帳號:guest(3.135.200.217)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):談佳瑜
作者(外文):Tan, Jia-Yu
論文名稱(中文):中空多孔結構之三氧化二鐵應用於鋰離子電容器
論文名稱(外文):Applications of hollow porous α-Fe2O3 for Li-ion capacitors
指導教授(中文):呂世源
指導教授(外文):Lu, Shih-Yuan
口試委員(中文):蔡德豪
潘詠庭
口試委員(外文):Tsai, De-Hao
Pan, Yung-Tin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032559
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:77
中文關鍵詞:三氧化二鐵鋰離子電容器儲能元件中空結構
外文關鍵詞:hemitatehollowli-ioncapacitor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:268
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鋰離子電容器為一種新穎的儲能裝置,其結合了鋰離子電池及超級電容器的優點,在保有高能量密度的同時,又能擁有高功率密度。其中,鋰離子電容器的陽極材料為一個很有發展潛力的方向,由於現今商業化使用的石墨理論容量值較低(372 mAh g-1),不足以應付未來需求。目前眾多研究致力於開發其它具有潛力的陽極材料,例如金屬氧化物、矽材及複合材料等,其中,三氧化二鐵(Fe2O3)在金屬氧化物中具有相對較高的理論比容量(1007 mAh g-1),且其成本低廉和無毒的特性,被認為是鋰離子電容器最具潛力的陽極材料之一。
三氧化二鐵雖擁有諸多優點,但普遍上仍有許多不可忽視的困難存在,例如倍率性較差及容量衰退等,造成三氧化二鐵在實際應用上的限制。而中空多孔的奈米結構可以有效的改善上述問題,在高電流密度下,其中空多孔結構能有效促進鋰離子的傳輸,以改善其倍率性,另外,此結構能提供體積膨脹收縮緩衝的空間,使奈米結構不易因此瓦解,以改善容量衰退的問題。因此,本研究致力於合成中空多孔結構的三氧化二鐵,成功地使用一步驟溶劑熱法製備出中空多孔三氧化二鐵(α-Fe2O3 hollow porous nanoparticles, α-Fe2O3 HPNPs),其比表面積達到67m2 g-1,並且具有充足的微孔及介孔,本研究將其進一步應用做為鋰離子電容器之陽極。
在鋰離子電容器之陽極半電池中,α-Fe2O3 HPNPs有非常優異的電化學表現,在0.2 A g-1的電流密度下,達到1103 mAh g-1的高比電容值,且在4 A g-1的高電流密度下還保有822 mAh g-1的比電容值,展現出極佳的倍率性。在0.2 A g-1下循環200圈後,由於活化現象而達到1341 mAh g-1的高比電容值。在鋰離子電容器中,本研究將α-Fe2O3 HPNPs作為陽極、葡萄糖衍生之奈米碳球 (Glucose derived Carbon Nanospheres, GCNS)作為陰極,組裝成鋰離子電容器,其在0.24 kW kg-1的功率密度下展現出 107 Wh kg-1的高能量密度,且在9.68 kW kg-1的高功率密度下還能保有 86 Wh kg-1的能量密度,展現相當優異的倍率性。此外,在1 A g-1下循環2500圈後仍擁有84%的電容維持率。α-Fe2O3 HPNPs之優異電化學表現可以歸因於其中空多孔結構,如同奈米電化學反應器,其內部空間能有效使鋰離子擴散路徑縮短,並且提供體積膨脹收縮的緩衝空間,使其擁有優秀的倍率性及循環長效性。
As a novel energy storage device, lithium ion capacitors (LICs) integrate the merits of both lithium ion batteries (LIBs) and supercapacitors (SCs). Because of this unique feature, LICs possess high energy densities without sacrificing power densities. The most commonly used anode material in commercial LIBs is graphite, and because of the energy storage mechanism, its theoretical specific capacity is only 372 mAh g-1, which does not meet the demand of future energy storage devices. It is thus critical to develop alternative anode materials, such as metal oxides, silicon, and composites. Compared to other metal oxides, Fe2O3 possesses a relatively high theoretical specific capacity (1007 mAh g-1), together with its low cost and non-toxic nature, making it one of the most promising anode materials for lithium ion based energy storage.
Nevertheless, there are still issues to be resolved for commercialization of Fe2O3 anodes. Most notably, its poor rate capability and rapid decay in capacity at cycling limit its practical applications. It is proposed that nano-sized hollow porous structure can effectively address the issues. When operating at high current densities, the hollow porous structure serves as nanoreactors to enable local fast charging/discharging, leading to improved rate capability. Moreover, the void of the hollow structure also serves as buffer space to accommodate the volume expansion and shrinkage during the charge and discharge cycle, preventing the collapse of the structure and thus improving the cycling performance. In this work, we report the synthesis of hollow porous α-Fe2O3 nanoparticles (α-Fe2O3 HPNPs) with a one-step solvothermal process. The surface area of α-Fe2O3 HPNPs is determined to be 67m2 g-1, possessing abundant micro- and meso-pores. The as-synthesized α-Fe2O3 HPNPs are applied as the anode material for assembly of LICs.
When tested as an anode half-cell, α-Fe2O3 HPNPs exhibit high specific capacities of 1103 and 822 mAh g-1 at current densities of 0.2 and 4 A g-1, respectively, indicating its excellent rate capability. After 200 cycle operations at 0.2 A g-1, the specific capacity increases to 1341 mAh g-1 because of the accompanying electrochemical activation. This α-Fe2O3 HPNPs anode is further paired with a glucose derived carbon nanospheres (GCNS) cathode to form an LIC. The α-Fe2O3 HPNPs//GCNS LIC delivers a high energy density of 107 Wh kg-1 at the power density of 0.24 kW kg-1 and maintains a satisfactory energy density of 86 Wh kg-1 at a high power density of 9.68 kW kg-1, revealing its excellent rate capability. Furthermore, a high capacity retention rate of 84 % is achieved after 2,500 cycle operations at 1 A g-1, showing an outstanding cycling performance. The excellent electrochemical performance of α-Fe2O3 HPNPs can be attributed to its unique advantageous structure, with the inner void acting as a nano-reservoir of electrolyte to shorten the diffusion path of lithium ions and serving as buffer space to accommodate the large volume variation during cycling.
摘要 I
圖目錄 VIII
第1章 緒論 1
1-1 前言 1
1-2 二次儲能元件 2
1-2-1 概述 2
1-2-2 鋰離子電池簡介 3
1-2-3 超級電容器簡介 6
1-2-4 鋰離子電容器簡介 8
1-3 三氧化二鐵 9
1-3-1 概述 9
1-3-2 三氧化二鐵之儲鋰機制 10
1-4 研究動機 12
第2章 文獻回顧 13
2-1 概述 13
2-2 以鋰離子為基礎的能量儲存陽極材料 13
2-2-1 碳材 13
2-2-2 過渡金屬氧化物 14
2-2-3 矽材 15
2-3 中空多孔金屬氧化物於以鋰離子為基礎的能量儲存陽極材料 17
第3章 實驗方法與儀器 24
3-1 實驗藥品 24
3-2 實驗器材 25
3-3 分析儀器 26
3-4 實驗流程 29
3-4-1 α-Fe2O3 HPNPs之製備 29
3-4-2 葡萄糖衍生之奈米碳球製備 31
3-4-3 陽極半電池製備 31
3-4-4 陰極半電池製備 32
3-4-5 鋰離子全電池組裝 32
3-4-6 電化學分析實驗 33
第4章 結果與討論 35
4-1 溶劑熱反應過程產物分析 35
4-2 中空多空結構之材料分析 43
4-3 電化學分析 47
4-3-1 中空多孔三氧化二鐵之陽極半電池分析 47
4-3-2 葡萄糖衍生之碳奈米球GCNS之陰極半電池分析 58
4-3-3 鋰離子電容器分析應用 59
第5章 結論 68
參考文獻 70
1. Bandaru, P.R., H. Yamada, R. Narayanan, and M. Hoefer, Charge transfer and storage in nanostructures. Materials Science & Engineering R-Reports, 2015. 96: p. 1-69.
2. Jagadale, A., X. Zhou, R. Xiong, D.P. Dubal, J. Xu, and S. Yang, Lithium ion capacitors (LICs): Development of the materials. Energy Storage Materials, 2019. 19: p. 314-329.
3. Zhi, M.J., C.C. Xiang, J.T. Li, M. Li, and N.Q. Wu, Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale, 2013. 5(1): p. 72-88.
4. Zheng, F.C., Y. Yang, and Q.W. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nature Communications, 2014. 5.
5. Lyu, Z.Y., L.J. Yang, D. Xu, J. Zhao, H.W. Lai, Y.F. Jiang, Q. Wu, Y. Li, X.Z. Wang, and Z. Hu, Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries. Nano Research, 2015. 8(11): p. 3535-3543.
6. Deng, D., Li-ion batteries: basics, progress, and challenges. Energy Science & Engineering, 2015. 3(5): p. 385-418.
7. Liu, F., S. Song, D. Xue, and H. Zhang, Selective crystallization with preferred lithium-ion storage capability of inorganic materials. Nanoscale Research Letters, 2012. 7(1): p. 149.
8. Hoefer, M. and P.R. Bandaru, Determination and enhancement of the capacitance contributions in carbon nanotube based electrode systems. Applied Physics Letters, 2009. 95(18).
9. Endo, M., T. Maeda, T. Takeda, Y.J. Kim, K. Koshiba, H. Hara, and M.S. Dresselhaus, Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes. Journal of the Electrochemical Society, 2001. 148(8): p. A910-A914.
10. Wu, M.S., Electrochemical capacitance from manganese oxide nanowire structure synthesized by cyclic voltammetric electrodeposition. Applied Physics Letters, 2005. 87(15).
11. Yan, J., Q. Wang, T. Wei, and Z.J. Fan, Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Advanced Energy Materials, 2014. 4(4).
12. Yao, F., D.T. Pham, and Y.H. Lee, Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices. Chemsuschem, 2015. 8(14): p. 2284-2311.
13. Wang, G.P., L. Zhang, and J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012. 41(2): p. 797-828.
14. Long, J.W., D. Belanger, T. Brousse, W. Sugimoto, M.B. Sassin, and O. Crosnier, Asymmetric electrochemical capacitors-Stretching the limits of aqueous electrolytes. Mrs Bulletin, 2011. 36(7): p. 513-522.
15. Yi, R., F. Dai, M.L. Gordin, S.R. Chen, and D.H. Wang, Micro-sized Si-C Composite with Interconnected Nanoscale Building Blocks as High-Performance Anodes for Practical Application in Lithium-Ion Batteries. Advanced Energy Materials, 2013. 3(3): p. 295-300.
16. Zhang, J., H.Z. Wu, J. Wang, J.L. Shi, and Z.Q. Shi, Pre-lithiation design and lithium ion intercalation plateaus utilization of mesocarbon microbeads anode for lithium-ion capacitors. Electrochimica Acta, 2015. 182: p. 156-164.
17. MacFarlane, D.R., N. Tachikawa, M. Forsyth, J.M. Pringle, P.C. Howlett, G.D. Elliott, J.H. Davis, M. Watanabe, P. Simon, and C.A. Angell, Energy applications of ionic liquids. Energy & Environmental Science, 2014. 7(1): p. 232-250.
18. Aravindan, V. and Y.S. Lee, Electrochemical Activity of Hematite Phase in Full-Cell Li-ion Assemblies. Advanced Energy Materials, 2018. 8(11).
19. Larcher, D., C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J.B. Leriche, and J.M. Tarascon, Effect of particle size on lithium intercalation into alpha-Fe2O3. Journal of the Electrochemical Society, 2003. 150(1): p. A133-A139.
20. Larcher, D., D. Bonnin, R. Cortes, I. Rivals, L. Personnaz, and J.M. Tarascon, Combined XRD, EXAFS, and Mossbauer studies of the reduction by lithium of alpha Fe2O3 with various particle sizes. Journal of the Electrochemical Society, 2003. 150(12): p. A1643-A1650.
21. Morales, J., L. Sanchez, F. Martin, F. Berry, and X.L. Ren, Synthesis and characterization of nanometric iron and iron-titanium oxides by mechanical milling: Electrochemical properties as anodic materials in lithium cells. Journal of the Electrochemical Society, 2005. 152(9): p. A1748-A1754.
22. Reddy, M.V., T. Yu, C.H. Sow, Z.X. Shen, C.T. Lim, G.V.S. Rao, and B.V.R. Chowdari, alpha- Fe2O3 nanoflakes as an anode material for Li-ion batteries. Advanced Functional Materials, 2007. 17(15): p. 2792-2799.
23. Zhang, P., Z.P. Guo, and H.K. Liu, Submicron-sized cube-like alpha- Fe2O3 agglomerates as an anode material for Li-ion batteries. Electrochimica Acta, 2010. 55(28): p. 8521-8526.
24. Hassan, M.F., Z.P. Guo, Z.X. Chen, and H.K. Liu, alpha- Fe2O3 as an anode material with capacity rise and high rate capability for lithium-ion batteries. Materials Research Bulletin, 2011. 46(6): p. 858-864.
25. Yu, Y., Y. Shi, and C.H. Chen, Nanoporous cuprous oxide/lithia composite anode with capacity increasing characteristic and high rate capability. Nanotechnology, 2007. 18(5).
26. Yi, R., J.T. Zai, F. Dai, M.L. Gordin, and D.H. Wang, Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries. Nano Energy, 2014. 6: p. 211-218.
27. Yang, J., X.Y. Zhou, J. Li, Y.L. Zou, and J.J. Tang, Study of nano-porous hard carbons as anode materials for lithium ion batteries. Materials Chemistry and Physics, 2012. 135(2-3): p. 445-450.
28. Xu, X., R. Cao, S. Jeong, and J. Cho, Spindle-like Mesoporous alpha- Fe2O3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries. Nano Letters, 2012. 12(9): p. 4988-4991.
29. Dou, X.Y., M. Chen, J.T. Zai, Z. De, B.X. Dong, X.J. Liu, N. Ali, T.T. Tsega, R.R. Qi, and X.F. Qian, Carbon coated porous silicon flakes with high initial coulombic efficiency and long-term cycling stability for lithium ion batteries. Sustainable Energy & Fuels, 2019. 3(9): p. 2361-2365.
30. Han, Y., M.L. Zhao, L. Dong, J.M. Feng, Y.J. Wang, D.J. Li, and X.F. Li, MOF-derived porous hollow Co3O4 parallelepipeds for building high-performance Li-ion batteries. Journal of Materials Chemistry A, 2015. 3(45): p. 22542-22546.
31. Hao, S.J., B.W. Zhang, S. Ball, J.S. Wu, M. Srinivasan, and Y.Z. Huang, Phase transition of hollow-porous alpha- Fe2O3 microsphere based anodes for lithium ion batteries during high rate cycling. Journal of Materials Chemistry A, 2016. 4(42): p. 16569-16575.
32. Sun, B.Y., S.F. Lou, Z.Y. Qian, P.J. Zuo, C.Y. Du, Y.L. Ma, H. Huo, J.Y. Xie, J.J. Wang, and G.P. Yin, Pseudocapacitive Li+ storage boosts ultrahigh rate performance of structure-tailored CoFe2O4@Fe2O3 hollow spheres triggered by engineered surface and near-surface reactions. Nano Energy, 2019. 66.
33. Zheng, F.C., M.N. He, Y. Yang, and Q.W. Chen, Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries. Nanoscale, 2015. 7(8): p. 3410-3417.
34. Wang, Y.Z., J.S. Han, X.X. Gu, S. Dimitrijev, Y.L. Hou, and S.Q. Zhang, Ultrathin Fe2O3 nanoflakes using smart chemical stripping for high performance lithium storage. Journal of Materials Chemistry A, 2017. 5(35): p. 18737-18743.
35. Santhoshkumar, P., K. Prasanna, Y.N. Jo, I.N. Sivagami, S.H. Kang, and C.W. Lee, A facile and highly efficient short-time homogenization hydrothermal approach for the smart production of high-quality alpha-Fe2O3 for rechargeable lithium batteries. Journal of Materials Chemistry A, 2017. 5(32): p. 16712-16721.
36. Zhang, J.F., L.J. Qi, X.S. Zhu, X.H. Yan, Y.F. Jia, L. Xu, D.M. Sun, and Y.W. Tang, Proline-derived in situ synthesis of nitrogen-doped porous carbon nanosheets with encaged Fe2O3@Fe3C nanoparticles for lithium-ion battery anodes. Nano Research, 2017. 10(9): p. 3164-3177.
37. Fan, H.H., L. Zhou, H.H. Li, C.Y. Fan, X.L. Wu, and J.P. Zhang, 2D Fe2O3 nanosheets with bi-continuous pores inherited from Fe-MOF precursors: an advanced anode material for Li-ion half/full batteries. 2D Materials, 2019. 6(4).
38. Zhang, G.D., Y.H. Shi, H.R. Wang, L.L. Jiang, X.D. Yu, S.Y. Jing, S.X. Xing, and P. Tsiakaras, A facile route to achieve ultrafine Fe2O3 nanorods anchored on graphene oxide for application in lithium-ion battery. Journal of Power Sources, 2019. 416: p. 118-124.
39. Ye, F., Y.C. Hu, Y. Zhao, D.G. Zhu, Y.G. Wang, M.H. Pu, and S.S. Mao, Engineering a hierarchical hollow hematite nanostructure for lithium storage. Journal of Materials Chemistry A, 2016. 4(38): p. 14687-14692.
40. Gu, C.P., X. Song, S.M. Zhang, S.O. Ryu, and J.R. Huang, Synthesis of hierarchical alpha-Fe2O3 nanotubes for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2017. 714: p. 6-12.
41. Cai, D.D., D.D. Li, L.X. Ding, S.Q. Wang, and H.H. Wang, Interconnected alpha-Fe2O3 nanosheet arrays as high-performance anode materials for lithium-ion batteries. Electrochimica Acta, 2016. 192: p. 407-413.
42. Yan, Y.Z., H.L. Tang, F. Wu, Z.Z. Xie, S.J. Xu, D.Y. Qu, R. Wang, F.L. Wu, M. Pan, and D.Y. Qu, Facile synthesis of Fe2O3@graphite nanoparticle composite as the anode for Lithium ion batteries with high cyclic stability. Electrochimica Acta, 2017. 253: p. 104-113.
43. Fateeva, A., P. Horcajada, T. Devic, C. Serre, J. Marrot, J.M. Greneche, M. Morcrette, J.M. Tarascon, G. Maurin, and G. Ferey, Synthesis, Structure, Characterization, and Redox Properties of the Porous MIL-68(Fe) Solid. European Journal of Inorganic Chemistry, 2010(24): p. 3789-3794.
44. Ma, M.Y., A. Betard, I. Weber, N.S. Al-Hokbany, R.A. Fischer, and N. Metzler-Nolte, Iron-Based Metal-Organic Frameworks MIL-88B and NH2-MIL-88B: High Quality Microwave Synthesis and Solvent-Induced Lattice "Breathing". Crystal Growth & Design, 2013. 13(6): p. 2286-2291.
45. Khan, N.A., J.W. Jun, and S.H. Jhung, Effect of Water Concentration and Acidity on the Synthesis of Porous Chromium Benzenedicarboxylates. European Journal of Inorganic Chemistry, 2010(7): p. 1043-1048.
46. Khan, N.A. and S.H. Jhung, Phase-Transition and Phase-Selective Synthesis of Porous Chromium-Benzenedicarboxylates. Crystal Growth & Design, 2010. 10(4): p. 1860-1865.
47. Nguyen, T.D., O.K.T. Nguyen, T.V. Tran, V.H. Nguyen, L.G. Bach, N.V. Tran, D.V.N. Vo, T.V. Nguyen, S.S. Hong, and S.T. Do, The Synthesis of N-(Pyridin-2-yl)-Benzamides from Aminopyridine and Trans-Beta-Nitrostyrene by Fe2Ni-BDC Bimetallic Metal-Organic Frameworks. Processes, 2019. 7(11).
48. Zhang, Y., G. Li, H. Lu, Q. Lv, and Z.G. Sun, Synthesis, characterization and photocatalytic properties of MIL-53(Fe)-graphene hybrid materials. Rsc Advances, 2014. 4(15): p. 7594-7600.
49. Liu, G., Y.L. Xu, C.X. Yang, X.S. Xiao, X.M. Chen, X.K. Zhang, and X.J. Meng, Effects of Alloy Elements on Oxidation Resistance and Stress-Rupture Property of P92 Steel. Acta Metallurgica Sinica-English Letters, 2015. 28(2): p. 129-138.
50. Abdel-Wahab, A.M., A.S. Al-Shirbini, O. Mohamed, and O. Nasr, Photocatalytic degradation of paracetamol over magnetic flower-like TiO2/ Fe2O3 core-shell nanostructures. Journal of Photochemistry and Photobiology a-Chemistry, 2017. 347: p. 186-198.
51. Liang, R.W., F.F. Jing, L.J. Shen, N. Qin, and L. Wu, MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes. Journal of Hazardous Materials, 2015. 287: p. 364-372.
52. Hou, S.L., Y.N. Wu, L.Y. Feng, W. Chen, Y. Wang, C. Morlay, and F.T. Li, Green synthesis and evaluation of an iron-based metal-organic framework MIL-88B for efficient decontamination of arsenate from water. Dalton Transactions, 2018. 47(7): p. 2222-2231.
53. Lee, J.G., B.N. Joshi, J.H. Lee, T.G. Kim, D.Y. Kim, S.S. Al-Deyab, I.W. Seong, M.T. Swihart, W.Y. Yoon, and S.S. Yoon, Stable High-Capacity Lithium Ion Battery Anodes Produced by Supersonic Spray Deposition of Hematite Nanoparticles and Self-Healing Reduced Graphene Oxide. Electrochimica Acta, 2017. 228: p. 604-610.
54. Kong, D.Z., C.W. Cheng, Y. Wang, B. Liu, Z.X. Huang, and H.Y. Yang, Seed-assisted growth of alpha-Fe2O3 nanorod arrays on reduced graphene oxide: a superior anode for high-performance Li-ion and Na-ion batteries. Journal of Materials Chemistry A, 2016. 4(30): p. 11800-11811.
55. Li, J., N. Wang, J. Deng, W.Z. Qian, and W. Chu, Flexible metal-templated fabrication of mesoporous onion-like carbon and Fe2O3@N-doped carbon foam for electrochemical energy storage. Journal of Materials Chemistry A, 2018. 6(27): p. 13012-13020.
56. Feng, J., D.L. Fan, Q. Wang, L.R. Ma, W. Wei, J.M. Xie, and J.J. Zhu, Facile synthesis silver nanoparticles on different xerogel supports as highly efficient catalysts for the reduction of p-nitrophenol. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2017. 520: p. 743-756.
57. Penki, T.R., S. Shivakumara, M. Minakshi, and N. Munichandraiah, Porous Flower-like alpha- Fe2O3 Nanostructure: A High Performance Anode Material for Lithium-ion Batteries. Electrochimica Acta, 2015. 167: p. 330-339.
58. Wang, Y., J.H. Guo, L. Li, Y.L. Ge, B.J. Li, Y.J. Zhang, Y.Y. Shang, and A.Y. Cao, High-loading Fe2O3/SWNT composite films for lithium-ion battery applications. Nanotechnology, 2017. 28(34).
59. Han, F., W.C. Li, D. Li, and A.H. Lu, Ammonia-treatment assisted fully encapsulation of Fe2O3 nanoparticles in mesoporous carbons as stable anodes for lithium ion batteries. Journal of Energy Chemistry, 2013. 22(2): p. 329-335.
60. Laruelle, S., S. Grugeon, P. Poizot, M. Dolle, L. Dupont, and J.M. Tarascon, On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. Journal of the Electrochemical Society, 2002. 149(5): p. A627-A634.
61. Grugeon, S., S. Laruelle, L. Dupont, and J.M. Tarascon, An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sciences, 2003. 5(6): p. 895-904.
62. Wu, C., Y.A. Xu, L.Y. Ao, K. Jiang, L.Y. Shang, Y.W. Li, Z.G. Hu, and J.H. Chu, Robust three-dimensional porous rGO aerogel anchored with ultra-fine alpha- Fe2O3 nanoparticles exhibit dominated pseudocapacitance behavior for superior lithium storage. Journal of Alloys and Compounds, 2020. 816.
63. Jiang, Y.Z., D. Zhang, Y. Li, T.Z. Yuan, N. Bahlawane, C. Liang, W.P. Sun, Y.H. Lu, and M. Yan, Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy, 2014. 4: p. 23-30.
64. Sun, J., C.X. Lv, F. Lv, S. Chen, D.H. Li, Z.Q. Guo, W. Han, D.J. Yang, and S.J. Guo, Tuning the Shell Number of Multishelled Metal Oxide Hollow Fibers for Optimized Lithium-Ion Storage. Acs Nano, 2017. 11(6): p. 6186-6193.
65. Guo, W.X., W.W. Sun, L.P. Lv, S.F. Kong, and Y. Wang, Microwave-Assisted Morphology Evolution of Fe-Based Metal-Organic Frameworks and Their Derived Fe2O3 Nanostructures for Li-Ion Storage. Acs Nano, 2017. 11(4): p. 4198-4205.
66. Wang, Y., X.M. Guo, Z.K. Wang, M.F. Lu, B. Wu, Y. Wang, C. Yan, A.H. Yuan, and H.X. Yang, Controlled pyrolysis of MIL-88A to Fe2O3@C nanocomposites with varied morphologies and phases for advanced lithium storage. Journal of Materials Chemistry A, 2017. 5(48): p. 25562-25573.
67. Li, Y.W., Y. Huang, Y.Y. Zheng, R.S. Huang, and J.H. Yao, Facile and efficient synthesis of alpha-Fe2O3 nanocrystals by glucose-assisted thermal decomposition method and its application in lithium ion batteries. Journal of Power Sources, 2019. 416: p. 62-71.
68. Cabo-Fernandez, L., F. Mueller, S. Passerini, and L.J. Hardwick, In situ Raman spectroscopy of carbon-coated ZnFe2O4 anode material in Li-ion batteries - investigation of SEI growth. Chemical Communications, 2016. 52(20): p. 3970-3973.
69. Cao, P.G., J.L. Yao, B. Ren, B.W. Mao, R.A. Gu, and Z.Q. Tian, Surface-enhanced Raman scattering from bare Fe electrode surfaces. Chemical Physics Letters, 2000. 316(1-2): p. 1-5.
70. Wang, G., J. Shi, H. Yang, X. Wu, Z. Zhang, R. Gu, and P. Cao, Surface-enhanced Raman scattering of imidazole adsorbed on an iron surface. Journal of Raman Spectroscopy, 2002. 33(2): p. 125-130.
71. Guo, L., Q.J. Huang, X.Y. Li, and S.H. Yang, Iron nanoparticles: Synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Physical Chemistry Chemical Physics, 2001. 3(9): p. 1661-1665.
72. Zhang, F., T.F. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, and Y.S. Chen, A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy & Environmental Science, 2013. 6(5): p. 1623-1632.
73. Zhao, Y.M., Y.P. Cui, J. Shi, W. Liu, Z.C. Shi, S.G. Chen, X. Wang, and H.L. Wang, Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors. Journal of Materials Chemistry A, 2017. 5(29): p. 15243-15252.
74. Liu, C.F., C.K. Zhang, H.Y. Fu, X.H. Nan, and G.Z. Cao, Exploiting High-Performance Anode through Tuning the Character of Chemical Bonds for Li-Ion Batteries and Capacitors. Advanced Energy Materials, 2017. 7(1).
75. Yu, X.L., J.J. Deng, C.Z. Zhan, R.T. Lv, Z.H. Huang, and F.Y. Kang, A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes. Electrochimica Acta, 2017. 228: p. 76-81.
76. Han, C.P., L. Xu, H.F. Li, R.Y. Shi, T.F. Zhang, J.Q. Li, C.P. Wong, F.Y. Kang, Z.Q. Lin, and B.H. Li, Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon, 2018. 140: p. 296-305.
77. Huang, J.L., L.Q. Fan, Y. Gu, C.L. Geng, H. Luo, Y.F. Huang, J.M. Lin, and J.H. Wu, One-step solvothermal synthesis of high-capacity Fe3O4/reduced graphene oxide composite for use in Li-ion capacitor. Journal of Alloys and Compounds, 2019. 788: p. 1119-1126.
78. Dubal, D.P., K. Jayaramulu, J. Sunil, S. Kment, P. Gomez-Romero, C. Narayana, R. Zboril, and R.A. Fischer, Metal-Organic Framework (MOF) Derived Electrodes with Robust and Fast Lithium Storage for Li-Ion Hybrid Capacitors. Advanced Functional Materials, 2019. 29(19).
79. Sun, J.F., L.Z. Guo, X. Sun, J.Y. Zhang, Y. Liu, L.R. Hou, and C.Z. Yuan, Conductive Co-based metal-organic framework nanowires: a competitive high-rate anode towards advanced Li-ion capacitors. Journal of Materials Chemistry A, 2019. 7(43): p. 24788-24791.
80. Huang, S.J., L.W. Yang, M. Gao, Q. Zhang, G.B. Xu, X. Liu, J.X. Cao, and X.L. Wei, Free-standing 3D composite of CoO nanocrystals anchored on carbon nanotubes as high-power anodes in Li-Ion hybrid supercapacitors. Journal of Power Sources, 2019. 437.
81. Wang, S.J., D.D. Jin, Y. Bian, R.T. Wang, and L. Zhang, Electrostatically Fabricated Three-Dimensional Magnetite and MXene Hierarchical Architecture for Advanced Lithium-Ion Capacitors. Acs Applied Materials & Interfaces, 2020. 12(8): p. 9226-9235.
82. Yi, R., S.R. Chen, J.X. Song, M.L. Gordin, A. Manivannan, and D.H. Wang, High-Performance Hybrid Supercapacitor Enabled by a High-Rate Si-based Anode. Advanced Functional Materials, 2014. 24(47): p. 7433-7439.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *