帳號:guest(3.135.198.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):章絜鈞
作者(外文):Chang, Jie-Jiun
論文名稱(中文):以深度學習模型及詞嵌入方法建立通用數位化學空間預測純物質性質
論文名稱(外文):Using Deep Learning Model and Word Embedding Method to Establish Universal Digital Chemical Space to Predict Pure Component Properties
指導教授(中文):汪上曉
指導教授(外文):Wong, David Shan-Hill
口試委員(中文):林祥泰
康嘉麟
口試委員(外文):Lin, Shiang-Tai
Kang, Jia-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032563
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:57
中文關鍵詞:深度學習詞嵌入分子性質模擬數位化學空間
外文關鍵詞:deep learningword embeddingmolecular propertiesuniversal digital chemical space
相關次數:
  • 推薦推薦:0
  • 點閱點閱:636
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
分子性質的預測在分子設計領域一直是重要的議題,過去,有像是Joback法、UNIFAC法等等的官能基貢獻法。近年,隨著演算法的革新與電腦硬體的進步,深度學習在各項領域都有出色的發揮。本文提出一種深度學習模型,以監督學習的方法將一種近似於自然語言的分子表示法:簡化分子線性輸入規範(SMILES)投影至高維度的空間中。分子特徵被嵌入一個稱作通用數位化學空間(UDCS)的高維向量,並藉由另一神經網路將此空間向量轉換為數種不同的分子指紋。使用UDCS作為輸入層,便能夠建構數個不同結構的深度學習模型,用以預測數種分子性質,包含運用電腦輔助計算獲得的GDB-9資料庫性質、過去須運用量子力學方法進行高度耗時且複雜的計算才可獲得,稱為Sigma Profile的量子力學性質以及透過實驗獲得的數種定溫熱力學性質。這些模型大大的簡化了分子性質的計算及取得過程。使用深度學習模型計算獲得的sigma profile亦可被用於COSMO-SAC的計算中,並計算出準確的活性係數。
The prediction ability of molecular properties has been an important issue in the region of molecule design. In the past, scientists proposed the group contribution methods such as Joback method, UNIFAC method…etc. In recent years, thanks to the revolution of the algorithm in machine learning and the improvement of computer hardware, the advancement of deep learning grows up fast. In this work, a supervised learning method was used to embed the molecular features into a high dimensional space, called universal digital chemical space (UDCS), from the nature language-like description, called Simplified Molecular Input Line Entry Specification (SMILES). Then, this high dimensional space will be decoded into numbers of presentation of molecular features, called molecular fingerprints. Using this UDCS, numbers of models could be built to predict different molecular properties. These properties included a database using computer-aid calculation called GDB-9, a complex quantum mechanical property called sigma profile, and some fixed-point thermodynamic properties. These models accelerate the calculation of these properties significantly.
誌謝----------i
摘要----------ii
Abstract----------iii
目錄Table of Contents----------iv
圖目錄 List of Figure----------vi
表目錄 List of Table----------viii
第一章 緒論----------1
1.1 研究背景----------1
1.1.1 前言----------1
1.1.2 機器學習和深度學習----------2
1.1.3 通用數位化學空間----------3
1.2 文獻回顧----------4
1.2.1 神經網路模型和深度學習----------4
1.2.2 基於類導體屏蔽模型的熱力學模型----------15
1.2.3 分子指紋----------17
1.3 研究動機----------21
第二章 分子分類和Sigma Profile預測----------22
2.1 SMILES資料處理----------22
2.1.1 SMILES的數字加密----------22
2.1.2 SMILES的投影----------23
2.2 模型結構與訓練方法----------24
2.2.1 嵌入層模型----------24
2.2.2 Sigma Profile預測模型----------25
2.2.3 訓練集樣本選取----------27
2.2.4 使用線性回歸預測Sigma Profile----------28
2.3 結果與討論----------29
2.3.1 嵌入層模型----------29
2.3.2 分子分類----------30
2.3.3 Sigma Profile預測結果----------32
2.3.4 Sigma Profile與活性係數----------35
2.4 章節總結----------38
第三章 通用數位化學空間----------39
3.1 模型結構與訓練方法----------39
3.1.1 通用數位化學空間模型----------39
3.1.2 資料庫介紹----------41
3.1.3 分子性質預測模型----------42
3.2 結果與討論----------43
3.2.1 UDCS模型訓練結果----------43
3.2.2 GDB-9資料庫性質預測結果----------44
3.2.3 Sigma Profiles預測結果----------47
3.2.4 定溫下的熱力學性質:臨界溫度、臨界壓力、偏離因子以及沸點-------49
3.3 章節總結----------52
References----------53
[1] Lin, S. T. (2011). Marching into molecular design. Asia‐Pacific Journal of Chemical Engineering, 6(2), 195-198.
[2] Ng, L. Y., Chong, F. K., & Chemmangattuvalappil, N. G. (2015). Challenges and opportunities in computer-aided molecular design. Computers & Chemical Engineering, 81, 115-129.
[3] Joback, K. G., & Reid, R. C. (1987). Estimation of pure-component properties from group-contributions. Chemical Engineering Communications, 57(1-6), 233-243.
[4] Fredenslund, A., Jones, R. L., & Prausnitz, J. M. (1975). Group‐contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE Journal, 21(6), 1086-1099.
[5] Rogers, D., & Hopfinger, A. J. (1994). Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. Journal of Chemical Information and Computer Sciences, 34(4), 854-866.
[6] Emmert-Streib, F. (2012). Statistical modelling of molecular descriptors in QSAR/QSPR. John Wiley & Sons.
[7] Chen, D. S., Wong, D. S. H., & Chen, C. Y. (1998). Neural network correlations of detonation properties of high energy explosives. Propellants, Explosives, Pyrotechnics, 23(6), 296-300.
[8] Járvás, G., Quellet, C., & Dallos, A. (2011). Estimation of Hansen solubility parameters using multivariate nonlinear QSPR modeling with COSMO screening charge density moments. Fluid Phase Equilibria, 309(1), 8-14.
[9] Faber, F. A., Hutchison, L., Huang, B., Gilmer, J., Schoenholz, S. S., Dahl, G. E., ... & Von Lilienfeld, O. A. (2017). Prediction errors of molecular machine learning models lower than hybrid DFT error. Journal of chemical theory and computation, 13(11), 5255-5264.
[10] Goh, G. B., Siegel, C., Vishnu, A., Hodas, N. O., & Baker, N. (2017). Chemception: a deep neural network with minimal chemistry knowledge matches the performance of expert-developed QSAR/QSPR models. arXiv preprint arXiv:1706.06689.
[11] Grambow, C. A., Li, Y. P., & Green, W. H. (2019). Accurate thermochemistry with small data sets: A bond additivity correction and transfer learning approach. The Journal of Physical Chemistry A, 123(27), 5826-5835.
[12] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
[13] Weininger, D. (1988). SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of chemical information and computer sciences, 28(1), 31-36.
[14] Durant, J. L., Leland, B. A., Henry, D. R., & Nourse, J. G. (2002). Reoptimization of MDL keys for use in drug discovery. Journal of chemical information and computer sciences, 42(6), 1273-1280.
[15] Klamt, A. (1995). Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. The Journal of Physical Chemistry, 99(7), 2224-2235.
[16] Jaeger, S., Fulle, S., & Turk, S. (2018). Mol2vec: unsupervised machine learning approach with chemical intuition. Journal of chemical information and modeling, 58(1), 27-35.
[17] Ma, R., Liu, Z., Zhang, Q., Liu, Z., & Luo, T. (2019). Evaluating Polymer Representations via Quantifying Structure–Property Relationships. Journal of chemical information and modeling, 59(7), 3110-3119.
[18] Thompson, B. (1984). Canonical correlation analysis: Uses and interpretation (No. 47). Sage.
