帳號:guest(3.129.218.118)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江心立
作者(外文):Chiang, Hsin-Li
論文名稱(中文):開發結合式氣溶膠分析技術作為即時鑑定奈米粒子及其應用
論文名稱(外文):Aerosol-Based Coupling Analyses for Nanoparticle Synthesis and Applications
指導教授(中文):蔡德豪
指導教授(外文):Tsai, De-Hao
口試委員(中文):汪上曉
呂世源
口試委員(外文):Wong, David Shan-Hill
Lu, Shin-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032543
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:71
中文關鍵詞:氣溶膠奈米粒子奈米觸媒膠體電移動度轉酯化反應紅外光粒徑化學組成數量質量奈米碳材
外文關鍵詞:Aerosolnanoparticlenanocatalystcolloidmobilitytransesterificationinfraredparticle sizechemical compositionnumbermassnanocarbon
相關次數:
  • 推薦推薦:0
  • 點閱點閱:599
  • 評分評分:*****
  • 下載下載:18
  • 收藏收藏:0
本研究以氣溶膠合成法 (the aerosol-based synthesis approach) 為基礎,開發結合式即時分析技術作為鑑定氣溶膠相奈米粒子的方法。藉由氣相奈米粒子流動分析儀 (Differential mobility analysis,DMA) 結合傅立葉紅外光譜儀 (Fourier transform infrared spectroscopy,FTIR) 即時監測以氣溶膠合成法製備功能性奈米粒子的過程,並透過量測粒徑分佈、數量與質量濃度以及對應成分變化等性質,進一步優化相關製備條件。
首先,在本研究的第一部份,我們選用氧化鈣奈米粒子 (calcium oxide nanoparticle,CaO-NP) 作為代表性材料,其在3-(3,5-二叔丁基-4-羥基苯基)丙酸甲酯轉酯化反應中具有很好的鹼催化能力。我們以氣溶膠自組裝法合成CaO-NP,利用DMA/FTIR即時定量分析技術,我們可以直接定量在不同實驗參數下 (例如:前驅物濃度、煅燒溫度) 所合成的CaO-NP的粒徑分佈、數量及質量濃度以及其化學組成變化,此方法在CaO-NP合成過程中提供即時監控的能力。結果顯示,利用我們合成的CaO-NP對轉酯化反應進行催化,其反應效率有顯著的提升,其中與不加入觸媒的情況相比轉化率最高可提升19倍。本研究驗證了以氣溶膠合成法為基礎利用DMA/FTIR即時監測功能性奈米粒子的合成過程,並有效應用於觸媒的合成與開發。
在研究的第二部分中,我們選用奈米碳材(carbon nanomaterials, CNs) 作為代表性材料,其在電化學應用中為良好的電極材料。我們藉由ES-DMA與ATR-FTIR鑑定CNs膠體溶液,且透過氣溶膠自組裝法合成碳黑奈米粒子並利用結合程溫式DMA/FTIR分析技術定量分析碳黑奈米粒子的電移動度粒徑分布、數量濃度和質量濃度關係。本研究驗證了以氣溶膠合成法為基礎即時分析碳黑奈米粒子的可行性,由此分析方法所得到的資訊,對於分析以碳黑為基底摻雜銀奈米粒子之混成式奈米材料(C-Ag-NP)上是很有用的。
In this study, we develop a real-time quantitative analytical approach, differential mobility analysis coupled to gas-phase Fourier-transform infrared spectroscopy (DMA/FTIR) for an aerosol spray-based synthesis of functional nanoparticles. The mobility size distributions, number concentrations, and chemical composition of functional nanoparticles can be characterized by DMA/FTIR to provide the optimization of material properties for applications.
In the first part of this work, calcium oxide nanoparticle (CaO-NP) is chosen as the representative functional nanoparticle. The results show that a direct gas-phase characterization of the temperature-dependent transformation of aerosol spray to CaO-NP was achieved using DMA/FTIR. The changes in mobility size distributions and number and mass concentrations of the aerosol spray versus the precursor concentration were successfully quantified in the aerosol state. The synthesized CaO-NP demonstrated a remarkably high catalytic activity in colloidal form toward the transesterification of methyl hydroxyphenyl propionate (MHPP), the model catalytic application in the study. A maximum of ≈19 times of the MHPP conversion was achieved in comparison to the results without CaO-NP. Our work presents a proof of concept for aerosol spray-based controlled synthesis of functional nanoparticles with real-time monitoring using DMA/FTIR for applications in catalyst development.
In the second part of this work, carbon nanomaterials (CNs) are chosen as the representative functional nanoparticles. The colloidal CNs solution is characterized using electrospray-coupled DMA (ES-DMA) and attenuated total reflectance FTIR (ATR-FTIR). The mobility size distribution, number concentration and mass concentration of carbon nanoparticles are quantitatively analyzed by the aerosol-based temperature-programmed DMA/FTIR. Our work is demonstrated for the feasibility of the aerosol-based real-time analysis of carbon nanoparticles and is very useful for preparing the hybrid carbon-silver nanoparticle (C-Ag-NP).
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第1章 緒論 1
1-1 功能性奈米材料 1
1-2 氣溶膠製程 (Aerosol-based processing) 2
1-3 研究目的 4
第2章 實驗方法 7
2-1 實驗藥品 7
2-2 實驗儀器 8
2-2.1 氣相奈米粒子流動分析儀 (Differential Mobility Analysis, DMA) 8
2-2.2 傅立葉紅外光譜儀(Fourier Transform Infrared Spectroscopy, FTIR) 10
2-2.3 X光繞射儀 (X-ray Diffraction, XRD) 11
2-2.4 熱重量分析儀 (Thermal Gravimetric Analysis, TGA) 11
2-2.5 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 與氣溶膠採樣器(aerosol sampler) 12
2-2.6 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 13
2-2.7 原子力顯微鏡 (Atomic Force Microscope, AFM) 14
2-2.8 氣相層析儀 (Gas Chromatography, GC) 15
2-2.9 化學吸附分析儀 (Chemisorption Analyzer) 16
2-2.10 界面電位分析儀 (Zeta Potential Analyzer) 17
2-3 實驗步驟 18
2-3.1 氣霧化奈米粒子之合成 18
2-3.2 即時氣溶膠分析 20
2-3.3 轉酯化反應 22
2-3.4 製備奈米碳材膠體溶液 24
第3章 結果與討論 26
3-1 以氣溶膠合成法結合DMA與FTIR分析氧化鈣奈米粒子及其應用 26
3-1.1 決定合成CaO之煅燒溫度 26
3-1.2 前驅物水溶液濃度對CaO-NP的影響 37
3-1.3 CaO在轉酯化反應上之催化效果 44
3-2 以氣溶膠合成法結合DMA與FTIR分析碳黑奈米粒子 54
3-2.1 奈米碳材膠體溶液之製備與分析 54
3-2.2 結合DMA/FTIR定量分析氣溶膠相碳黑奈米粒子 57
第4章 結論 63
第5章 未來展望 64
第6章 參考文獻 66

1. Suresh, S., Semiconductor nanomaterials, methods and applications: a review. Nanosci. Nanotechnol, 2013. 3(3): p. 62-74.
2. Yang, Q., G. Liu, and Y. Liu, Perovskite-type oxides as the catalyst precursors for preparing supported metallic nanocatalysts: a review. Industrial & Engineering Chemistry Research, 2017. 57(1): p. 1-17.
3. Bang, J.H. and K.S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials. Advanced materials, 2010. 22(10): p. 1039-1059.
4. Li, Y., J. Shen, Y. Hu, S. Qiu, G. Min, Z. Song, Z. Sun, and C. Li, General flame approach to chainlike MFe2O4 spinel (M= Cu, Ni, Co, Zn) nanoaggregates for reduction of nitroaromatic compounds. Industrial & Engineering Chemistry Research, 2015. 54(40): p. 9750-9757.
5. Ogel, E., M. Casapu, D. Doronkin, R. Popescu, H. Störmer, C. Mechler, G. Marzun, S. Barcikowski, M. Türk, and J.-D. Grunwaldt, Impact of Preparation Method and Hydrothermal Aging on Particle Size Distribution of Pt/γ-Al2O3 and Its Performance in CO and NO Oxidation. The Journal of Physical Chemistry C, 2019. 123(9): p. 5433-5446.
6. Harra, J., S. Kujanpää, J. Haapanen, P. Juuti, J.M. Mäkelä, L. Hyvärinen, and M. Honkanen, Aerosol analysis of residual and nanoparticle fractions from spray pyrolysis of poorly volatile precursors. AIChE Journal, 2017. 63(3): p. 881-892.
7. Lohse, S.E. and C.J. Murphy, Applications of colloidal inorganic nanoparticles: from medicine to energy. Journal of the American Chemical Society, 2012. 134(38): p. 15607-15620.
8. Heuer-Jungemann, A., N. Feliu, I. Bakaimi, M. Hamaly, A. Alkilany, I. Chakraborty, A. Masood, M.F. Casula, A. Kostopoulou, and E. Oh, The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chemical reviews, 2019. 119(8): p. 4819-4880.
9. Wang, H.-L., C.-Y. Hsu, K.C. Wu, Y.-F. Lin, and D.-H. Tsai, Functional nanostructured materials: Aerosol, aerogel, and de novo synthesis to emerging energy and environmental applications. Advanced Powder Technology, 2019.
10. Ogi, T., A.B.D. Nandiyanto, and K. Okuyama, Nanostructuring strategies in functional fine-particle synthesis towards resource and energy saving applications. Advanced Powder Technology, 2014. 25(1): p. 3-17.
11. Debecker, D.P., S. Le Bras, C. Boissière, A. Chaumonnot, and C. Sanchez, Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts. Chemical Society Reviews, 2018. 47(11): p. 4112-4155.
12. Chang, H.-Y., G.-H. Lai, and D.-H. Tsai, Aerosol route synthesis of Ni-CeO2-Al2O3 hybrid nanoparticle cluster for catalysis of reductive amination of polypropylene glycol. Advanced Powder Technology, 2019. 30(10): p. 2293-2298.
13. Huang, W., S. Tang, H. Zhao, and S. Tian, Activation of Commercial CaO for Biodiesel Production from Rapeseed Oil Using a Novel Deep Eutectic Solvent. Industrial & Engineering Chemistry Research, 2013. 52(34): p. 11943-11947.
14. Omraei, M., S. Sheibani, S. Sadrameli, and J. Towfighi, Preparation of biodiesel using KOH-MWCNT catalysts: an optimization study. Industrial & Engineering Chemistry Research, 2013. 52(5): p. 1829-1835.
15. Chen, L.-T., U.-H. Liao, J.-W. Chang, S.-Y. Lu, and D.-H. Tsai, Aerosol-Based Self-Assembly of a Ag–ZnO Hybrid Nanoparticle Cluster with Mechanistic Understanding for Enhanced Photocatalysis. Langmuir, 2018. 34(17): p. 5030-5039.
16. Tsai, T.-Y., H.-L. Wang, Y.-C. Chen, W.-C. Chang, J.-W. Chang, S.-Y. Lu, and D.-H. Tsai, Noble metal-titania hybrid nanoparticle clusters and the interaction to proteins for photo-catalysis in aqueous environments. Journal of colloid and interface science, 2017. 490: p. 802-811.
17. Lee, F.-C., Y.-F. Lu, F.-C. Chou, C.-F. Cheng, R.-M. Ho, and D.-H. Tsai, Mechanistic study of gas-phase controlled synthesis of copper oxide-based hybrid nanoparticle for CO oxidation. The Journal of Physical Chemistry C, 2016. 120(25): p. 13638-13648.
18. Lai, G.-H., J.H. Lak, and D.-H. Tsai, Hydrogen Production via Low-Temperature Steam–Methane Reforming Using Ni–CeO2–Al2O3 Hybrid Nanoparticle Clusters as Catalysts. ACS Applied Energy Materials, 2019. 2(11): p. 7963-7971.
19. Yang, T., L. Wei, L. Jing, J. Liang, X. Zhang, M. Tang, M.J. Monteiro, Y. Chen, Y. Wang, and S. Gu, Dumbbell‐Shaped Bi‐Component Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis. Angewandte Chemie International Edition, 2017. 56(29): p. 8459-8463.
20. Zhao, Y., Y. Li, H. Pang, C. Yang, and T. Ngai, Controlled synthesis of metal-organic frameworks coated with noble metal nanoparticles and conducting polymer for enhanced catalysis. Journal of colloid and interface science, 2019. 537: p. 262-268.
21. Gao, Y., W. Sun, W. Yang, and Q. Li, Creation of Pd/Al2O3 catalyst by a spray process for fixed bed reactors and its effective removal of aqueous bromate. Scientific reports, 2017. 7: p. 41797.
22. Liu, M., X. Chen, Z. Yang, Z. Xu, L. Hong, and T. Ngai, Tunable pickering emulsions with environmentally responsive hairy silica nanoparticles. ACS applied materials & interfaces, 2016. 8(47): p. 32250-32258.
23. Pati, R.K., I.C. Lee, S. Hou, O. Akhuemonkhan, K.J. Gaskell, Q. Wang, A.I. Frenkel, D. Chu, L.G. Salamanca-Riba, and S.H. Ehrman, Flame Synthesis of Nanosized Cu− Ce− O, Ni− Ce− O, and Fe− Ce− O Catalysts for the Water-Gas Shift (WGS) Reaction. ACS applied materials & interfaces, 2009. 1(11): p. 2624-2635.
24. Kubo, M., R. Moriyama, and M. Shimada, Facile fabrication of HKUST-1 nanocomposites incorporating Fe3O4 and TiO2 nanoparticles by a spray-assisted synthetic process and their dye adsorption performances. Microporous and Mesoporous Materials, 2019. 280: p. 227-235.
25. Kubo, M., T. Saito, and M. Shimada, Evaluation of the parameters utilized for the aerosol-assisted synthesis of HKUST-1. Microporous and Mesoporous Materials, 2017. 245: p. 126-132.
26. Nakagawa, M., S. Watanabe, Y. Imura, K.-H. Wang, and T. Kawai, One-Pot Synthesis of Pd Nanorings Using a Soft Template of Spindle-Shaped Amphiphilic Molecular Assembly. The Journal of Physical Chemistry C, 2018. 122(40): p. 23165-23171.
27. Planeix, J., N. Coustel, B. Coq, V. Brotons, P. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, and P. Ajayan, Application of carbon nanotubes as supports in heterogeneous catalysis. Journal of the American Chemical Society, 1994. 116(17): p. 7935-7936.
28. Ogi, T., D. Hidayat, F. Iskandar, A. Purwanto, and K. Okuyama, Direct synthesis of highly crystalline transparent conducting oxide nanoparticles by low pressure spray pyrolysis. Advanced Powder Technology, 2009. 20(2): p. 203-209.
29. Sayed, E., C. Karavasili, K. Ruparelia, R. Haj-Ahmad, G. Charalambopoulou, T. Steriotis, D. Giasafaki, P. Cox, N. Singh, and L.-P.N. Giassafaki, Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: in vitro and ex vivo evaluation. Journal of controlled release, 2018. 278: p. 142-155.
30. Arutanti, O., A.F. Arif, R. Balgis, T. Ogi, K. Okuyama, and F. Iskandar, Tailored synthesis of macroporous Pt/WO3 photocatalyst with nanoaggregates via flame assisted spray pyrolysis. AIChE Journal, 2016. 62(11): p. 3864-3873.
31. Mahrukh, M., A. Kumar, S. Gu, and S. Kamnis, Computational Development of a Novel Aerosol Synthesis Technique for Production of Dense and Nanostructured Zirconia Coating. Industrial & Engineering Chemistry Research, 2016. 55(28): p. 7679-7695.
32. Balgis, R., A.F. Arif, T. Mori, T. Ogi, K. Okuyama, and G.M. Anilkumar, Morphology‐dependent electrocatalytic activity of nanostructured Pt/C particles from hybrid aerosol–colloid process. AIChE Journal, 2016. 62(2): p. 440-450.
33. Nandiyanto, A.B.D., T. Ogi, W.-N. Wang, L. Gradon, and K. Okuyama, Template-assisted spray-drying method for the fabrication of porous particles with tunable structures. Advanced Powder Technology, 2019. 30(12): p. 2908-2924.
34. Hirano, T., J. Kikkawa, F.G. Rinaldi, K. Kitawaki, D. Shimokuri, E. Tanabe, and T. Ogi, Tubular Flame Combustion for Nanoparticle Production. Industrial & Engineering Chemistry Research, 2019. 58(17): p. 7193-7199.
35. Cho, J.S., J.C. Lee, and S.H. Rhee, Effect of precursor concentration and spray pyrolysis temperature upon hydroxyapatite particle size and density. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2016. 104(2): p. 422-430.
36. Nandiyanto, A.B.D. and K. Okuyama, Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Advanced Powder Technology, 2011. 22(1): p. 1-19.
37. Wang, H.-L., H. Yeh, Y.-C. Chen, Y.-C. Lai, C.-Y. Lin, K.-Y. Lu, R.-M. Ho, B.-H. Li, C.-H. Lin, and D.-H. Tsai, Thermal Stability of Metal–Organic Frameworks and Encapsulation of CuO Nanocrystals for Highly Active Catalysis. ACS applied materials & interfaces, 2018. 10(11): p. 9332-9341.
38. Wang, H., G. Jian, W. Zhou, J. DeLisio, V. Lee, and M. Zachariah, Metal iodate-based energetic composites and their combustion and biocidal performance. ACS applied materials & interfaces, 2015. 7(31): p. 17363-17370.
39. Wang, H., R.J. Jacob, J.B. DeLisio, and M.R. Zachariah, Assembly and encapsulation of aluminum NP's within AP/NC matrix and their reactive properties. Combustion and Flame, 2017. 180: p. 175-183.
40. Li, M., J. Tan, M.J. Tarlov, and M.R. Zachariah, Absolute Quantification Method for Protein Concentration. Analytical chemistry, 2014. 86(24): p. 12130-12137.
41. Tan, J., J. Liu, M. Li, H. El Hadri, V.A. Hackley, and M.R. Zachariah, Electrospray-differential mobility hyphenated with single particle inductively coupled plasma mass spectrometry for characterization of nanoparticles and their aggregates. Analytical chemistry, 2016. 88(17): p. 8548-8555.
42. Watcharathamrongkul, K., B. Jongsomjit, and M. Phisalaphong, Calcium oxide based catalysts for ethanolysis of soybean oil. Sonklanakarin Journal of Science and Technology, 2010. 32(6): p. 627.
43. Pasupulety, N., K. Gunda, Y. Liu, G.L. Rempel, and F.T. Ng, Production of biodiesel from soybean oil on CaO/Al2O3 solid base catalysts. Applied Catalysis A: General, 2013. 452: p. 189-202.
44. Kouzu, M., T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka, and J. Hidaka, Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel, 2008. 87(12): p. 2798-2806.
45. Oh, J., B. Sreedhar, M.E. Donaldson, T.C. Frank, A.K. Schultz, A.S. Bommarius, and Y. Kawajiri, Transesterification of propylene glycol methyl ether in chromatographic reactors using anion exchange resin as a catalyst. Journal of Chromatography A, 2016. 1466: p. 84-95.
46. Song, Z., B. Subramaniam, and R.V. Chaudhari, Kinetic Study of CaO-Catalyzed Transesterification of Cyclic Carbonates with Methanol. Industrial & Engineering Chemistry Research, 2018. 57(44): p. 14977-14987.
47. Shieh, Y.-T., G.-L. Liu, H.-H. Wu, and C.-C. Lee, Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media. Carbon, 2007. 45(9): p. 1880-1890.
48. Wang, N., S. Pandit, L. Ye, M. Edwards, V. Mokkapati, M. Murugesan, V. Kuzmenko, C. Zhao, F. Westerlund, and I. Mijakovic, Efficient surface modification of carbon nanotubes for fabricating high performance CNT based hybrid nanostructures. Carbon, 2017. 111: p. 402-410.
49. Mazov, I., V.L. Kuznetsov, I.A. Simonova, A.I. Stadnichenko, A.V. Ishchenko, A.I. Romanenko, E.N. Tkachev, and O.B. Anikeeva, Oxidation behavior of multiwall carbon nanotubes with different diameters and morphology. Applied Surface Science, 2012. 258(17): p. 6272-6280.
50. Gómez, S., N.M. Rendtorff, E.F. Aglietti, Y. Sakka, and G. Suárez, Surface modification of multiwall carbon nanotubes by sulfonitric treatment. Applied Surface Science, 2016. 379: p. 264-269.
51. Guha, S., M. Li, M.J. Tarlov, and M.R. Zachariah, Electrospray–differential mobility analysis of bionanoparticles. Trends in biotechnology, 2012. 30(5): p. 291-300.
52. Tai, J.-T., Y.-C. Lai, J.-H. Yang, H.-C. Ho, H.-F. Wang, R.-M. Ho, and D.-H. Tsai, Quantifying Nanosheet Graphene Oxide Using Electrospray-Differential Mobility Analysis. Analytical Chemistry, 2015. 87(7): p. 3884-3889.
53. Tai, J.-T., C.-S. Lai, H.-C. Ho, Y.-S. Yeh, H.-F. Wang, R.-M. Ho, and D.-H. Tsai, Protein–Silver Nanoparticle Interactions to Colloidal Stability in Acidic Environments. Langmuir, 2014. 30(43): p. 12755-12764.
54. Kulkarni, P., P.A. Baron, and K. Willeke, Aerosol measurement: principles, techniques, and applications. 2011: John Wiley & Sons.
55. Giessibl, F.J., Principle of nc-AFM, in Noncontact atomic force microscopy. 2002, Springer. p. 11-46.
56. Atamny, F. and A. Baiker, Direct imaging of the tip shape by AFM. Surface science, 1995. 323(3): p. L314-L318.
57. Berg, J.C., An introduction to interfaces & colloids: the bridge to nanoscience. 2010: World Scientific.
58. El-Wassefy, N., F. Reicha, and N. Aref, Electro-chemical deposition of nano hydroxyapatite-zinc coating on titanium metal substrate. International journal of implant dentistry, 2017. 3(1): p. 39.
59. Hudson, P.K., J. Schwarz, J. Baltrusaitis, E.R. Gibson, and V.H. Grassian, A spectroscopic study of atmospherically relevant concentrated aqueous nitrate solutions. The Journal of Physical Chemistry A, 2007. 111(4): p. 544-548.
60. Sicsic, D., F. Balbaud‐Célérier, and B. Tribollet, Mechanism of nitric acid reduction and kinetic modelling. European Journal of Inorganic Chemistry, 2014. 2014(36): p. 6174-6184.
61. Kalinkin, A., E. Kalinkina, O. Zalkind, and T. Makarova, Chemical interaction of calcium oxide and calcium hydroxide with CO2 during mechanical activation. Inorganic Materials, 2005. 41(10): p. 1073-1079.
62. Voorhees, P.W., The theory of Ostwald ripening. Journal of Statistical Physics, 1985. 38(1-2): p. 231-252.
63. Hinds, W.C., Aerosol technology: properties, behavior, and measurement of airborne particles. 1999: John Wiley & Sons.
64. Hubbard, C.R. and R.L. Snyder, RIR-measurement and use in quantitative XRD. Powder Diffraction, 1988. 3(2): p. 74-77.
65. Ren, X., D. Shao, S. Yang, J. Hu, G. Sheng, X. Tan, and X. Wang, Comparative study of Pb (II) sorption on XC-72 carbon and multi-walled carbon nanotubes from aqueous solutions. Chemical engineering journal, 2011. 170(1): p. 170-177.
66. Eguizabal, A., L. Uson, V. Sebastian, J.L. Hueso, and M.P. Pina, Efficient and facile tuning of Vulcan XC72 with ultra-small Pt nanoparticles for electrocatalytic applications. RSC advances, 2015. 5(110): p. 90691-90697.
67. Tang, S., L. Sui, Z. Dai, Z. Zhu, and H. Huangfu, High supercapacitive performance of Ni (OH)2/XC-72 composite prepared by microwave-assisted method. RSC Advances, 2015. 5(54): p. 43164-43171.
68. Jiang, X., S. Li, G. Xiang, Q. Li, L. Fan, L. He, and K. Gu, Determination of the acid values of edible oils via FTIR spectroscopy based on the OH stretching band. Food chemistry, 2016. 212: p. 585-589.
69. Court, R.W. and M.A. Sephton, Quantitative flash pyrolysis Fourier transform infrared spectroscopy of organic materials. Analytica Chimica Acta, 2009. 639(1): p. 62-66.
70. Toy, R., E. Hayden, C. Shoup, H. Baskaran, and E. Karathanasis, The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology, 2011. 22(11): p. 115101.
71. Guo, J., A. Hsu, D. Chu, and R. Chen, Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions. The Journal of Physical Chemistry C, 2010. 114(10): p. 4324-4330.
72. Elzey, S., D.-H. Tsai, L.Y. Lee, M.R. Winchester, M.E. Kelley, and V.A. Hackley, Real-time size discrimination and elemental analysis of gold nanoparticles using ES-DMA coupled to ICP-MS. Analytical and bioanalytical chemistry, 2013. 405(7): p. 2279-2288.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *