|
1. Shechtman, D., I. Blech, D. Gratias, and J.W.J.P.r.l. Cahn, Metallic phase with long-range orientational order and no translational symmetry. 1984. 53(20): p. 1951-1954. 2. Tsai, A.P.J.S. and T.o.A. Materials, Icosahedral clusters, icosaheral order and stability of quasicrystals—a view of metallurgy. 2008. 9(1): p. 013008. 3. Dubois, J.-M. and R.J.P.M. Lifshitz, Quasicrystals: diversity and complexity. 2011. 91(19-21): p. 2971-2982. 4. Tsai, A.P., A. Inoue, T.J.S.r.o.t.R.I. Masumoto, Tohoku University. Ser. A, Physics, chemistry, and metallurgy, Quasicrystals As a Hume-Rothery Phase: An Empirical Approach ((B) Quasicrystals). 1991. 36(1): p. 99-114. 5. Pierce, F., S. Poon, and Q.J.S. Guo, Electron localization in metallic quasicrystals. 1993. 261(5122): p. 737-739. 6. M. A. Chernikov, A.B., C. Beeli, A. Schilling, and H. R. Ott, Low-temperature magnetism in icosahedral A170Mn9P21. Physical Review B, 1993. 48: p. 3058-3065. 7. Jha, A., Solution thermodynamic behaviour of quasicrystalline-structure-forming alloy systems. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1994. 181-182: p. 771-776. 8. He, L.X., Y. Wu, and K.J.J.o.m.s.l. Kuo, Decagonal quasicrystals with different periodicities along the tenfold axis in rapidly solidified Al 65 Cu 20 M 15 (M= Mn, Fe, Co or Ni). 1988. 7(12): p. 1284-1286. 9. Kortan, A., F. Thiel, H. Chen, A. Tsai, A. Inoue, and T.J.P.R.B. Masumoto, Stable tenfold faceted single-grain decagonal quasicrystals of Al 65 Cu 15 Co 20. 1989. 40(13): p. 9397-9399. 10. Tsai, A.-P., A. Inoue, and T.J.M.t. Masumoto, JIM, Stable decagonal Al–Co–Ni and Al–Co–Cu quasicrystals. 1989. 30(7): p. 463-473. 11. Guo, J., E. Abe, T.J. Sato, and A.-P.J.J.j.o.a.p. Tsai, Production of single decagonal quasicrystal in Al-Co-Cu system. 1999. 38(9A): p. L1049-1051. 12. Yokoyama, Y., R. Note, A. Yamaguchi, A. Inoue, K. Fukaura, and H.J.M.t. Sunada, JIM, Preparation of a Decagonal Al–Cu–Co Single Quasicrystal by the Czochralski Method. 1999. 40(2): p. 123-131. 13. Bogdanowicz, W.J.J.o.c.g., Two-subgrain single quasicrystals Al–Cu–Co alloy growth and characterisation. 2002. 240(1-2): p. 255-266. 14. Sato, T.J., T. Hirano, and A.P.J.J.o.c.g. Tsai, Single-crystal growth of the decagonal Al–Ni–Co quasicrystal. 1998. 191(3): p. 545-552. 15. Ritsch, S., C. Beeli, H. Nissen, T. Gödecke, M. Scheffer, and R.J.P.m.l. Lück, The existence regions of structural modifications in decagonal Al-Co-Ni. 1998. 78(2): p. 67-75. 16. Hiraga, K., T. Ohsuna, W. Sun, and K.J.M.t. Sugiyama, Structural characteristics of Al-Co-Ni decagonal quasicrystals and crystalline approximants. 2001. 42(11): p. 2354-2367. 17. Grushko, B.J.P.T., A study of the Al-Cu-Co phase diagram and the solidification of alloys containing decagonal phase. 1993. 44(1-3): p. 99-110. 18. Mi, S., B. Grushko, C. Dong, K.J.J.o.a. Urban, and compounds, A study of the ternary phase diagrams of Al–Co with Cu, Ag and Au. 2003. 354(1-2): p. 148-152. 19. Raghavan, V.J.J.o.P.E. and Diffusion, Al-Co-Cu (Aluminum-Cobalt-Copper). 2008. 29(3): p. 267-269. 20. Priputen, P., T. Liu, I. Černičková, D. Janičkovič, V. Kolesár, J.J.J.o.p.e. Janovec, and diffusion, Experimental Study of Al-Co-Cu Phase Diagram in Temperature Range of 800-1050° C. 2013. 34(5): p. 425-429. 21. Gödecke, T., M. Scheffer, R. Lück, S. Ritsch, and C.J.Z.f.M. Beeli, Isothermal sections of phase equilibria in the Al-AlCo-AlNi system. 1998. 89(10): p. 687-698. 22. Raghavan, V.J.J.o.P.E. and Diffusion, Al-Co-Ni (aluminum-cobalt-nickel). 2006. 27(4): p. 372-380. 23. Liu, X.L., G. Lindwall, T. Gheno, and Z.-K.J.C. Liu, Thermodynamic modeling of Al–Co–Cr, Al–Co–Ni, Co–Cr–Ni ternary systems towards a description for Al–Co–Cr–Ni. 2016. 52: p. 125-142. 24. Wang, Y., P. Zhou, Y. Peng, Y. Du, B. Sundman, J. Long, T. Xu, Z.J.J.o.A. Zhang, and Compounds, A thermodynamic description of the Al–Co–Ni system and site occupancy in Co+ AlNi3 composite binder phase. 2016. 687: p. 855-866. 25. Wang, Y. and G.J.C. Cacciamani, Experimental investigation and thermodynamic assessment of the Al-Co-Ni system. 2018. 61: p. 198-210. 26. Schmidt, G. and R.J.E. Lipowsky, Unusual wetting transitions in two-dimensional quasi-crystals. 1992. 18(3): p. 233-238. 27. Alan, G., D. Jean-marie, and T.P. Ann, New Horizons In Quasicrystals: Research And Applications-Proceedings Of The Conference. 1997: World Scientific. 28. Dubois, J.J.J.o.n.-c.s., A model of wetting on quasicrystals in ambient air. 2004. 334: p. 481-485. 29. Dubois, J.-M. and E.J.A.A.S. Belin-Ferré, Wetting and adhesion properties of quasicrystals and complex metallic alloys. 2015. 3(1): p. 1-16. 30. Ma, G., H. Ye, H. Zhang, C. He, H.J.M.C. Zhang, and Physics, Wettability of molten Sn on AlCoCrCuxFeNi high-entropy alloy. 2017. 199: p. 1-6. 31. Ma, X. and K.J.M.T.A. Kuo, Decagonal quasicrystal and related crystalline phases in slowly solidified Al-Co alloys. 1992. 23(4): p. 1121-1128. 32. Okamoto, H.J.J.o.p.e., Al-Co (aluminum-cobalt). 1996. 17(4). 33. Grushko, B., R. Wittenberg, K. Bickmann, C.J.J.o.a. Freiburg, and compounds, The constitution of aluminum-cobalt alloys between Al5Co2 and Al9Co2. 1996. 233(1-2): p. 279-287. 34. Liang, S.-M. and R.J.C. Schmid-Fetzer, Thermodynamic assessment of the Al–Cu–Zn system, part II: Al–Cu binary system. 2015. 51: p. 252-260. 35. Murray, J., Murray, Al-Cu (Aluminium-Copper), Phase Diagrams of Binary Copper Alloys. 1994, ASM International, Materials Park, OH. 36. Liu, X., I. Ohnuma, R. Kainuma, K.J.J.o.a. Ishida, and compounds, Phase equilibria in the Cu-rich portion of the Cu–Al binary system. 1998. 264(1-2): p. 201-208. 37. Aoki, Y., S. Hayashi, and H.J.J.o.c.g. Komatsu, Liquidus-and eutectic-temperature measurements of Al-rich alloys containing Cu and Si in a magnetic field of 3.5 T. 1992. 123(1-2): p. 313-316. 38. Huang, W. and Y.J.I. Chang, A thermodynamic analysis of the Ni Al system. 1998. 6(6): p. 487-498. 39. Okamoto, H.J.J.o.p.e., Al-Ni (aluminum-nickel). 1993. 14(2): p. 257-259. 40. Palumbo, M., S. Curiotto, and L.J.C. Battezzati, Thermodynamic analysis of the stable and metastable Co–Cu and Co–Cu–Fe phase diagrams. 2006. 30(2): p. 171-178. 41. Nishizawa, T. and K.J.J.o.P.E. Ishida, The Co− Cu (Cobalt-Copper) system. 1984. 5(2): p. 161-165. 42. Taylor, A.J.J.o.t.I.o.M., Lattice parameters of binary nickel cobalt alloys. 1950. 77(6): p. 585-594. 43. Lihl, F.J.Z.F.M., Die Amalgame als Hilfsmittel in der Metallkundlichen Forschung. 1955. 46(6): p. 434-441. 44. Jen, S. and Y.J.J.o.a.p. Huang, Magnetization and transport properties of Co‐Ni‐Pd alloys. 1991. 69(8): p. 4674-4676. 45. Nishizawa, T. and K.J.B.a.p.d. Ishida, Co-Ni (cobalt-nickel). 1990. 2: p. 1214-1215. 46. Guillermet, A.F.J.Z.f.M., Assessment of the thermodynamic properties of the Ni-Co system. 1987. 78(9): p. 639-647. 47. 羅珮嘉, 碩士論文, in 化學工程研究所. 2018, 國立清華大學. 48. Straumal, B., W. Gust, and D.J.I.S. Molodov, Wetting transition on grain boundaries in Al contacting with a Sn-rich melt. 1995. 3(2): p. 127-132. 49. Eisenmenger-Sittner, C., H. Bangert, H. Störi, J. Brenner, and P.J.S.s. Barna, Stranski–Krastanov growth of Sn on a polycrystalline Al film surface initiated by the wetting of Al by Sn. 2001. 489(1-3): p. 161-168. 50. Chang, H.-y., S.-w. Chen, D.S.-h. Wong, and H.-F.J.J.o.m.r. Hsu, Determination of reactive wetting properties of Sn, Sn–Cu, Sn–Ag, and Sn–Pb alloys using a wetting balance technique. 2003. 18(6): p. 1420-1428. 51. Arenas, M.F. and V.L.J.J.o.E.M. Acoff, Contact angle measurements of Sn-Ag and Sn-Cu lead-free solders on copper substrates. 2004. 33(12): p. 1452-1458. 52. Amore, S., E. Ricci, G. Borzone, R.J.M.S. Novakovic, and E. A, Wetting behaviour of lead-free Sn-based alloys on Cu and Ni substrates. 2008. 495(1-2): p. 108-112. 53. Lim, S., P. Rossiter, and J.J.C. Tibballs, Assessment of the Al-Ag binary phase diagram. 1995. 19(2): p. 131-141. 54. McAlister, A.J.B.o.A.P.D., The Ag− Al (Silver-Aluminum) system. 1987. 8(6): p. 526-533. 55. Wang, T., F. Cao, P. Zhou, H. Kang, Z. Chen, Y. Fu, T. Xiao, W. Huang, Q.J.J.o.A. Yuan, and Compounds, Study on diffusion behavior and microstructural evolution of Al/Cu bimetal interface by synchrotron X-ray radiography. 2014. 616: p. 550-555. 56. Bernardini, J., A. Combe-Brun, and J.J.S.M. Cabane, Diffusion et solubilite du cobalt dans l'argent. 1970. 4(12): p. 985-989. 57. Ivanova, B.P.B.a.V.D., The region of immiscibility on phase diagrams for germanium-silvermetal systems (Metal= Manganese, Iron, Cobalt or Nickel). Russian Journal of Physical Chemistry A, 1976. 50: p. 1286-1288. 58. Tammann, G. and W.J.Z.A.A.C. Oelsen, Dependence of concentration of saturated mixed crystals on temperature. 1930. 186: p. 257-288. 59. Karakaya, I. and W.J.J.o.P.E. Thompson, The Ag− Co (Silver-Cobalt) System. 1986. 7(3): p. 259-263. 60. Subramanian, P. and J.J.J.o.P.E. Perepezko, The Ag-Cu (silver-copper) system. 1993. 14(1): p. 62-75. 61. Cao, W., Y. Chang, J. Zhu, S. Chen, and W.J.I. Oates, Thermodynamic modeling of the Cu–Ag–Au system using the cluster/site approximation. 2007. 15(11): p. 1438-1446. 62. Liu, X.J., F. Gao, C.P. Wang, and K.J.J.o.E.M. Ishida, Thermodynamic assessments of the Ag-Ni binary and Ag-Cu-Ni ternary systems. 2008. 37(2): p. 210-217. 63. Singleton, M. and P.J.J.o.P.E. Nash, The Ag− Ni (Silver-Nickel) system. 1987. 8(2): p. 119-121. 64. Meijering, J.J.A.m., Calculation of the nickel-chromium-copper phase diagram from binary data. 1957. 5(5): p. 257-264. 65. Feest, E. and R.J.J.I.M. Doherty, MAR. , 99, 102-103, CU-NI EQUILIBRIUM PHASE DIAGRAM. 1971. 66. Predel, B. and R.J.A.f.d.E. Mohs, Thermodynamische Untersuchung flüssiger Nickel‐Kupfer‐Legierungen. 1971. 42(8): p. 575-579. 67. Schurmann, E. and E.J.Z.M. Schultz, Untersuchengen zum Verlauf der Liquidus und Solidus linien in den Systemen Kupfer-Mangan und Kupfer-Nickel. 1971. 62: p. 758-762. 68. Bastow, B. and D.J.J.I.M. Kirkwood, Solid/liquid equilibrium in the copper-nickel-tin system determined by microprobe analysis. 1971. 99(9): p. 277-283. 69. Chakrabarti, D., D. Laughlin, S. Chen, and Y.J.B.A.P.D. Chang, Cu-Ni. 1996. 70. Witusiewicz, V., U. Hecht, S. Fries, S.J.J.o.a. Rex, and compounds, The Ag–Al–Cu system: Part I: Reassessment of the constituent binaries on the basis of new experimental data. 2004. 385(1-2): p. 133-143. 71. Witusiewicz, V., U. Hecht, S. Fries, S.J.J.o.a. Rex, and compounds, The Ag–Al–Cu system: II. A thermodynamic evaluation of the ternary system. 2005. 387(1-2): p. 217-227. 72. 曲華德, 碩士論文 in 國立清華大學 化學工程研究所. 2016. 73. Luo, H.-T. and S.-W.J.J.o.m.s. Chen, Phase equilibria of the ternary Ag-Cu-Ni system and the interfacial reactions in the Ag-Cu/Ni couples. 1996. 31(19): p. 5059-5067. 74. Raghavan, V.J.J.o.P.E. and Diffusion, Ag-Al-Co (Silver-Aluminum-Cobalt). 2008. 29(3): p. 254-255. 75. Effenberg, G. and S. Ilyenko, Light Metal Systems. Part 2: Selected Systems from Al-Cu-Fe to Al-Fe-Ti. 2005: Springer. 76. Cyrot-Lackmann, F.J.M.S. and E. A, Quasicrystals as potential candidates for thermoelectric materials. 2000. 294: p. 611-612. 77. Hasebe, M., K. Oikawa, and T.J.J.o.t.J.I.o.M. Nishizawa, Computer Calculation of Phase Diagrams for Co--Cu--Mn and Co--Cu--Ni Systems. 1982. 46(6): p. 584-690.
|