[19] Jolliffe, I. T. (1982). A note on the use of principal components in regression. Journal of the Royal Statistical Society: Series C (Applied Statistics), 31(3), 300-303.
[20] O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of cheminformatics, 3(1), 33.
[21] McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
[22] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
[23] Han, J., & Moraga, C. (1995, June). The influence of the sigmoid function parameters on the speed of backpropagation learning. In International Workshop on Artificial Neural Networks (pp. 195-201). Springer, Berlin, Heidelberg.
[24] Nair, V., & Hinton, G. E. (2010, January). Rectified linear units improve restricted boltzmann machines. In ICML.
[25] Raschka, S. (2016). Introduction to Artificial Neural Networks and Deep Learning.
[26] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
[27] Cauchy, A. (1847). Méthode générale pour la résolution des systemes d’équations simultanées. Comp. Rend. Sci. Paris, 25(1847), 536-538.
[28] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533-536.
[29] Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 12(7).
[30] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
[31] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533-536.
[32] Hermans, M., & Schrauwen, B. (2013). Training and analysing deep recurrent neural networks. In Advances in neural information processing systems (pp. 190-198).
[33] Kosiorowski, D., Mielczarek, D., & Rydlewski, J. (2017). Forecasting of a hierarchical functional time series on example of macromodel for day and night air pollution in silesia region: a critical overview. arXiv preprint arXiv:1712.03797.
[34] Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient flow in recurrent nets: the difficulty of learning long-term dependencies.
[35] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
[36] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
[37] Jozefowicz, R., Zaremba, W., & Sutskever, I. (2015, June). An empirical exploration of recurrent network architectures. In International conference on machine learning (pp. 2342-2350).
[38] Harris, Z. S. (1954). Distributional structure. Word, 10(2-3), 146-162.
[39] Klamt, A., & Eckert, F. (2000). COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equilibria, 172(1), 43-72.
[40] Lin, S. T., & Sandler, S. I. (2002). A priori phase equilibrium prediction from a segment contribution solvation model. Industrial & engineering chemistry research, 41(5), 899-913.
[41] Islam, M. R., & Chen, C. C. (2015). COSMO-SAC sigma profile generation with conceptual segment concept. Industrial & Engineering Chemistry Research, 54(16), 4441-4454.
[42] Cereto-Massagué, A., Ojeda, M. J., Valls, C., Mulero, M., Garcia-Vallvé, S., & Pujadas, G. (2015). Molecular fingerprint similarity search in virtual screening. Methods, 71, 58-63.
[43] Glen, R. C., Bender, A., Arnby, C. H., Carlsson, L., Boyer, S., & Smith, J. (2006). Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to ADME. IDrugs, 9(3), 199.
[44] Xue, L., Godden, J. W., Stahura, F. L., & Bajorath, J. (2003). Design and evaluation of a molecular fingerprint involving the transformation of property descriptor values into a binary classification scheme. Journal of chemical information and computer sciences, 43(4), 1151-1157.
[45] James, C. A., Weininger, D., & Delany, J. (1995). Daylight Theory Manual. Daylight Chemical Information Systems. Inc., Irvine, CA.
[46] Morgan, H. L. (1965). The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. Journal of Chemical Documentation, 5(2), 107-113.
[47] Novak, R., Bahri, Y., Abolafia, D. A., Pennington, J., & Sohl-Dickstein, J. (2018). Sensitivity and generalization in neural networks: an empirical study. arXiv preprint arXiv:1802.08760.
[48] Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary reviews: computational statistics, 2(4), 433-459.
[49] Ramakrishnan, R., Dral, P. O., Rupp, M., & Von Lilienfeld, O. A. (2014). Quantum chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1), 1-7.
[50] Frisch, M. J. E. A., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., ... & Nakatsuji, H. (2009). Gaussian 09, revision D. 01.
[51] De Boer, P. T., Kroese, D. P., Mannor, S., & Rubinstein, R. Y. (2005). A tutorial on the cross-entropy method. Annals of operations research, 134(1), 19-67.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *