帳號:guest(3.133.133.233)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):程允陞
作者(外文):Cheng, Yun-Sheng
論文名稱(中文):鎢修飾鉑/碳電催化劑提升氧還原反應下的耐久性
論文名稱(外文):Tungsten-modified platinum/carbon electrocatalyst improves durability in oxygen reduction reaction
指導教授(中文):潘詠庭
指導教授(外文):Pan, Yung-Tin
口試委員(中文):陳翰儀
王冠文
口試委員(外文):Chen, Han-Yi
Wang, Kuan-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032545
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:69
中文關鍵詞:氧還原反應鉑基礎電催化劑觸媒穩定性鎢修飾鉑/碳電催化劑
外文關鍵詞:oxygen reduction reactionplatinum-based electrocatalystcatalyst stabilitytungsten modified platinum/carbon electrocatalyst
相關次數:
  • 推薦推薦:0
  • 點閱點閱:27
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell, PEMFC) 在減碳環境的發展中備受期待且極具發展潛力,尤其在交通運輸方面。PEMFC陰極的氧還原反應(Oxygen Reduction Reaction, ORR)有Pt/C、PtCo/C等傳統Pt基礎的合金電催化劑,同時組合製備成奈米籠、奈米線、八面體等結構可具有優秀的電化學活性。然而摻入的過渡金屬容易在酸性環境中溶解,這讓觸媒的耐久性仍然是有待解決的問題。同樣的情況在氮摻雜碳載體的單原子金屬催化劑M-N-C(M=metal)中遭遇,也與耐酸性低的過渡金屬相關。
本研究藉由濕浸漬法將前驅物WCl6與商業Pt/C結合,製備出亞奈米等級的W修飾Pt奈米顆粒,成為更具電化學耐久性的W-Pt/C介金屬電催化劑。考量到W具備高熔點的熱穩定性質,在與商業Pt/C的熱處理過程中包覆部分Pt奈米顆粒以及阻止顆粒間的移動,抑制了金屬觸媒燒結。在氧還原反應中,W提高了Pt/C催化劑在酸性環境的電化學耐久性。透過電化學實驗、TEM以及拉曼光譜的觀察,可以得知W的摻入提升了碳載體的抗腐蝕能力。
本研究使用旋轉圓盤電極(Rotating-Disk Electrode, RDE)的半電池電化學檢測,在加速壓力實驗(Accelerated Stress Test, AST)當中經歷30,000循環測試後,W-Pt/C的ORR活性損失為31.4%,商業Pt/C的損失則為51.6%。
Proton Exchange Membrane Fuel Cell (PEMFC) is highly anticipated and has great development potential in the development of a carbon reduction technology, especially in transportation. The Oxygen Reduction Reaction (ORR) as PEMFC cathode has traditional Pt-based alloy electrocatalysts such as Pt/C and PtCo/C which can be combined to prepare nanocages, nanowires, octahedral or other structures with excellent ORR electrochemical activity. However, the added transition metals are easily dissolved in an acidic environment, which makes the durability of the catalyst still a problem to be solved. The same situation is encountered in the nitrogen-doped carbon-supported single-atomic metal catalyst M-N-C (M=metal), which is also related to transition metals with low acid resistance.
In this study, the precursor WCl6 was combined with commercial Pt/C by a wet impregnation method to prepare sub-nanometer scales W-modified Pt nanoparticles, which became a more electrochemically durable W-Pt/C intermetallic electrocatalyst. Considering that W has a high melting point and thermal stability, it coats part of the Pt nanoparticle and prevents the movement of particles during the heat treatment with commercial Pt/C, thereby inhibiting the sintering of the metal catalyst. In the oxygen reduction reaction, W improves the electrochemical durability of the Pt/C catalyst in an acidic environment. Through electrochemical experiments, TEM and Raman spectroscopy observations, it can be known that the incorporation of W improves the corrosion resistance of the carbon support.
In this study, a rotating disk electrode (RDE) half-cell electrochemical detection was used. After 30,000 cycles of testing in the accelerated stress test (AST), the ORR activity loss of W-Pt/C was 31.4%, the loss of commercial Pt/C is 51.6%.
摘要 I
ABSTRACT II
目錄 IV
圖目錄 VI
表目錄 IX
一、緒論 1
1.1 前言 1
1.2 質子交換膜燃料電池(PEMFC) 2
1.2.1 簡介 2
1.2.2 氧還原反應(Oxygen Reduction Reaction, ORR) 4
1.3 基於PT的 ORR電催化劑 5
1.4 非貴金屬ORR電催化劑 7
1.5 研究動機 8
二、文獻回顧 9
2.1 概述 9
2.2 PT合金的ORR奈米電催化劑 9
2.3 PT/C為基礎的ORR奈米電催化劑降解 18
2.3.1 Pt降解 18
2.3.2 碳載體腐蝕 23
三、實驗方法與儀器 29
3.1 實驗藥品 29
3.2 實驗器材 29
3.3 分析儀器 30
3.4 旋轉圓盤電極(ROTATING DISK ELECTRODE, RDE) 30
3.5 實驗流程 31
3.5.1 W-Pt/C製備 31
3.5.2 製備電極 33
3.5.3 半電池架設 35
3.5.4 電化學分析實驗 36
四、結果與討論 39
4.1 W-PT/C產物分析 39
4.2 電化學分析 48
4.3 AST後的EOL-電催化劑分析 52
五、結論 56
六、未來工作 57
致謝 58
參考文獻 59
1.Behling, N. H., Chapter 2 - Fuel Cells and the Challenges Ahead. In Fuel Cells, Behling, N. H., Ed. Elsevier: 2013; pp 7-36.
2.Zhang, T.; Wang, P.; Chen, H.; Pei, P., A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition. Applied Energy 2018, 223, 249-262.
3.Chen, H.; Zhao, X.; Zhang, T.; Pei, P., The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: A review. Energy Conversion and Management 2019, 182, 282-298.
4.Sui, S.; Wang, X.; Zhou, X.; Su, Y.; Riffat, S.; Liu, C.-j., A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. Journal of Materials Chemistry A 2017, 5 (5), 1808-1825.
5.Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K., Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction. Chemical Reviews 2018, 118 (5), 2302-2312.
6.Beyhan, S.; Şahin, N.; Pronier, S.; Leger, J.-M.; Kadirgan, F., Comparison of oxygen reduction reaction on Pt/C, Pt-Sn/C, Pt-Ni/C, and Pt-Sn-Ni/C catalysts prepared by Bönnemann method: A rotating ring disk electrode study. 2015; Vol. 151, p 565-573.
7.Kongkanand, A.; Mathias, M. F., The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells. The Journal of Physical Chemistry Letters 2016, 7 (7), 1127-1137.
8.Chong, L.; Wen, J.; Kubal, J.; Sen, F. G.; Zou, J.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W.; Liu, D.-J., Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362 (6420), 1276.
9.Pei, P.; Chang, Q.; Tang, T., A quick evaluating method for automotive fuel cell lifetime. International Journal of Hydrogen Energy 2008, 33 (14), 3829-3836.
10.Zhao, D.; Yi, B. L.; Zhang, H. M.; Liu, M., The effect of platinum in a Nafion membrane on the durability of the membrane under fuel cell conditions. Journal of Power Sources 2010, 195 (15), 4606-4612.
11.Hongsirikarn, K.; Mo, X.; Goodwin, J. G.; Creager, S., Effect of H2O2 on Nafion® properties and conductivity at fuel cell conditions. Journal of Power Sources 2011, 196 (6), 3060-3072.
12.Coms, F. D., The Chemistry of Fuel Cell Membrane Chemical Degradation. 2008, 16 (2), 235-255.
13.Sethuraman, V. A.; Weidner, J. W.; Haug, A. T.; Motupally, S.; Protsailo, L. V., Hydrogen Peroxide Formation Rates in a PEMFC Anode and Cathode. Journal of The Electrochemical Society 2008, 155 (1), B50.
14.Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355 (6321), eaad4998.
15.Rück, M.; Bandarenka, A.; Calle-Vallejo, F.; Gagliardi, A., Oxygen Reduction Reaction: Rapid Prediction of Mass Activity of Nanostructured Platinum Electrocatalysts. The Journal of Physical Chemistry Letters 2018, 9 (15), 4463-4468.
16.Wang, Y.-J.; Long, W.; Wang, L.; Yuan, R.; Ignaszak, A.; Fang, B.; Wilkinson, D. P., Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals. Energy & Environmental Science 2018, 11 (2), 258-275.
17.Keith, J. A.; Jerkiewicz, G.; Jacob, T., Theoretical Investigations of the Oxygen Reduction Reaction on Pt(111). ChemPhysChem 2010, 11 (13), 2779-2794.
18.Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The Journal of Physical Chemistry B 2004, 108 (46), 17886-17892.
19.Choi, D. S.; Robertson, A. W.; Warner, J. H.; Kim, S. O.; Kim, H., Low-Temperature Chemical Vapor Deposition Synthesis of Pt–Co Alloyed Nanoparticles with Enhanced Oxygen Reduction Reaction Catalysis. 2016, 28 (33), 7115-7122.
20.Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Marković, N. M., Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. 2007, 315 (5811), 493-497.
21.Pryadchenko, V. V.; Belenov, S. V.; Shemet, D. B.; Srabionyan, V. V.; Avakyan, L. A.; Volochaev, V. A.; Mikheykin, A. S.; Bdoyan, K. E.; Zizak, I.; Guterman, V. E.; Bugaev, L. A., Effect of Thermal Treatment on the Atomic Structure and Electrochemical Characteristics of Bimetallic PtCu Core–Shell Nanoparticles in PtCu/C Electrocatalysts. The Journal of Physical Chemistry C 2018, 122 (30), 17199-17210.
22.Chepkasov, I. V.; Visotin, M. A.; Kovaleva, E. A.; Manakhov, A. M.; Baidyshev, V. S.; Popov, Z. I., Stability and Electronic Properties of PtPd Nanoparticles via MD and DFT Calculations. The Journal of Physical Chemistry C 2018, 122 (31), 18070-18076.
23.Huang, X.; Zhao, Z.; Cao, L.; Chen, Y.; Zhu, E.; Lin, Z.; Li, M.; Yan, A.; Zettl, A.; Wang, Y. M.; Duan, X.; Mueller, T.; Huang, Y., High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348 (6240), 1230-1234.
24.Guo, S.; Li, D.; Zhu, H.; Zhang, S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S., FePt and CoPt Nanowires as Efficient Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie International Edition 2013, 52 (12), 3465-3468.
25.Liu, Z.; Yin, Y.; Yang, D.; Zhang, C.; Ming, P.; Li, B.; Yang, S., Efficient synthesis of Pt–Co nanowires as cathode catalysts for proton exchange membrane fuel cells. RSC Advances 2020, 10 (11), 6287-6296.
26.Luo, Y.; Kirchhoff, B.; Fantauzzi, D.; Calvillo, L.; Estudillo-Wong, L. A.; Granozzi, G.; Jacob, T.; Alonso-Vante, N., Molybdenum Doping Augments Platinum–Copper Oxygen Reduction Electrocatalyst. ChemSusChem 2018, 11 (1), 193-201.
27.Jia, Q.; Zhao, Z.; Cao, L.; Li, J.; Ghoshal, S.; Davies, V.; Stavitski, E.; Attenkofer, K.; Liu, Z.; Li, M.; Duan, X.; Mukerjee, S.; Mueller, T.; Huang, Y., Roles of Mo Surface Dopants in Enhancing the ORR Performance of Octahedral PtNi Nanoparticles. Nano Letters 2018, 18 (2), 798-804.
28.Wu, Y.; Zhao, Y.; Liu, J.; Wang, F., Adding refractory 5d transition metal W into PtCo system: an advanced ternary alloy for efficient oxygen reduction reaction. Journal of Materials Chemistry A 2018, 6 (23), 10700-10709.
29.Lu, B.-A.; Sheng, T.; Tian, N.; Zhang, Z.-C.; Xiao, C.; Cao, Z.-M.; Ma, H.-B.; Zhou, Z.-Y.; Sun, S.-G., Octahedral PtCu alloy nanocrystals with high performance for oxygen reduction reaction and their enhanced stability by trace Au. Nano Energy 2017, 33, 65-71.
30.Zhao, X.; Chen, S.; Fang, Z.; Ding, J.; Sang, W.; Wang, Y.; Zhao, J.; Peng, Z.; Zeng, J., Octahedral Pd@Pt1.8Ni Core–Shell Nanocrystals with Ultrathin PtNi Alloy Shells as Active Catalysts for Oxygen Reduction Reaction. Journal of the American Chemical Society 2015, 137 (8), 2804-2807.
31.Dionigi, F.; Weber, C. C.; Primbs, M.; Gocyla, M.; Bonastre, A. M.; Spöri, C.; Schmies, H.; Hornberger, E.; Kühl, S.; Drnec, J.; Heggen, M.; Sharman, J.; Dunin-Borkowski, R. E.; Strasser, P., Controlling Near-Surface Ni Composition in Octahedral PtNi(Mo) Nanoparticles by Mo Doping for a Highly Active Oxygen Reduction Reaction Catalyst. Nano Letters 2019, 19 (10), 6876-6885.
32.Tu, W.; Chen, K.; Zhu, L.; Zai, H.; E, B.; Ke, X.; Chen, C.; Sui, M.; Chen, Q.; Li, Y., Tungsten-Doping-Induced Surface Reconstruction of Porous Ternary Pt-Based Alloy Electrocatalyst for Oxygen Reduction. 2019, 29 (7), 1807070.
33.Choi, S.-I.; Shao, M.; Lu, N.; Ruditskiy, A.; Peng, H.-C.; Park, J.; Guerrero, S.; Wang, J.; Kim, M. J.; Xia, Y., Synthesis and Characterization of Pd@Pt–Ni Core–Shell Octahedra with High Activity toward Oxygen Reduction. ACS Nano 2014, 8 (10), 10363-10371.
34.Tu, W.; Luo, W.; Chen, C.; Chen, K.; Zhu, E.; Zhao, Z.; Wang, Z.; Hu, T.; Zai, H.; Ke, X.; Sui, M.; Chen, P.; Zhang, Q.; Chen, Q.; Li, Y.; Huang, Y., Tungsten as “Adhesive” in Pt2CuW0.25 Ternary Alloy for Highly Durable Oxygen Reduction Electrocatalysis. 2020, 30 (6), 1908230.
35.Strasser, P., Catalysts by Platonic design. Science 2015, 349 (6246), 379.
36.Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.; Choi, S.-I.; Park, J.; Herron, J. A.; Xie, Z.; Mavrikakis, M.; Xia, Y., Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349 (6246), 412.
37.Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H. L.; Snyder, J. D.; Li, D.; Herron, J. A.; Mavrikakis, M.; Chi, M.; More, K. L.; Li, Y.; Markovic, N. M.; Somorjai, G. A.; Yang, P.; Stamenkovic, V. R., Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science 2014, 343 (6177), 1339.
38.Bu, L.; Ding, J.; Guo, S.; Zhang, X.; Su, D.; Zhu, X.; Yao, J.; Guo, J.; Lu, G.; Huang, X., A General Method for Multimetallic Platinum Alloy Nanowires as Highly Active and Stable Oxygen Reduction Catalysts. 2015, 27 (44), 7204-7212.
39.Ma, Y.; Gao, W.; Shan, H.; Chen, W.; Shang, W.; Tao, P.; Song, C.; Addiego, C.; Deng, T.; Pan, X.; Wu, J., Platinum-Based Nanowires as Active Catalysts toward Oxygen Reduction Reaction: In Situ Observation of Surface-Diffusion-Assisted, Solid-State Oriented Attachment. Advanced Materials 2017, 29 (46), 1703460.
40.Li, M.; Zhao, Z.; Cheng, T.; Fortunelli, A.; Chen, C.-Y.; Yu, R.; Zhang, Q.; Gu, L.; Merinov, B. V.; Lin, Z.; Zhu, E.; Yu, T.; Jia, Q.; Guo, J.; Zhang, L.; Goddard, W. A.; Huang, Y.; Duan, X., Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354 (6318), 1414.
41.Jiang, K.; Zhao, D.; Guo, S.; Zhang, X.; Zhu, X.; Guo, J.; Lu, G.; Huang, X., Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Science Advances 2017, 3 (2).
42.Gong, M.; Deng, Z.; Xiao, D.; Han, L.; Zhao, T.; Lu, Y.; Shen, T.; Liu, X.; Lin, R.; Huang, T.; Zhou, G.; Xin, H.; Wang, D., One-Nanometer-Thick Pt3Ni Bimetallic Alloy Nanowires Advanced Oxygen Reduction Reaction: Integrating Multiple Advantages into One Catalyst. ACS Catalysis 2019, 9 (5), 4488-4494.
43.Alia, S. M.; Ngo, C.; Shulda, S.; Ha, M.-A.; Dameron, A. A.; Weker, J. N.; Neyerlin, K. C.; Kocha, S. S.; Pylypenko, S.; Pivovar, B. S., Exceptional Oxygen Reduction Reaction Activity and Durability of Platinum–Nickel Nanowires through Synthesis and Post-Treatment Optimization. ACS Omega 2017, 2 (4), 1408-1418.
44.Chen, Y.; Cheng, T.; Goddard Iii, W. A., Atomistic Explanation of the Dramatically Improved Oxygen Reduction Reaction of Jagged Platinum Nanowires, 50 Times Better than Pt. Journal of the American Chemical Society 2020, 142 (19), 8625-8632.
45.Kong, Z.; Maswadeh, Y.; Vargas, J. A.; Shan, S.; Wu, Z.-P.; Kareem, H.; Leff, A. C.; Tran, D. T.; Chang, F.; Yan, S.; Nam, S.; Zhao, X.; Lee, J. M.; Luo, J.; Shastri, S.; Yu, G.; Petkov, V.; Zhong, C.-J., Origin of High Activity and Durability of Twisty Nanowire Alloy Catalysts under Oxygen Reduction and Fuel Cell Operating Conditions. Journal of the American Chemical Society 2020, 142 (3), 1287-1299.
46.Sasaki, K.; Shao, M.; Adzic, R., Dissolution and Stabilization of Platinum in Oxygen Cathodes. In Polymer Electrolyte Fuel Cell Durability, Büchi, F. N.; Inaba, M.; Schmidt, T. J., Eds. Springer New York: New York, NY, 2009; pp 7-27.
47.Liang, J.; Li, N.; Zhao, Z.; Ma, L.; Wang, X.; Li, S.; Liu, X.; Wang, T.; Du, Y.; Lu, G.; Han, J.; Huang, Y.; Su, D.; Li, Q., Tungsten-Doped L10-PtCo Ultrasmall Nanoparticles as a High-Performance Fuel Cell Cathode. Angewandte Chemie International Edition 2019, 58 (43), 15471-15477.
48.Li, J.; Sharma, S.; Liu, X.; Pan, Y.-T.; Spendelow, J. S.; Chi, M.; Jia, Y.; Zhang, P.; Cullen, D. A.; Xi, Z.; Lin, H.; Yin, Z.; Shen, B.; Muzzio, M.; Yu, C.; Kim, Y. S.; Peterson, A. A.; More, K. L.; Zhu, H.; Sun, S., Hard-Magnet L10-CoPt Nanoparticles Advance Fuel Cell Catalysis. Joule 2019, 3 (1), 124-135.
49.Chen, L.; Zhu, J.; Xuan, C.; Xiao, W.; Xia, K.; Xia, W.; Lai, C.; Xin, H. L.; Wang, D., Effects of crystal phase and composition on structurally ordered Pt–Co–Ni/C ternary intermetallic electrocatalysts for the formic acid oxidation reaction. Journal of Materials Chemistry A 2018, 6 (14), 5848-5855.
50.Wang, X. X.; Hwang, S.; Pan, Y.-T.; Chen, K.; He, Y.; Karakalos, S.; Zhang, H.; Spendelow, J. S.; Su, D.; Wu, G., Ordered Pt3Co Intermetallic Nanoparticles Derived from Metal–Organic Frameworks for Oxygen Reduction. Nano Letters 2018, 18 (7), 4163-4171.
51.Kim, H. Y.; Kwon, T.; Ha, Y.; Jun, M.; Baik, H.; Jeong, H. Y.; Kim, H.; Lee, K.; Joo, S. H., Intermetallic PtCu Nanoframes as Efficient Oxygen Reduction Electrocatalysts. Nano Letters 2020, 20 (10), 7413-7421.
52.Huang, H.-C.; Chang, S.-T.; Hsu, H.-C.; Du, H.-Y.; Wang, C.-H.; Chen, L.-C.; Chen, K.-H., Pyrolysis of Iron–Vitamin B9 As a Potential Nonprecious Metal Electrocatalyst for Oxygen Reduction Reaction. ACS Sustainable Chemistry & Engineering 2017, 5 (4), 2897-2905.
53.Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P., Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357 (6350), 479.
54.Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J.-P., Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science 2009, 324 (5923), 71.
55.Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P., High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science 2011, 332 (6028), 443.
56.Samireddi, S.; Shown, I.; Shen, T.-H.; Huang, H.-C.; Wong, K.-T.; Chen, L.-C.; Chen, K.-H., Hybrid bimetallic-N4 electrocatalyst derived from a pyrolyzed ferrocene–Co-corrole complex for oxygen reduction reaction. Journal of Materials Chemistry A 2017, 5 (19), 9279-9286.
57.Zitolo, A.; Ranjbar-Sahraie, N.; Mineva, T.; Li, J.; Jia, Q.; Stamatin, S.; Harrington, G. F.; Lyth, S. M.; Krtil, P.; Mukerjee, S.; Fonda, E.; Jaouen, F., Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nature Communications 2017, 8 (1), 957.
58.Chen, S.; Zheng, Y.; Zhang, B.; Feng, Y.; Zhu, J.; Xu, J.; Zhang, C.; Feng, W.; Liu, T., Cobalt, Nitrogen-Doped Porous Carbon Nanosheet-Assembled Flowers from Metal-Coordinated Covalent Organic Polymers for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces 2019, 11 (1), 1384-1393.
59.Sun, T.; Zhao, S.; Chen, W.; Zhai, D.; Dong, J.; Wang, Y.; Zhang, S.; Han, A.; Gu, L.; Yu, R.; Wen, X.; Ren, H.; Xu, L.; Chen, C.; Peng, Q.; Wang, D.; Li, Y., Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proceedings of the National Academy of Sciences 2018, 115 (50), 12692.
60.Wu, Y.; Ge, L.; Veksha, A.; Lisak, G., Cobalt and nitrogen co-doped porous carbon/carbon nanotube hybrids anchored with nickel nanoparticles as high-performance electrocatalysts for oxygen reduction reactions. Nanoscale 2020, 12 (24), 13028-13033.
61.Sabhapathy, P.; Liao, C.-C.; Chen, W.-F.; Chou, T.-C.; Shown, I.; Sabbah, A.; Lin, Y.-G.; Lee, J.-F.; Tsai, M.-K.; Chen, K.-H.; Chen, L.-C., Highly efficient nitrogen and carbon coordinated N–Co–C electrocatalysts on reduced graphene oxide derived from vitamin-B12 for the hydrogen evolution reaction. Journal of Materials Chemistry A 2019, 7 (12), 7179-7185.
62.Ma, Y.; Kuhn, A. N.; Gao, W.; Al-Zoubi, T.; Du, H.; Pan, X.; Yang, H., Strong electrostatic adsorption approach to the synthesis of sub-three nanometer intermetallic platinum–cobalt oxygen reduction catalysts. Nano Energy 2021, 79, 105465.
63.Sharma, R.; Andersen, S. M., Quantification on Degradation Mechanisms of Polymer Electrolyte Membrane Fuel Cell Catalyst Layers during an Accelerated Stress Test. ACS Catalysis 2018, 8 (4), 3424-3434.
64.Castanheira, L.; Silva, W. O.; Lima, F. H. B.; Crisci, A.; Dubau, L.; Maillard, F., Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: Effect of the Carbon Structure, the Degradation Protocol, and the Gas Atmosphere. ACS Catalysis 2015, 5 (4), 2184-2194.
65.Macauley, N.; Papadias, D. D.; Fairweather, J.; Spernjak, D.; Langlois, D.; Ahluwalia, R.; More, K. L.; Mukundan, R.; Borup, R. L., Carbon Corrosion in PEM Fuel Cells and the Development of Accelerated Stress Tests. Journal of The Electrochemical Society 2018, 165 (6), F3148-F3160.
66.Liu, L.; Su, H.; Tang, F.; Zhao, X.; Liu, Q., Confined organometallic Au1Nx single-site as an efficient bifunctional oxygen electrocatalyst. Nano Energy 2018, 46, 110-116.
67.Xiao, M.; Zhu, J.; Li, G.; Li, N.; Li, S.; Cano, Z. P.; Ma, L.; Cui, P.; Xu, P.; Jiang, G.; Jin, H.; Wang, S.; Wu, T.; Lu, J.; Yu, A.; Su, D.; Chen, Z., A Single-Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angewandte Chemie International Edition 2019, 58 (28), 9640-9645.
68.Nave, M. I.; Kornev, K. G., Complexity of Products of Tungsten Corrosion: Comparison of the 3D Pourbaix Diagrams with the Experimental Data. Metallurgical and Materials Transactions A 2017, 48 (3), 1414-1424.
69.Bisen, O. Y.; Yadav, A. K.; Nanda, K. K., Self-Organized Single-Atom Tungsten Supported on the N-Doped Carbon Matrix for Durable Oxygen Reduction. ACS Applied Materials & Interfaces 2020, 12 (39), 43586-43595.
70.Chen, W.; Pei, J.; He, C.-T.; Wan, J.; Ren, H.; Wang, Y.; Dong, J.; Wu, K.; Cheong, W.-C.; Mao, J.; Zheng, X.; Yan, W.; Zhuang, Z.; Chen, C.; Peng, Q.; Wang, D.; Li, Y., Single Tungsten Atoms Supported on MOF-Derived N-Doped Carbon for Robust Electrochemical Hydrogen Evolution. Advanced Materials 2018, 30 (30), 1800396.
71.Chen, Z.; Gong, W.; Liu, Z.; Cong, S.; Zheng, Z.; Wang, Z.; Zhang, W.; Ma, J.; Yu, H.; Li, G.; Lu, W.; Ren, W.; Zhao, Z., Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity. Nano Energy 2019, 60, 394-403.
72.Zhu, E.; Li, Y.; Chiu, C.-Y.; Huang, X.; Li, M.; Zhao, Z.; Liu, Y.; Duan, X.; Huang, Y. J. N. R., In situ development of highly concave and composition-confined PtNi octahedra with high oxygen reduction reaction activity and durability. 2016, 9 (1), 149-157.
73.Choi, S.-I.; Xie, S.; Shao, M.; Odell, J. H.; Lu, N.; Peng, H.-C.; Protsailo, L.; Guerrero, S.; Park, J.; Xia, X.; Wang, J.; Kim, M. J.; Xia, Y., Synthesis and Characterization of 9 nm Pt–Ni Octahedra with a Record High Activity of 3.3 A/mgPt for the Oxygen Reduction Reaction. Nano Letters 2013, 13 (7), 3420-3425.
74.Guo, Y.-Z.; Yan, S.-Y.; Liu, C.-W.; Chou, T.-F.; Wang, J.-H.; Wang, K.-W., The enhanced oxygen reduction reaction performance on PtSn nanowires: the importance of segregation energy and morphological effects. Journal of Materials Chemistry A 2017, 5 (27), 14355-14364.
75.Cui, C.; Gan, L.; Li, H.-H.; Yu, S.-H.; Heggen, M.; Strasser, P., Octahedral PtNi Nanoparticle Catalysts: Exceptional Oxygen Reduction Activity by Tuning the Alloy Particle Surface Composition. Nano Letters 2012, 12 (11), 5885-5889.
76.Cui, C.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P., Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nature Materials 2013, 12 (8), 765-771.
77.Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K., Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure. Angewandte Chemie International Edition 2006, 45 (18), 2897-2901.
78.Wang, C.; Chi, M.; Li, D.; Strmcnik, D.; van der Vliet, D.; Wang, G.; Komanicky, V.; Chang, K.-C.; Paulikas, A. P.; Tripkovic, D.; Pearson, J.; More, K. L.; Markovic, N. M.; Stamenkovic, V. R., Design and Synthesis of Bimetallic Electrocatalyst with Multilayered Pt-Skin Surfaces. Journal of the American Chemical Society 2011, 133 (36), 14396-14403.
79.Caldwell, K. M.; Ramaker, D. E.; Jia, Q.; Mukerjee, S.; Ziegelbauer, J. M.; Kukreja, R. S.; Kongkanand, A., Spectroscopic in situ Measurements of the Relative Pt Skin Thicknesses and Porosities of Dealloyed PtMn (Ni, Co) Electrocatalysts. The Journal of Physical Chemistry C 2015, 119 (1), 757-765.
80.Han, B.; Carlton, C. E.; Kongkanand, A.; Kukreja, R. S.; Theobald, B. R.; Gan, L.; O'Malley, R.; Strasser, P.; Wagner, F. T.; Shao-Horn, Y., Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy & Environmental Science 2015, 8 (1), 258-266.
81.Jia, Q.; Li, J.; Caldwell, K.; Ramaker, D. E.; Ziegelbauer, J. M.; Kukreja, R. S.; Kongkanand, A.; Mukerjee, S., Circumventing Metal Dissolution Induced Degradation of Pt-Alloy Catalysts in Proton Exchange Membrane Fuel Cells: Revealing the Asymmetric Volcano Nature of Redox Catalysis. ACS Catalysis 2016, 6 (2), 928-938.
82.Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H.; Toney, M. F.; Nilsson, A., Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chemistry 2010, 2 (6), 454-460.
83.Bu, L.; Zhang, N.; Guo, S.; Zhang, X.; Li, J.; Yao, J.; Wu, T.; Lu, G.; Ma, J.-Y.; Su, D.; Huang, X., Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354 (6318), 1410.
84.Rizo, R.; Arán-Ais, R. M.; Padgett, E.; Muller, D. A.; Lázaro, M. J.; Solla-Gullón, J.; Feliu, J. M.; Pastor, E.; Abruña, H. D., Pt-Richcore/Sn-Richsubsurface/Ptskin Nanocubes As Highly Active and Stable Electrocatalysts for the Ethanol Oxidation Reaction. Journal of the American Chemical Society 2018, 140 (10), 3791-3797.
85.Dai, Y.; Ou, L.; Liang, W.; Yang, F.; Liu, Y.; Chen, S., Efficient and Superiorly Durable Pt-Lean Electrocatalysts of Pt−W Alloys for the Oxygen Reduction Reaction. The Journal of Physical Chemistry C 2011, 115 (5), 2162-2168.
86.Li, L.; Plessow, P. N.; Rieger, M.; Sauer, S.; Sánchez-Carrera, R. S.; Schaefer, A.; Abild-Pedersen, F., Modeling the Migration of Platinum Nanoparticles on Surfaces Using a Kinetic Monte Carlo Approach. The Journal of Physical Chemistry C 2017, 121 (8), 4261-4269.
87.Rinaldo, S. G.; Stumper, J.; Eikerling, M., Physical Theory of Platinum Nanoparticle Dissolution in Polymer Electrolyte Fuel Cells. The Journal of Physical Chemistry C 2010, 114 (13), 5773-5785.
88.Topalov, A. A.; Cherevko, S.; Zeradjanin, A. R.; Meier, J. C.; Katsounaros, I.; Mayrhofer, K. J. J., Towards a comprehensive understanding of platinum dissolution in acidic media. Chemical Science 2014, 5 (2), 631-638.
89.Cherevko, S.; Keeley, G. P.; Geiger, S.; Zeradjanin, A. R.; Hodnik, N.; Kulyk, N.; Mayrhofer, K. J. J., Dissolution of Platinum in the Operational Range of Fuel Cells. 2015, 2 (10), 1471-1478.
90.Zana, A.; Speder, J.; Reeler, N. E. A.; Vosch, T.; Arenz, M., Investigating the corrosion of high surface area carbons during start/stop fuel cell conditions: A Raman study. Electrochimica Acta 2013, 114, 455-461.
91.Castanheira, L.; Dubau, L.; Mermoux, M.; Berthomé, G.; Caqué, N.; Rossinot, E.; Chatenet, M.; Maillard, F., Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: From Model Experiments to Real-Life Operation in Membrane Electrode Assemblies. ACS Catalysis 2014, 4 (7), 2258-2267.
92.Xia, B. Y.; Wang, J. N.; Teng, S. J.; Wang, X. X., Durability Improvement of a Pt Catalyst with the Use of a Graphitic Carbon Support. Chemistry – A European Journal 2010, 16 (28), 8268-8274.
93.Wang, J.; Yin, G.; Shao, Y.; Wang, Z.; Gao, Y., Investigation of Further Improvement of Platinum Catalyst Durability with Highly Graphitized Carbon Nanotubes Support. The Journal of Physical Chemistry C 2008, 112 (15), 5784-5789.
94.Sneed, B. T.; Cullen, D. A.; Reeves, K. S.; Dyck, O. E.; Langlois, D. A.; Mukundan, R.; Borup, R. L.; More, K. L., 3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports. ACS Applied Materials & Interfaces 2017, 9 (35), 29839-29848.
95.Lekhal, A.; Glasser, B. J.; Khinast, J. G., Impact of drying on the catalyst profile in supported impregnation catalysts. Chemical Engineering Science 2001, 56 (15), 4473-4487.
96.Kocha, S. S.; Shinozaki, K.; Zack, J. W.; Myers, D. J.; Kariuki, N. N.; Nowicki, T.; Stamenkovic, V.; Kang, Y.; Li, D.; Papageorgopoulos, D., Best Practices and Testing Protocols for Benchmarking ORR Activities of Fuel Cell Electrocatalysts Using Rotating Disk Electrode. Electrocatalysis 2017, 8 (4), 366-374.
97.Shinozaki, K.; Zack, J. W.; Richards, R. M.; Pivovar, B. S.; Kocha, S. S., Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique: I. Impact of Impurities, Measurement Protocols and Applied Corrections. 2015, 162 (10), F1144-F1158.
98.Shinozaki, K.; Zack, J. W.; Pylypenko, S.; Pivovar, B. S.; Kocha, S. S., Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique: II. Influence of Ink Formulation, Catalyst Layer Uniformity and Thickness. 2015, 162 (12), F1384-F1396.
99.Garsany, Y.; Singer, I. L.; Swider-Lyons, K. E., Impact of film drying procedures on RDE characterization of Pt/VC electrocatalysts. Journal of Electroanalytical Chemistry 2011, 662 (2), 396-406.
100.Biegler, T.; Rand, D. A. J.; Woods, R., Limiting oxygen coverage on platinized platinum; Relevance to determination of real platinum area by hydrogen adsorption. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1971, 29 (2), 269-277.
101.Li, W.; Lane, A. M., Resolving the HUPD and HOPD by DEMS to determine the ECSA of Pt electrodes in PEM fuel cells. Electrochemistry Communications 2011, 13 (9), 913-916.
102.Chen, W.; Xiang, Q.; Peng, T.; Song, C.; Shang, W.; Deng, T.; Wu, J., Reconsidering the Benchmarking Evaluation of Catalytic Activity in Oxygen Reduction Reaction. iScience 2020, 23 (10), 101532.
103.Hayakawa, T.; Yasumatsu, H.; Kondow, T., Deposition of size-selected metal clusters on inert graphite surface with atomic anchors. The European Physical Journal D 2009, 52 (1), 95-98.
104.Yasumatsu, H.; Tohei, T.; Ikuhara, Y., Determination of Exact Positions of Individual Tungsten Atoms in Unisize Tungsten Oxide Clusters Supported on Carbon Substrate by HAADF-STEM Observation. The Journal of Physical Chemistry C 2014, 118 (3), 1706-1711.
105.Melke, J.; Peter, B.; Habereder, A.; Ziegler, J.; Fasel, C.; Nefedov, A.; Sezen, H.; Wöll, C.; Ehrenberg, H.; Roth, C., Metal–Support Interactions of Platinum Nanoparticles Decorated N-Doped Carbon Nanofibers for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces 2016, 8 (1), 82-90.
106.Wang, G.; Parrondo, J.; He, C.; Li, Y.; Ramani, V., Pt/C/Ni(OH)2Bi-Functional Electrocatalyst for Enhanced Hydrogen Evolution Reaction Activity under Alkaline Conditions. Journal of The Electrochemical Society 2017, 164 (13), F1307-F1315.
107.Kim, J. H.; Cheon, J. Y.; Shin, T. J.; Park, J. Y.; Joo, S. H., Effect of surface oxygen functionalization of carbon support on the activity and durability of Pt/C catalysts for the oxygen reduction reaction. Carbon 2016, 101, 449-457.
108.Croy, J. R.; Mostafa, S.; Hickman, L.; Heinrich, H.; Cuenya, B. R., Bimetallic Pt-Metal catalysts for the decomposition of methanol: Effect of secondary metal on the oxidation state, activity, and selectivity of Pt. Applied Catalysis A: General 2008, 350 (2), 207-216.
109.Liang, Y.; Zhang, H.; Zhong, H.; Zhu, X.; Tian, Z.; Xu, D.; Yi, B., Preparation and characterization of carbon-supported PtRuIr catalyst with excellent CO-tolerant performance for proton-exchange membrane fuel cells. Journal of Catalysis 2006, 238 (2), 468-476.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *