帳號:guest(3.141.35.116)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭子寧
作者(外文):Kuo, Tzu-Ning.
論文名稱(中文):Al-Co-Cu與Al-Co-Ni 準晶的組成範圍及其與Ag-Cu共晶及Sn-Cu共晶合金間的濕潤性質與界面反應
論文名稱(外文):Al-Co-Cu and Al-Co-Ni quasicrystals’ compositional homogeneity ranges and their wetting and interfacial reactions with Ag-Cu and Sn-Cu eutectic alloys
指導教授(中文):陳信文
指導教授(外文):Chen, Sinn-Wen
口試委員(中文):汪上曉
呂明生
口試委員(外文):Wong, Shan-Hill
Leu, Ming-Sheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032546
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:107
中文關鍵詞:準晶鋁-鈷-銅鋁-鈷-鎳相圖濕潤性質界面反應
外文關鍵詞:quasicrystalAl-Co-CuAl-Co-Niphase diagramwettabilityinterfacial reaction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:260
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Al-Co-Cu及Al-Co-Ni系統中已被證實存在準晶相,這兩個三元系統的材料普遍,應具有良好的應用價值。雖然文獻中對於上述二種準晶已有不少探討,但是準晶相的組成穩定範圍仍不一致。本研究首先整理文獻與配合實驗,確認Al-Co-Cu及Al-Co-Ni準晶在800℃與900℃的穩定組成範圍。於實際應用上,準晶與其他材料必須有適度接合。濕潤性及界面反應與接點性質良窳直接相關,然而準晶一般的濕潤性質不佳。Ag-Cu共晶合金與Sn-Cu共晶合金,為最具代表性的硬銲與軟銲材料。本研究依據確認的穩定組成範圍,製備Al-Co-Cu及Al-Co-Ni準晶,有系統的探討準晶及其組成材料與Ag-Cu共晶與Sn-Cu共晶合金間的濕潤性質與界面反應。
Al-Co-Cu三元系統在900oC,準晶相的溶解度約為65.0-67.9at. %Al、16.2-20.8at. %Co以及12.4-17.1at. %Cu,與準晶相相互平衡的相包含β-Al(Co,Cu)、m-Al13Co4以及Liquid。Al-Co-Cu三元系統在800oC,其等溫橫截面圖之結果與900oC相似,只有準晶相一個三元相的存在,但準晶相的溶解度範圍擴大到63.3-67.5at. %Al、14.2-20.6at. %Co以及13.5-22.5at. %Cu,與準晶相平衡的相也包含β-Al(Co,Cu)、m-Al13Co4以及Liquid。Al-Co-Ni三元系統在900oC,除了準晶相以外,X是另一個三元相。與準晶相平衡的有Y1-Al13Co4、X相、Al9Co2、Al5Co2、Al3Ni2、Liquid等六相。而準晶相的相區大小約為70.0-73.9at. %Al、4.9-19.8at. %Co以及7.1-23.6at. %Ni。Al-Co-Ni三元系統在800oC,其等溫橫截面圖之結果與900oC相似,包含三個三元相:準晶相、X相及Y2-Al9Co2Ni相。其準晶相的相區大小約為70.0-73.3at. %Al、7.5-21.6at. %Co以及5.7-22.0at. %Ni。
本研究有系統的探討Al-Co-Cu準晶及Al-Co-Ni準晶與其組成材料 (Al、Co、Cu、Ni、Al-22.67at.%Co、Al-17.39at.%Cu、Al-15.29at.%Ni、Co-41.79at.%Cu、Co-46.43at.%Ni),與Ag-Cu共晶合金在800oC與900oC及Sn-Cu共晶在250oC時的濕潤性質。本研究以濕潤天秤(wetting balance)及接合試驗(joining test)進行測量。雖然濕潤天秤是濕潤性質量測的首選方法,但受限於所使用濕潤天秤的最長的測量時間為15分鐘及其溫度限制不可高於500oC。因此若是超過上述限制,則以反應偶的接合測試,來作為判斷銲料與準晶基材是否濕潤的依據。反應偶經過一段時間的熱處理,若界面仍是分開未能接合,則視為不濕潤;反之,則視為濕潤。
結果顯示以濕潤天秤測量Sn-Cu共晶合金在250℃下與Co及Cu的濕潤時間分別為5.4秒及0.6秒,而250℃下Sn-Cu共晶合金對Al、Ni、Al-22.67at.%Co、Al-17.39at.%Cu、Al-15.29at.%Ni、Co-41.79at.%Cu、Co-46.43at.%Ni、Al-Co-Cu準晶與Al-Co-Ni準晶的濕潤時間皆超過濕潤天秤可測量的最長時間15分鐘,因此以接合測試(joining test)測量其濕潤時間。接合測試顯示Sn-Cu共晶合金在250℃下與Al熱處理48小時後無接合現象,與Ni接觸15分鐘具有接合現象。Sn-Cu共晶合金在250℃下與Al-22.67at.%Co、Al-17.39at.%Cu、Al-15.29at.%Ni、Co-41.79at.%Cu及Co-46.43at.%Ni分別接觸48小時、24小時、48小時、30分鐘及30分鐘,具有接合現象。Sn-Cu共晶合金在250℃下與Al-Co-Cu準晶與Al-Co-Ni準晶接觸48小時後皆沒有接合現象。Ag-Cu共晶合金在900℃下對Co、Cu及Ni基材分別接觸1分鐘、1分鐘及3分鐘即具有接合現象;在800℃下分別接觸5、4及5分鐘即具有接合現象。Ag-Cu共晶合金在900℃及800℃下對Al-22.67at.%Co熱處理48小時後無接合現象,而在900℃下對Co-41.79at.%Cu及Co-46.43at.%Ni分別皆接觸20分鐘及20分鐘,具有接合的現象;在800℃下分別接觸2及1小時即具有接合現象。而Ag-Cu共晶合金在900℃下對Al-Co-Cu準晶與Al-Co-Ni準晶,分別接觸12及6小時具有接合現象;在800℃下接觸48小時後皆沒有接合現象。
本研究進一步探討Al-Co-Cu與Al-Co-Ni準晶材料與Ag-Cu銲料接合後之界面現象探討,實驗將以反應偶的方式進行,分析反應後的生成相與界面反應的機制探討。將Al-19.5at.%Co-14.0at.%Cu準晶與Ag-Cu共晶合金在900℃下進行界面反應,熱處理12小時後接合,形成β-Al(Co,Cu)、Liquid及Ag相,熱處理48小時後,會形成β-Al(Co,Cu)相,可推測準晶中之Al會擴散至Ag-Cu端,而Ag-Cu中的Cu向準晶端擴散。Al-15.0at.%Co-13.0at.%Ni準晶與Ag-Cu共晶合金在900℃下熱處理,熱處理6小時後接合,熱處理為6、12及48小時準晶中的Al會向Ag-Cu共晶合金擴散形成β-Al(Co,Cu,Ni)及δ-Cu33Al17相。
其結果顯示Sn-Cu共晶合金及Ag-Cu共晶合金對於準晶的組成材料的潤濕性相對更好,可得知濕潤與組成相關,且與準晶結構相關,因當其形成準晶造成濕潤性的急遽下降。因此準晶不適用以一般使用的Ag-Cu硬銲及Sn-Cu軟銲方式進行接合,應用上需以其他方法進行接合。
Quasicrystalline phases are found in the Al-Co-Cu and Al-Co-Ni ternary systems. These two ternary systems’ constituent materials are abundant, and their quasicrystalline phases should have good application values. Although there are various literatures regarding these quasicrystalline phases, their reported compositional homogeneity ranges and phase relationships are inconsistent. The first part of this research is to determine the compositional homogeneity ranges of the Al-Co-Cu and Al-Co-Ni quasicrystals at 800℃ and 900℃ based on the assessed literature results and the experimental measurements carried out in this study. In applications, quasicrystals should join properly with other materials. Wettability and interfacial reactions are directly related with properties of joints. It is well known that quasicrystals generally have poor wetting properties. Ag-Cu eutectic and Sn-Cu eutectic alloys are commonly used braze and solder alloys. In the second part of this research, the quasicrystals are prepared based on the compositional homogeneity ranges obtained in the first part and then the wettability and interfacial reactions between quasicrystals and their constituent materials and Ag-Cu eutectic and Sn-Cu eutectic alloys are systematically examined.
In the Al-Co-Cu system at 900oC, the compositional homogeneity ranges of the quasicrystalline phase are 65-67.9at.%Al, 16.2-20.8at.%Co and 12.4-17.1at.%Cu. The quasicrystalline phase is in equilibrium with β-Al(Co,Cu), m-Al13Co4 and liquid phases. Similar isothermal section is observed of the Al-Co-Cu system at 800℃. There is only one quasicrystalline phase. The compositional homogeneity ranges of the quasicrystalline phase is larger and is 63.3-67.5at.%Al, 14.2-20.6at.%Co and 13.5-22.5at.%Cu at 800℃. In the Al-Co-Ni system at 900℃, the compositional homogeneity ranges of the quasicrystalline phase are 70.0-73.9at.%Al, 4.9-19.8at.%Co and 7.1-23.6at.%Ni. There are two ternary phases, including quasicrystalline phase and X phase. The quasicrystalline phase is in equilibrium with X, Al9Co2, Al5Co2, Al3Ni2 and liquid phase. Similar isothermal section is observed of the Al-Co-Ni system at 800℃. There are three ternary phases, including quasicrystalline phase, X phase and Y2-Al9Co2Ni phase. The compositional homogeneity ranges of the quasicrystalline phase is 70.0-73.3at. %Al, 7.5-21.6at. %Co and 5.7-22.0at. %Ni at 800℃.
This study systematically investigates the wetting properties of Al-Co-Cu quasicrystals, Al-Co-Ni quasicrystals and their constituent materials (Al, Co, Cu, Ni, Al-22.67at.%Co, Al-17.39at.%Cu, Al-15.29at.%Ni, Co-41.79at.%Cu and Co-46.43at.%Ni) and Ag-Cu eutectic alloys at 800℃ and 900℃, and Sn-Cu eutectic at 250℃. Wetting balance and joining test were used for measurement. Although the wetting balance is the preferred method for measuring wettability, the longest measurement time is limited to 15 minutes and the temperature cannot be higher than 500℃. Joining test is used for the wetting time determination when the wetting balance is not suitable for measurement.
The results showed that the wetting time of Sn-Cu eutectic alloy with Co and Cu at 250℃ was 5.4 seconds and 0.6 seconds, respectively, by using a wetting balance. At 250°C, the wetting time are longer than 15 min for the molten Sn-Cu eutectic alloy on Al, Ni, Al-22.67at.%Co, Al-17.39at.%Cu, Al-15.29at.%Ni, Co-41.79at.%Cu and Co-46.43at.%Ni substrates. Therefore, the wetting time is measured by a joining test. The joining test showed there is no good joining can be observed in the Sn-1.3at.%Cu/Al couples reacted at 250℃ up to 48 hours. Good joining can be observed in Sn-1.3at.%Cu/Ni, Sn-1.3at.%Cu/Al-22.67at.%Co, Sn-1.3at.%Cu/Al-17.39at.%Cu, Sn-1.3at.%Cu/Al-15.29at.%Ni, Sn-1.3at.%Cu/Co-41.79at.%Cu and Sn-1.3at.%Cu/Co-46.43at.%Ni couples reacted at 250℃ for 15 minutes, 48 hours, 24 hours, 48 hours, 30 minutes and 30 minutes. Poor joining is observed for shorter reaction time of the respective couples. No good joining can be observed in the Sn-1.3at.%Cu/Al-19.5at.%Co-14.0at.%Cu (quasicrystal) and Sn-1.3at.%Cu/Al-15.0at.%Co-13.0at.%Ni (quasicrystal) couples reacted at 250℃ up to 48 hours. The results show good joining of Ag-39.9at.%Cu/Co, Ag-39.9at.%Cu/Cu and Ag-39.9at.%Cu/Ni couples reacted at 800℃ for 5 min, 900℃ for 1 min, 800℃ for 4 min, 900℃ for 1 min, and 800℃ for 5 min, 900℃ for 3 min. No good joining can be observed in the Ag-39.9at.%Cu/Al-22.67at.%Co couples reacted at 800℃ and 900℃ up to 48 hours. Good joining can be observed in Ag-39.9at.%Cu/Co-41.79at.%Cu and Ag-39.9at.%Cu/Co-46.43at.%Ni couples reacted at 800℃ for 2 hours, 900℃ for 20 minutes, and 800℃ for 1 hours, 900℃ for 20 minutes. No good joining can be observed in the Ag-39.9at.%Cu/Al-19.5at.%Co-14.0at.%Cu (quasicrystal) and Ag-39.9at.%Cu/Al-15.0at.%Co-13.0at.%Ni (quasicrystal) couples reacted at 800℃ up to 48 hours. Good joining can be observed in the Ag-39.9at.%Cu/Al-19.5at.%Co-14.0at.%Cu couple reacted at 900℃ for 12 hours and Ag-39.9at.%Cu/Al-15.0at.%Co-13.0at.%Ni couple reacted at 900℃ for 6 hours.
This study further explores the interface phenomena after Al-Co-Cu and Al-Co-Ni quasicrystal are joined with Ag-Cu braze. The experiment will be conducted in the form of a reaction couple, analyzing the reaction phase and the mechanism of the interface reaction. For Al-Co-Cu QC and Ag-Cu eutectic undergo an interfacial reaction at 900℃, the results show that joining between Al-Co-Cu QC and Ag-Cu eutectic are observed after 12 hours and a β-Al(Co,Cu) phase, a Liquid phase and an Ag phase are formed. After 48 hours of contact, it is found that only the β-Al(Co,Cu) phase is present. For Al-Co-Ni QC and Ag-Cu eutectic undergo an interfacial reaction at 900℃, the results show that Al in the quasicrystals diffuses toward the Ag-Cu end. Joining between Al-Co-Ni QC and Ag-Cu eutectic are observed after 6 hours contact at 900℃. When the heat treatment time is 6 to 48 hours, all of them react to form β-Al(Co,Cu,Ni) phase and δ-Cu33Al17 phase.
The results indicate that wetting between both Ag-39.9at.%Cu and Sn-1.3at.%Cu alloys on the quasicrystalline phases’ constituent materials are relatively better than those on the quasicrystalline phases. It can be concluded that the wetting is related to the components as well as to the quasicrystalline structure. Quasicrystal is not suitable for joining by using the conventional Ag-Cu brazing and Sn-Cu soldering, and other methods are required for joining.
摘要 2
Abstract 5
目錄 9
表目錄 12
圖目錄 13
一、前言 19
二、文獻回顧 21
2-1 準晶組成範圍 21
2-1-1 Al-Co二元相圖 21
2-1-2 Al-Cu二元相圖 22
2-1-3 Al-Ni二元相圖 24
2-1-4 Co-Cu二元相圖 26
2-1-5 Co-Ni二元相圖 27
2-1-6 Al-Co-Cu 三元系統相圖 28
2-1-7 Al-Co-Ni 三元系統相圖 31
2-2 濕潤性質 33
2-2-1準晶與Sn-Cu共晶合金之濕潤性質 33
2-2-2準晶與Ag-Cu共晶合金之濕潤性質 36
2-3界面反應 38
2-3-1 Al/Ag界面反應 38
2-3-2 Al/Cu 界面反應 39
2-3-3 Ag/Co 界面反應 39
2-3-4 Ag/Cu界面反應 40
2-3-5 Ag/Ni界面反應 41
2-3-6 Co/Cu界面反應 42
2-3-7 Cu/Ni界面反應 42
2-3-8 Al/Ag-Cu界面反應 43
2-3-9 Co/Ag-Cu界面反應 44
2-3-10 Cu/Ag-Cu界面反應 44
2-3-11 Ni/Ag-Cu界面反應 44
2-3-12 Al-Co/Ag-Cu界面反應 45
2-3-13 Al-Cu/Ag-Cu界面反應 46
2-3-14 Al-Ni/Ag-Cu界面反應 46
2-3-15 Co-Cu/Ag-Cu界面反應 47
2-3-16 Co-Ni/Ag-Cu 界面反應 48
2-3-17 Al-Co-Cu/Ag-Cu界面反應 48
2-3-18 Al-Co-Ni/Ag-Cu 界面反應 48
三、研究方法 50
3-1相平衡 50
3-2濕潤性質測試 51
3-3界面反應及分析 51
四、結果與討論 52
4-1 準晶組成範圍 52
4-1-1 Al-Co-Cu 三元系統900oC等溫橫截面圖 52
4-1-2 Al-Co-Cu三元系統800oC等溫橫截面圖 62
4-1-3 Al-Co-Ni 三元系統900oC等溫橫截面圖 63
4-1-4 Al-Co-Ni 三元系統800oC等溫橫截面圖 66
4-2濕潤性質 68
4-2-1 準晶與Sn-1.3at.%Cu的濕潤性質 68
4-2-2 準晶與Ag-39.9at.%Cu的濕潤性質 78
4-3界面反應 90
4-3-1 Al-Co-Cu/Ag-Cu在900oC下的界面反應 90
4-3-2 Al-Co-Ni/Ag-Cu在900oC下的界面反應 94
五、結論 100
六、參考文獻 102
1. Shechtman, D., I. Blech, D. Gratias, and J.W.J.P.r.l. Cahn, Metallic phase with long-range orientational order and no translational symmetry. 1984. 53(20): p. 1951-1954.
2. Tsai, A.P.J.S. and T.o.A. Materials, Icosahedral clusters, icosaheral order and stability of quasicrystals—a view of metallurgy. 2008. 9(1): p. 013008.
3. Dubois, J.-M. and R.J.P.M. Lifshitz, Quasicrystals: diversity and complexity. 2011. 91(19-21): p. 2971-2982.
4. Tsai, A.P., A. Inoue, T.J.S.r.o.t.R.I. Masumoto, Tohoku University. Ser. A, Physics, chemistry, and metallurgy, Quasicrystals As a Hume-Rothery Phase: An Empirical Approach ((B) Quasicrystals). 1991. 36(1): p. 99-114.
5. Pierce, F., S. Poon, and Q.J.S. Guo, Electron localization in metallic quasicrystals. 1993. 261(5122): p. 737-739.
6. M. A. Chernikov, A.B., C. Beeli, A. Schilling, and H. R. Ott, Low-temperature magnetism in icosahedral A170Mn9P21. Physical Review B, 1993. 48: p. 3058-3065.
7. Jha, A., Solution thermodynamic behaviour of quasicrystalline-structure-forming alloy systems. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1994. 181-182: p. 771-776.
8. He, L.X., Y. Wu, and K.J.J.o.m.s.l. Kuo, Decagonal quasicrystals with different periodicities along the tenfold axis in rapidly solidified Al 65 Cu 20 M 15 (M= Mn, Fe, Co or Ni). 1988. 7(12): p. 1284-1286.
9. Kortan, A., F. Thiel, H. Chen, A. Tsai, A. Inoue, and T.J.P.R.B. Masumoto, Stable tenfold faceted single-grain decagonal quasicrystals of Al 65 Cu 15 Co 20. 1989. 40(13): p. 9397-9399.
10. Tsai, A.-P., A. Inoue, and T.J.M.t. Masumoto, JIM, Stable decagonal Al–Co–Ni and Al–Co–Cu quasicrystals. 1989. 30(7): p. 463-473.
11. Guo, J., E. Abe, T.J. Sato, and A.-P.J.J.j.o.a.p. Tsai, Production of single decagonal quasicrystal in Al-Co-Cu system. 1999. 38(9A): p. L1049-1051.
12. Yokoyama, Y., R. Note, A. Yamaguchi, A. Inoue, K. Fukaura, and H.J.M.t. Sunada, JIM, Preparation of a Decagonal Al–Cu–Co Single Quasicrystal by the Czochralski Method. 1999. 40(2): p. 123-131.
13. Bogdanowicz, W.J.J.o.c.g., Two-subgrain single quasicrystals Al–Cu–Co alloy growth and characterisation. 2002. 240(1-2): p. 255-266.
14. Sato, T.J., T. Hirano, and A.P.J.J.o.c.g. Tsai, Single-crystal growth of the decagonal Al–Ni–Co quasicrystal. 1998. 191(3): p. 545-552.
15. Ritsch, S., C. Beeli, H. Nissen, T. Gödecke, M. Scheffer, and R.J.P.m.l. Lück, The existence regions of structural modifications in decagonal Al-Co-Ni. 1998. 78(2): p. 67-75.
16. Hiraga, K., T. Ohsuna, W. Sun, and K.J.M.t. Sugiyama, Structural characteristics of Al-Co-Ni decagonal quasicrystals and crystalline approximants. 2001. 42(11): p. 2354-2367.
17. Grushko, B.J.P.T., A study of the Al-Cu-Co phase diagram and the solidification of alloys containing decagonal phase. 1993. 44(1-3): p. 99-110.
18. Mi, S., B. Grushko, C. Dong, K.J.J.o.a. Urban, and compounds, A study of the ternary phase diagrams of Al–Co with Cu, Ag and Au. 2003. 354(1-2): p. 148-152.
19. Raghavan, V.J.J.o.P.E. and Diffusion, Al-Co-Cu (Aluminum-Cobalt-Copper). 2008. 29(3): p. 267-269.
20. Priputen, P., T. Liu, I. Černičková, D. Janičkovič, V. Kolesár, J.J.J.o.p.e. Janovec, and diffusion, Experimental Study of Al-Co-Cu Phase Diagram in Temperature Range of 800-1050° C. 2013. 34(5): p. 425-429.
21. Gödecke, T., M. Scheffer, R. Lück, S. Ritsch, and C.J.Z.f.M. Beeli, Isothermal sections of phase equilibria in the Al-AlCo-AlNi system. 1998. 89(10): p. 687-698.
22. Raghavan, V.J.J.o.P.E. and Diffusion, Al-Co-Ni (aluminum-cobalt-nickel). 2006. 27(4): p. 372-380.
23. Liu, X.L., G. Lindwall, T. Gheno, and Z.-K.J.C. Liu, Thermodynamic modeling of Al–Co–Cr, Al–Co–Ni, Co–Cr–Ni ternary systems towards a description for Al–Co–Cr–Ni. 2016. 52: p. 125-142.
24. Wang, Y., P. Zhou, Y. Peng, Y. Du, B. Sundman, J. Long, T. Xu, Z.J.J.o.A. Zhang, and Compounds, A thermodynamic description of the Al–Co–Ni system and site occupancy in Co+ AlNi3 composite binder phase. 2016. 687: p. 855-866.
25. Wang, Y. and G.J.C. Cacciamani, Experimental investigation and thermodynamic assessment of the Al-Co-Ni system. 2018. 61: p. 198-210.
26. Schmidt, G. and R.J.E. Lipowsky, Unusual wetting transitions in two-dimensional quasi-crystals. 1992. 18(3): p. 233-238.
27. Alan, G., D. Jean-marie, and T.P. Ann, New Horizons In Quasicrystals: Research And Applications-Proceedings Of The Conference. 1997: World Scientific.
28. Dubois, J.J.J.o.n.-c.s., A model of wetting on quasicrystals in ambient air. 2004. 334: p. 481-485.
29. Dubois, J.-M. and E.J.A.A.S. Belin-Ferré, Wetting and adhesion properties of quasicrystals and complex metallic alloys. 2015. 3(1): p. 1-16.
30. Ma, G., H. Ye, H. Zhang, C. He, H.J.M.C. Zhang, and Physics, Wettability of molten Sn on AlCoCrCuxFeNi high-entropy alloy. 2017. 199: p. 1-6.
31. Ma, X. and K.J.M.T.A. Kuo, Decagonal quasicrystal and related crystalline phases in slowly solidified Al-Co alloys. 1992. 23(4): p. 1121-1128.
32. Okamoto, H.J.J.o.p.e., Al-Co (aluminum-cobalt). 1996. 17(4).
33. Grushko, B., R. Wittenberg, K. Bickmann, C.J.J.o.a. Freiburg, and compounds, The constitution of aluminum-cobalt alloys between Al5Co2 and Al9Co2. 1996. 233(1-2): p. 279-287.
34. Liang, S.-M. and R.J.C. Schmid-Fetzer, Thermodynamic assessment of the Al–Cu–Zn system, part II: Al–Cu binary system. 2015. 51: p. 252-260.
35. Murray, J., Murray, Al-Cu (Aluminium-Copper), Phase Diagrams of Binary Copper Alloys. 1994, ASM International, Materials Park, OH.
36. Liu, X., I. Ohnuma, R. Kainuma, K.J.J.o.a. Ishida, and compounds, Phase equilibria in the Cu-rich portion of the Cu–Al binary system. 1998. 264(1-2): p. 201-208.
37. Aoki, Y., S. Hayashi, and H.J.J.o.c.g. Komatsu, Liquidus-and eutectic-temperature measurements of Al-rich alloys containing Cu and Si in a magnetic field of 3.5 T. 1992. 123(1-2): p. 313-316.
38. Huang, W. and Y.J.I. Chang, A thermodynamic analysis of the Ni Al system. 1998. 6(6): p. 487-498.
39. Okamoto, H.J.J.o.p.e., Al-Ni (aluminum-nickel). 1993. 14(2): p. 257-259.
40. Palumbo, M., S. Curiotto, and L.J.C. Battezzati, Thermodynamic analysis of the stable and metastable Co–Cu and Co–Cu–Fe phase diagrams. 2006. 30(2): p. 171-178.
41. Nishizawa, T. and K.J.J.o.P.E. Ishida, The Co− Cu (Cobalt-Copper) system. 1984. 5(2): p. 161-165.
42. Taylor, A.J.J.o.t.I.o.M., Lattice parameters of binary nickel cobalt alloys. 1950. 77(6): p. 585-594.
43. Lihl, F.J.Z.F.M., Die Amalgame als Hilfsmittel in der Metallkundlichen Forschung. 1955. 46(6): p. 434-441.
44. Jen, S. and Y.J.J.o.a.p. Huang, Magnetization and transport properties of Co‐Ni‐Pd alloys. 1991. 69(8): p. 4674-4676.
45. Nishizawa, T. and K.J.B.a.p.d. Ishida, Co-Ni (cobalt-nickel). 1990. 2: p. 1214-1215.
46. Guillermet, A.F.J.Z.f.M., Assessment of the thermodynamic properties of the Ni-Co system. 1987. 78(9): p. 639-647.
47. 羅珮嘉, 碩士論文, in 化學工程研究所. 2018, 國立清華大學.
48. Straumal, B., W. Gust, and D.J.I.S. Molodov, Wetting transition on grain boundaries in Al contacting with a Sn-rich melt. 1995. 3(2): p. 127-132.
49. Eisenmenger-Sittner, C., H. Bangert, H. Störi, J. Brenner, and P.J.S.s. Barna, Stranski–Krastanov growth of Sn on a polycrystalline Al film surface initiated by the wetting of Al by Sn. 2001. 489(1-3): p. 161-168.
50. Chang, H.-y., S.-w. Chen, D.S.-h. Wong, and H.-F.J.J.o.m.r. Hsu, Determination of reactive wetting properties of Sn, Sn–Cu, Sn–Ag, and Sn–Pb alloys using a wetting balance technique. 2003. 18(6): p. 1420-1428.
51. Arenas, M.F. and V.L.J.J.o.E.M. Acoff, Contact angle measurements of Sn-Ag and Sn-Cu lead-free solders on copper substrates. 2004. 33(12): p. 1452-1458.
52. Amore, S., E. Ricci, G. Borzone, R.J.M.S. Novakovic, and E. A, Wetting behaviour of lead-free Sn-based alloys on Cu and Ni substrates. 2008. 495(1-2): p. 108-112.
53. Lim, S., P. Rossiter, and J.J.C. Tibballs, Assessment of the Al-Ag binary phase diagram. 1995. 19(2): p. 131-141.
54. McAlister, A.J.B.o.A.P.D., The Ag− Al (Silver-Aluminum) system. 1987. 8(6): p. 526-533.
55. Wang, T., F. Cao, P. Zhou, H. Kang, Z. Chen, Y. Fu, T. Xiao, W. Huang, Q.J.J.o.A. Yuan, and Compounds, Study on diffusion behavior and microstructural evolution of Al/Cu bimetal interface by synchrotron X-ray radiography. 2014. 616: p. 550-555.
56. Bernardini, J., A. Combe-Brun, and J.J.S.M. Cabane, Diffusion et solubilite du cobalt dans l'argent. 1970. 4(12): p. 985-989.
57. Ivanova, B.P.B.a.V.D., The region of immiscibility on phase diagrams for germanium-silvermetal systems (Metal= Manganese, Iron, Cobalt or Nickel). Russian Journal of Physical Chemistry A, 1976. 50: p. 1286-1288.
58. Tammann, G. and W.J.Z.A.A.C. Oelsen, Dependence of concentration of saturated mixed crystals on temperature. 1930. 186: p. 257-288.
59. Karakaya, I. and W.J.J.o.P.E. Thompson, The Ag− Co (Silver-Cobalt) System. 1986. 7(3): p. 259-263.
60. Subramanian, P. and J.J.J.o.P.E. Perepezko, The Ag-Cu (silver-copper) system. 1993. 14(1): p. 62-75.
61. Cao, W., Y. Chang, J. Zhu, S. Chen, and W.J.I. Oates, Thermodynamic modeling of the Cu–Ag–Au system using the cluster/site approximation. 2007. 15(11): p. 1438-1446.
62. Liu, X.J., F. Gao, C.P. Wang, and K.J.J.o.E.M. Ishida, Thermodynamic assessments of the Ag-Ni binary and Ag-Cu-Ni ternary systems. 2008. 37(2): p. 210-217.
63. Singleton, M. and P.J.J.o.P.E. Nash, The Ag− Ni (Silver-Nickel) system. 1987. 8(2): p. 119-121.
64. Meijering, J.J.A.m., Calculation of the nickel-chromium-copper phase diagram from binary data. 1957. 5(5): p. 257-264.
65. Feest, E. and R.J.J.I.M. Doherty, MAR. , 99, 102-103, CU-NI EQUILIBRIUM PHASE DIAGRAM. 1971.
66. Predel, B. and R.J.A.f.d.E. Mohs, Thermodynamische Untersuchung flüssiger Nickel‐Kupfer‐Legierungen. 1971. 42(8): p. 575-579.
67. Schurmann, E. and E.J.Z.M. Schultz, Untersuchengen zum Verlauf der Liquidus und Solidus linien in den Systemen Kupfer-Mangan und Kupfer-Nickel. 1971. 62: p. 758-762.
68. Bastow, B. and D.J.J.I.M. Kirkwood, Solid/liquid equilibrium in the copper-nickel-tin system determined by microprobe analysis. 1971. 99(9): p. 277-283.
69. Chakrabarti, D., D. Laughlin, S. Chen, and Y.J.B.A.P.D. Chang, Cu-Ni. 1996.
70. Witusiewicz, V., U. Hecht, S. Fries, S.J.J.o.a. Rex, and compounds, The Ag–Al–Cu system: Part I: Reassessment of the constituent binaries on the basis of new experimental data. 2004. 385(1-2): p. 133-143.
71. Witusiewicz, V., U. Hecht, S. Fries, S.J.J.o.a. Rex, and compounds, The Ag–Al–Cu system: II. A thermodynamic evaluation of the ternary system. 2005. 387(1-2): p. 217-227.
72. 曲華德, 碩士論文 in 國立清華大學 化學工程研究所. 2016.
73. Luo, H.-T. and S.-W.J.J.o.m.s. Chen, Phase equilibria of the ternary Ag-Cu-Ni system and the interfacial reactions in the Ag-Cu/Ni couples. 1996. 31(19): p. 5059-5067.
74. Raghavan, V.J.J.o.P.E. and Diffusion, Ag-Al-Co (Silver-Aluminum-Cobalt). 2008. 29(3): p. 254-255.
75. Effenberg, G. and S. Ilyenko, Light Metal Systems. Part 2: Selected Systems from Al-Cu-Fe to Al-Fe-Ti. 2005: Springer.
76. Cyrot-Lackmann, F.J.M.S. and E. A, Quasicrystals as potential candidates for thermoelectric materials. 2000. 294: p. 611-612.
77. Hasebe, M., K. Oikawa, and T.J.J.o.t.J.I.o.M. Nishizawa, Computer Calculation of Phase Diagrams for Co--Cu--Mn and Co--Cu--Ni Systems. 1982. 46(6): p. 584-690.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *