu, J. Zhang, Q. Wei, J. Zheng, J. Zhang, Transesterification of soybean oil to biodiesel using zeolite supported CaO as strong base catalysts, Fuel Processing Technology 109 (2013) 13-18.
[4] I.M. Atadashi, M.K. Aroua, A.A. Aziz, Biodiesel separation and purification: A review, Renewable Energy, 36 (2011) 437-443.
[5] A. Kawashima, K. Matsubara, K. Honda, Development of heterogeneous base catalysts for biodiesel production, Bioresource Technology, 99 (2008) 3439-3443.
[6] P. Zhang, X. Chen, Y. Leng, Y. Dong, P. Jiang, M. Fan, Biodiesel production from palm oil and methanol via zeolite derived catalyst as a phase boundary catalyst: An optimization study by using response surface methodology, Fuel, 272 (2020) 1176-1180.
[7] R. Jothiramalingam, M.K. Wang, Review of recent developments in solid acid, base, and enzyme catalysts (heterogeneous) for biodiesel production via transesterification, Industrial & Engineering Chemistry Research, 48 (2009) 6162-6172.
[8] M. Zabeti, W.M.A.W. Daud, M.K. Aroua, Optimization of the activity of CaO/Al2O3 catalyst for biodiesel production using response surface methodology, Applied Catalysis A: General, 366 (2009) 154-159.
[9] M. Di Serio, R. Tesser, M. Dimiccoli, F. Cammarota, M. Nastasi, E. Santacesaria, Synthesis of biodiesel via homogeneous Lewis acid catalyst, Journal of Molecular Catalysis A: Chemical, 239 (2005) 111-115.
[10] M. Di Serio, M. Ledda, M. Cozzolino, G. Minutillo, R. Tesser, E. Santacesaria, Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts, Industrial & Engineering Chemistry Research, 45 (2006) 3009-3014.
[11] M. Kouzu, A. Fujimori, T. Suzuki, K. Koshi, H. Moriyasu, Industrial feasibility of powdery CaO catalyst for production of biodiesel, Fuel Processing Technology, 165 (2017) 94-101.
[12] M. Kouzu, M. Tsunomori, S. Yamanaka, J. Hidaka, Solid base catalysis of calcium oxide for a reaction to convert vegetable oil into biodiesel, Advanced Powder Technology, 21 (2010) 488-494.
[13] P. Zhang, H. Wu, M. Fan, W. Sun, P. Jiang, Y. Dong, Direct and postsynthesis of tin-incorporated SBA-15 functionalized with sulfonic acid for efficient biodiesel production, Fuel, 235 (2019) 426-432.
[14] M. Dorado, E. Ballesteros, J. Arnal, J. Gomez, F. Lopez, Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil, Fuel, 82 (2003) 1311-1315.
[15] M. Kouzu, T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka, J. Hidaka, Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production, Fuel, 87 (2008) 2798-2806.
[16] N. Pasupulety, K. Gunda, Y. Liu, G.L. Rempel, Production of biodiesel from soybean oil on CaO/Al2O3 solid base catalysts, Applied Catalysis A: General, 452 (2013) 189-202.
[17] H.J. Kim, B.S. Kang, M.J. Kim, Y.M. Park, D.K. Kim, J.S. Lee, K.Y. Lee, Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst, Catalysis Today, 93 (2004) 315-320.
[18] Y. Liu, Q. Tu, G. Knothe, M. Lu, Direct transesterification of spent coffee grounds for biodiesel production, Fuel, 199 (2017) 157-161.
[19] E.K. Sitepu, D.B. Jones, Y. Tang, S.C. Leterme, K. Heimann, W. Zhang, C.L. Raston, Continuous flow biodiesel production from wet microalgae using a hybrid thin film microfluidic platform, Chemical Communications, 54 (2018) 12085-12088.
[20] E.K. Sitepu, D.B. Jones, Z. Zhang, Y. Tang, S.C. Leterme, K. Heimann, C.L. Raston, W. Zhang, Turbo thin film continuous flow production of biodiesel from fungal biomass, Bioresource Technology, 273 (2019) 431-438.
[21] Z. Salimi, S.A. Hosseini, Study and optimization of conditions of biodiesel production from edible oils using ZnO/BiFeO3 nano magnetic catalyst, Fuel, 239 (2019) 1204-1212.
[22] H.L. Wang, C.Y. Hsu, K.C. Wu, Y.F. Lin, D.H. Tsai, Functional nanostructured materials: Aerosol, aerogel, and de novo synthesis to emerging energy and environmental applications, Advanced Powder Technology, 31 (2020) 104-120.
[23] X. Liu, H. He, Y. Wang, S. Zhu, X. Piao, Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst, Fuel, 87 (2008) 216-221.
[24] L.C. Meher, D. Vidya Sagar, S.N. Naik, Technical aspects of biodiesel production by transesterification—a review, Renewable and Sustainable Energy Reviews, 10 (2006) 248-268.
[25] M.C.G. Albuquerque, J. Santamaría-González, J.M. Mérida-Robles, R. Moreno-Tost, E. Rodríguez-Castellón, A. Jiménez-López, D.C.S. Azevedo, C.L. Cavalcante, P. Maireles-Torres, MgM (M=Al and Ca) oxides as basic catalysts in transesterification processes, Applied Catalysis A: General, 347 (2008) 162-168.
[26] J. Barrault, S. Bancquart, Y. Pouilloux, Selective glycerol transesterification over mesoporous basic catalysts, Comptes Rendus Chimie, 7 (2004) 593-599.
[27] R. Sree, N. Seshu Babu, P.S. Sai Prasad, N. Lingaiah, Transesterification of edible and non-edible oils over basic solid Mg/Zr catalysts, Fuel Processing Technology, 90 (2009) 152-157.
[28] M. Savonnet, S. Aguado, U. Ravon, D. Bazer-Bachi, V. Lecocq, N. Bats, C. Pinel, D. Farrusseng, Solvent free base catalysis and transesterification over basic functionalised Metal-Organic Frameworks, Green Chemistry, 11 (2009) 1729-1732.
[29] Y. Tang, J. Xu, J. Zhang, Y. Lu, Biodiesel production from vegetable oil by using modified CaO as solid basic catalysts, Journal of Cleaner Production, 42 (2013) 198-203.
[30] A.C. Alba-Rubio, J. Santamaría-González, J.M. Mérida-Robles, R. Moreno-Tost, D. Martín-Alonso, A. Jiménez-López, P. Maireles-Torres, Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts, Catalysis Today, 149 (2010) 281-287.
[31] Z. Yang, W. Xie, Soybean oil transesterification over zinc oxide modified with alkali earth metals, Fuel Processing Technology, 88 (2007) 631-638.
[32] N.S. Babu, R. Sree, P.S.S. Prasad, N. Lingaiah, Room-Temperature Transesterification of Edible and Nonedible Oils Using a Heterogeneous Strong Basic Mg/La Catalyst, Energy & Fuels, 22 (2008) 1965-1971.
[33] F. Ma, M.A. Hanna, Biodiesel production: a review, Bioresource Technology, 70 (1999) 1-15.
[34] C.L. Chen, C.C. Huang, D.T. Tran, J.S. Chang, Biodiesel synthesis via heterogeneous catalysis using modified strontium oxides as the catalysts, Bioresource Technology, 113 (2012) 8-13.
[35] M.C.G. Albuquerque, I. Jiménez-Urbistondo, J. Santamaría-González, J.M. Mérida-Robles, R. Moreno-Tost, E. Rodríguez-Castellón, A. Jiménez-López, D.C.S. Azevedo, C.L. Cavalcante, P. Maireles-Torres, CaO supported on mesoporous silicas as basic catalysts for transesterification reactions, Applied Catalysis A: General, 334 (2008) 35-43.
[36] L. Du, Z. Li, S. Ding, C. Chen, S. Qu, W. Yi, J. Lu, J. Ding, Synthesis and characterization of carbon-based MgO catalysts for biodiesel production from castor oil, Fuel, 258 (2019) 116-122.
[37] L. Liu, Z. Wen, G. Cui, Preparation of Ca/Zr mixed oxide catalysts through a birch-templating route for the synthesis of biodiesel via transesterification, Fuel, 158 (2015) 176-182.
[38] N. Shibasaki-Kitakawa, H. Honda, H. Kuribayashi, T. Toda, T. Fukumura, T. Yonemoto, Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst, Bioresource Technology, 98 (2007) 416-421.
[39] Y.M. Park, D.W. Lee, D.K. Kim, J.S. Lee, K.Y. Lee, The heterogeneous catalyst system for the continuous conversion of free fatty acids in used vegetable oils for the production of biodiesel, Catalysis Today, 131 (2008) 238-243.
[40] M. Shi, P. Zhang, M. Fan, P. Jiang, Y. Dong, Influence of crystal of Fe2O3 in magnetism and activity of nanoparticle CaO@Fe2O3 for biodiesel production, Fuel, 197 (2017) 343-347.
[41] M. Fan, Y. Liu, P. Zhang, P. Jiang, Blocky shapes Ca-Mg mixed oxides as a water-resistant catalyst for effective synthesis of biodiesel by transesterification, Fuel Processing Technology 149 (2016) 163-168.
[42] S.H. Teo, Y.H. Taufiq-Yap, U. Rashid, A. Islam, Hydrothermal effect on synthesis, characterization and catalytic properties of calcium methoxide for biodiesel production from crude Jatropha curcas, RSC Advances, 5 (2015) 4266-4276.
[43] M. Kouzu, J.-s. Hidaka, Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review, Fuel, 93 (2012) 1-12.
[44] Y.C. Sharma, B. Singh, J. Korstad, Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel: A review, Fuel, 90 (2011) 1309-1324.
[45] D.Y.C. Leung, X. Wu, M.K.H. Leung, A review on biodiesel production using catalyzed transesterification, Applied Energy, 87 (2010) 1083-1095.
[46] M. Zabeti, W.M.A. Wan Daud, M.K. Aroua, Activity of solid catalysts for biodiesel production: A review, Fuel Processing Technology, 90 (2009) 770-777.
[47] M.E. Borges, L. Díaz, Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review, Renewable and Sustainable Energy Reviews, 16 (2012) 2839-2849.
[48] N. Kondamudi, S.K. Mohapatra, M. Misra, Quintinite as a bifunctional heterogeneous catalyst for biodiesel synthesis, Applied Catalysis A: General, 393 (2011) 36-43.
[49] H.Y. Chang, G.H. Lai, C.Y. Lin, C.Y. Lee, C.C. Chia, C.L. Hwang, H.-M. Chang, D.-H. Tsai, Reductive amination of polypropylene glycol using Ni-CeO2@Al2O3 with high activity, selectivity and stability, Catalysis Communications, 127 (2019) 15-19.
[50] K. Okuyama, I. Wuled Lenggoro, Preparation of nanoparticles via spray route, Chemical Engineering Science, 58 (2003) 537-547.
[51] D.A. Firmansyah, S.G. Kim, K.S. Lee, R. Zahaf, Y.H. Kim, D. Lee, Microstructure-Controlled Aerosol–Gel Synthesis of ZnO Quantum Dots Dispersed in SiO2 Nanospheres, Langmuir, 28 (2012) 2890-2896.
[52] D.S. Jung, S.B. Park, Y.C. Kang, Design of particles by spray pyrolysis and recent progress in its application, Korean Journal of Chemical Engineering, 27 (2010) 1621-1645.
[53] A.K. Peterson, D.G. Morgan, S.E. Skrabalak, Aerosol Synthesis of Porous Particles Using Simple Salts as a Pore Template, Langmuir, 26 (2010) 8804-8809.
[54] A. Corma, S. Iborra, Optimization of Alkaline Earth Metal Oxide and Hydroxide Catalysts for Base-Catalyzed Reactions, in: B.C. Gates, H. Knözinger (Eds.) Advances in Catalysis, Academic Press, 2006, pp. 239-302.
[55] S.-i. Fujita, B.M. Bhanage, H. Kanamaru, M. Arai, Synthesis of 1,3-dialkylurea from ethylene carbonate and amine using calcium oxide, Journal of Molecular Catalysis A: Chemical, 230 (2005) 43-48.
[56] Q. Li, N. Zhao, W. Wei, Y. Sun, Catalytic performance of metal oxides for the synthesis of propylene carbonate from urea and 1,2-propanediol, Journal of Molecular Catalysis A: Chemical, 270 (2007) 44-49.
[57] L. Yu, W. Li, V. Ducarme, C. Mirodatos, G.A. Martin, Inhibition of gas-phase oxidation of ethylene in the oxidative conversion of methane and ethane over CaO, La2O3/CaO and SrO–La2O3/CaO catalysts, Applied Catalysis A: General, 175 (1998) 173-179.
[58] L. Wang, J. Yang, Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol, Fuel, 86 (2007) 328-333.
[59] A.D.V. Souza, C.C. Arruda, L. Fernandes, M.L.P. Antunes, P.K. Kiyohara, R. Salomão, Characterization of aluminum hydroxide (Al(OH)3) for use as a porogenic agent in castable ceramics, Journal of the European Ceramic Society, 35 (2015) 803-812.
[60] N. Pasupulety, K. Gunda, Y. Liu, G.L. Rempel, F.T.T. Ng, Production of biodiesel from soybean oil on CaO/Al2O3 solid base catalysts, Applied Catalysis A: General, 452 (2013) 189-202.
[61] E.S. Umdu, M. Tuncer, E. Seker, Transesterification of Nannochloropsis oculata microalga's lipid to biodiesel on Al2O3 supported CaO and MgO catalysts, Bioresour Technol, 100 (2009) 2828-2831.
[62] D.A. Constantinou, J.L.G. Fierro, A.M. Efstathiou, The phenol steam reforming reaction towards H2 production on natural calcite, Applied Catalysis B: Environmental, 90 (2009) 347-359.
[63] S. Bancquart, C. Vanhove, Y. Pouilloux, J. Barrault, Glycerol transesterification with methyl stearate over solid basic catalysts: I. Relationship between activity and basicity, Applied Catalysis A: General, 218 (2001) 1-11.
[64] M.L. Granados, D.M. Alonso, I. Sádaba, R. Mariscal, P. Ocón, Leaching and homogeneous contribution in liquid phase reaction catalysed by solids: The case of triglycerides methanolysis using CaO, Applied Catalysis B: Environmental, 89 (2009) 265-272.
[65] M. Verziu, S.M. Coman, R. Richards, V.I. Parvulescu, Transesterification of vegetable oils over CaO catalysts, Catalysis Today, 167 (2011) 64-70.
[66] L. Huang, D.Q. Li, Y.J. Lin, M. Wei, D.G. Evans, X. Duan, Controllable preparation of Nano-MgO and investigation of its bactericidal properties, J Inorg Biochem, 99 (2005) 986-993.
[67] P. Suttibut, K. Suriye, P. Praserthdam, J. Panpranot, Synthesis and Characteristics of CaO/MgO Mixed Oxides for the Double Bond Isomerization of 1-Butene, Journal of Nanoscience and Nanotechnology, 18 (2018) 439-444.
[68] L. Lin, E. Silva Gomes, F. Payan, M. Jaber, J.-M. Krafft, G. Laugel, H. Lauron-Pernot, How the acido-basic properties of Mg silicates and clays govern the catalytic mechanism of transesterification reactions, Catalysis Science & Technology, 9 (2019) 6072-6084.
[69] C. Chizallet, M.L. Bailly, G. Costentin, H. Lauron-Pernot, J.M. Krafft, P. Bazin, J. Saussey, M. Che, Thermodynamic brønsted basicity of clean MgO surfaces determined by their deprotonation ability: Role of Mg2+–O2− pairs, Catalysis Today, 116 (2006) 196-205.
[70] D. Cornu, H. Guesmi, G. Laugel, J.M. Krafft, H. Lauron Pernot, On the relationship between the basicity of a surface and its ability to catalyze transesterification in liquid and gas phases: the case of MgO, Phys. Chem. Chem. Phys., 17 (2015) 14168-14176.
[71] F. Guo, N.N. Wei, Z.L. Xiu, Z. Fang, Transesterification mechanism of soybean oil to biodiesel catalyzed by calcined sodium silicate, Fuel, 93 (2012) 468-472.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *