|
1. Zu, T.; Gibbens, B.; Doty, N. S.; Gomes-Pereira, M.; Huguet, A.; Stone, M. D.; Margolis, J.; Peterson, M.; Markowski, T. W.; Ingram, M. A., Non-ATG–initiated translation directed by microsatellite expansions. Proceedings of the National Academy of Sciences 2011, 108 (1), 260-265. 2. Zu, T.; Liu, Y.; Bañez-Coronel, M.; Reid, T.; Pletnikova, O.; Lewis, J.; Miller, T. M.; Harms, M. B.; Falchook, A. E.; Subramony, S. H.; Ostrow, L. W.; Rothstein, J. D.; Troncoso, J. C.; Ranum, L. P. W., RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proceedings of the National Academy of Sciences 2013, 110 (51), E4968-E4977. 3. Mann, D. M.; Rollinson, S.; Robinson, A.; Callister, J. B.; Thompson, J. C.; Snowden, J. S.; Gendron, T.; Petrucelli, L.; Masuda-Suzukake, M.; Hasegawa, M., Dipeptide repeat proteins are present in the p62 positive inclusions in patients with frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Acta neuropathologica communications 2013, 1 (1), 68. 4. Mori, K.; Weng, S.-M.; Arzberger, T.; May, S.; Rentzsch, K.; Kremmer, E.; Schmid, B.; Kretzschmar, H. A.; Cruts, M.; Van Broeckhoven, C., The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 2013, 339 (6125), 1335-1338. 5. May, S.; Hornburg, D.; Schludi, M. H.; Arzberger, T.; Rentzsch, K.; Schwenk, B. M.; Grässer, F. A.; Mori, K.; Kremmer, E.; Banzhaf-Strathmann, J., C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta neuropathologica 2014, 128 (4), 485-503. 6. Yamakawa, M.; Ito, D.; Honda, T.; Kubo, K.-i.; Noda, M.; Nakajima, K.; Suzuki, N., Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. Human molecular genetics 2015, 24 (6), 1630-1645. 7. Schludi, M. H.; May, S.; Grässer, F. A.; Rentzsch, K.; Kremmer, E.; Küpper, C.; Klopstock, T.; Alliance, B. B. B.; Arzberger, T.; Edbauer, D., Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta neuropathologica 2015, 130 (4), 537-555. 8. Darling, A. L.; Breydo, L.; Rivas, E. G.; Gebru, N. T.; Zheng, D.; Baker, J. D.; Blair, L. J.; Dickey, C. A.; Koren III, J.; Uversky, V. N., Repeated repeat problems: Combinatorial effect of C9orf72-derived dipeptide repeat proteins. International journal of biological macromolecules 2019, 127, 136-145. 9. Donnelly, C. J.; Zhang, P.-W.; Pham, J. T.; Haeusler, A. R.; Mistry, N. A.; Vidensky, S.; Daley, E. L.; Poth, E. M.; Hoover, B.; Fines, D. M., RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 2013, 80 (2), 415-428. 10. Gendron, T. F.; Bieniek, K. F.; Zhang, Y.-J.; Jansen-West, K.; Ash, P. E.; Caulfield, T.; Daughrity, L.; Dunmore, J. H.; Castanedes-Casey, M.; Chew, J., Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta neuropathologica 2013, 126 (6), 829-844. 11. Freibaum, B. D.; Taylor, J. P., The role of dipeptide repeats in C9ORF72-related ALS-FTD. Frontiers in molecular neuroscience 2017, 10, 35. 12. Mizielinska, S.; Grönke, S.; Niccoli, T.; Ridler, C. E.; Clayton, E. L.; Devoy, A.; Moens, T.; Norona, F. E.; Woollacott, I. O.; Pietrzyk, J., C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 2014, 345 (6201), 1192-1194. 13. Wen, X.; Tan, W.; Westergard, T.; Krishnamurthy, K.; Markandaiah, S. S.; Shi, Y.; Lin, S.; Shneider, N. A.; Monaghan, J.; Pandey, U. B., Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 2014, 84 (6), 1213-1225. 14. Freibaum, B. D.; Lu, Y.; Lopez-Gonzalez, R.; Kim, N. C.; Almeida, S.; Lee, K.-H.; Badders, N.; Valentine, M.; Miller, B. L.; Wong, P. C., GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 2015, 525 (7567), 129. 15. Lee, K.-H.; Zhang, P.; Kim, H. J.; Mitrea, D. M.; Sarkar, M.; Freibaum, B. D.; Cika, J.; Coughlin, M.; Messing, J.; Molliex, A., C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 2016, 167 (3), 774-788. e17. 16. Svergun, D. I., Small-angle X-ray and neutron scattering as a tool for structural systems biology. Biological chemistry 2010, 391 (7), 737-743. 17. Hura, G. L.; Menon, A. L.; Hammel, M.; Rambo, R. P.; Poole Ii, F. L.; Tsutakawa, S. E.; Jenney Jr, F. E.; Classen, S.; Frankel, K. A.; Hopkins, R. C., Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nature methods 2009, 6 (8), 606-612. 18. Mertens, H. D.; Svergun, D. I., Structural characterization of proteins and complexes using small-angle X-ray solution scattering. Journal of structural biology 2010, 172 (1), 128-141. 19. Jacques, D. A.; Trewhella, J., Small‐angle scattering for structural biology—Expanding the frontier while avoiding the pitfalls. Protein science 2010, 19 (4), 642-657. 20. Grant, T. D.; Luft, J. R.; Wolfley, J. R.; Tsuruta, H.; Martel, A.; Montelione, G. T.; Snell, E. H., Small angle X‐ray scattering as a complementary tool for high‐throughput structural studies. Biopolymers 2011, 95 (8), 517-530. 21. Putnam, C. D.; Hammel, M.; Hura, G. L.; Tainer, J. A., X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Quarterly reviews of biophysics 2007, 40 (3), 191-285. 22. Rambo, R. P.; Tainer, J. A., Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod‐Debye law. Biopolymers 2011, 95 (8), 559-571. 23. Koch, M. H.; Vachette, P.; Svergun, D. I., Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Quarterly reviews of biophysics 2003, 36 (2), 147. 24. Feigin, L.; Svergun, D. I., Structure analysis by small-angle X-ray and neutron scattering. Springer: 1987; Vol. 1. 25. Bernadó, P., Effect of interdomain dynamics on the structure determination of modular proteins by small-angle scattering. European Biophysics Journal 2010, 39 (5), 769-780. 26. Rambo, R. P.; Tainer, J. A., Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small-angle X-ray scattering. Current opinion in structural biology 2010, 20 (1), 128-137. 27. Schneidman-Duhovny, D.; Kim, S. J.; Sali, A., Integrative structural modeling with small angle X-ray scattering profiles. BMC structural biology 2012, 12 (1), 17. 28. Sampathkumar, P.; Ozyurt, S. A.; Do, J.; Bain, K. T.; Dickey, M.; Rodgers, L. A.; Gheyi, T.; Sali, A.; Kim, S. J.; Phillips, J., Structures of the autoproteolytic domain from the Saccharomyces cerevisiae nuclear pore complex component, Nup145. Proteins 2010, 78 (8), 1992. 29. 林楷泰, 利用小角度 X 光散射結合分子動力學模擬研究水溶液中甘胺酸-精胺酸二胜肽重複序列之結構及其與脫氧核醣核酸之複合體結構. 清華大學化學工程學系學位論文 2019, 1-84. 30. Chang, Y.-J.; Jeng, U.-S.; Chiang, Y.-L.; Hwang, S.; Chen, Y.-R., The glycine-alanine dipeptide repeat from C9orf72 hexanucleotide expansions forms toxic amyloids possessing cell-to-cell transmission properties. Journal of Biological Chemistry 2016, 291 (10), 4903-4911. 31. Yamashita, H.; Kato, T.; Oba, M.; Misawa, T.; Hattori, T.; Ohoka, N.; Tanaka, M.; Naito, M.; Kurihara, M.; Demizu, Y., Development of a cell-penetrating peptide that exhibits responsive changes in its secondary structure in the cellular environment. Scientific reports 2016, 6, 33003. 32. Flores, B. N.; Dulchavsky, M. E.; Krans, A.; Sawaya, M. R.; Paulson, H. L.; Todd, P. K.; Barmada, S. J.; Ivanova, M. I., Distinct C9orf72-associated dipeptide repeat structures correlate with neuronal toxicity. PloS one 2016, 11 (10), e0165084. 33. Compton, L. A.; Johnson Jr, W. C., Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. Analytical biochemistry 1986, 155 (1), 155-167. 34. Roe, R.-J.; Roe, R., Methods of X-ray and neutron scattering in polymer science. Oxford university press New York: 2000; Vol. 739. 35. Receveur-Bréchot, V.; Durand, D., How random are intrinsically disordered proteins? A small angle scattering perspective. Current Protein and Peptide Science 2012, 13 (1), 55-75. 36. Franke, D.; Petoukhov, M.; Konarev, P.; Panjkovich, A.; Tuukkanen, A.; Mertens, H.; Kikhney, A.; Hajizadeh, N.; Franklin, J.; Jeffries, C., ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. Journal of applied crystallography 2017, 50 (4), 1212-1225. 37. Konarev, P. V.; Volkov, V. V.; Sokolova, A. V.; Koch, M. H.; Svergun, D. I., PRIMUS: a Windows PC-based system for small-angle scattering data analysis. Journal of applied crystallography 2003, 36 (5), 1277-1282. 38. Svergun, D., Determination of the regularization parameter in indirect-transform methods using perceptual criteria. Journal of applied crystallography 1992, 25 (4), 495-503. 39. Zhang, Y., I-TASSER server for protein 3D structure prediction. BMC bioinformatics 2008, 9 (1), 40. 40. Roy, A.; Kucukural, A.; Zhang, Y., I-TASSER: a unified platform for automated protein structure and function prediction. Nature protocols 2010, 5 (4), 725. 41. Yang, J.; Zhang, Y., I-TASSER server: new development for protein structure and function predictions. Nucleic acids research 2015, 43 (W1), W174-W181. 42. Sønderby, P.; Rinnan, Å.; Madsen, J. J.; Harris, P.; Bukrinski, J. T.; Peters, G. n. H., Small-angle X-ray scattering data in combination with RosettaDock improves the docking energy landscape. Journal of chemical information and modeling 2017, 57 (10), 2463-2475. 43. Perkampus, H.-H., UV-VIS Spectroscopy and its Applications. Springer Science & Business Media: 2013. 44. Aitken, A.; Learmonth, M. P., Protein determination by UV absorption. In The protein protocols handbook, Springer: 2009; pp 3-6. 45. Cavaluzzi, M. J.; Borer, P. N., Revised UV extinction coefficients for nucleoside‐5′‐monophosphates and unpaired DNA and RNA. Nucleic acids research 2004, 32 (1), e13-e13. 46. Zhao, H.; Brown, P. H.; Schuck, P., On the distribution of protein refractive index increments. Biophysical journal 2011, 100 (9), 2309-2317. 47. Nobbmann, U., Refractive Index Increment dndc for proteins, polymers SLS. 2013. 48. Williams, K. WHAT IS A DN/DC VALUE AND WHY IS IT IMPORTANT FOR GPC/SEC?|Materials Talks. https://www.materials-talks.com/blog/2018/08/22/what-is-a-dndc-value-and-why-is-it-important-for-gpcsec/. 49. Giddings, J. C.; Yang, F.; Myers, M. N., Flow-field-flow fractionation: a versatile new separation method. Science 1976, 193 (4259), 1244-1245. 50. Giddings, J. C., Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 1993, 260 (5113), 1456-1465. 51. Chu, B., Laser light scattering: basic principles and practice. Courier Corporation: 2007.
|