帳號:guest(18.118.226.109)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林士瑋
作者(外文):Lin, Shi-Wei
論文名稱(中文):利用微波加熱方法合成離子液體
論文名稱(外文):Microwave-assisted Synthesis of Ionic Liquids
指導教授(中文):汪上曉
指導教授(外文):Wong, Shan-Hill
口試委員(中文):趙賢文
張光欽
口試委員(外文):Zhao, Xian-Wen
Zhang, Kuang-Chin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032536
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:61
中文關鍵詞:微波輔助離子液體烷基化反應製程優化
外文關鍵詞:Microwave-assistedAlkylationIonic liquidOptimization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1065
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
微波加熱相較於一般加熱能更有效的使用能源並縮短反應時間,對於微波相關的研究也越來越多。本研究主要是藉由合成1-甲基-3-丙基氯化咪唑(PMIC)與1-甲基-3-丁基氯化咪唑(BMIC)探討微波室溫離子液體造成的效果,並放大至公斤級製程且將產率提升至90%以上。首先利用CEM Corporation研發的微波反應器Discover Microwave Synthesizer嘗試合成Small-Scale的BMIC 0.025 mole,總重4.56 g,輕物質鹵化烷採1.1過量反應,總反應時間30 min,在加熱區間使用Power to Time模式,功率為300 W,待溫度到達150°C時採用固定溫度模式加熱,最後使用HPLC分析,產率可達95.5%。接下來使用與物理所合作研發的Bio-diesel Microwave Reactor進行Large-scale公斤級研究,總莫耳數分別為5 mole與10 mole,總重為919.6 g與1839.2 g,在反應初期使用1500 W加熱,使溫度保持在150°C,加熱時間為150 min,產率可達96.9%與93.5%。在成功合成BMIC後,以同樣製程方法合成PMIC,Small-Scale產率可達94.7%,Large-scale 反應5 mole的產率為96.8%,10 mole產率則是92.1%。
從實驗結果可以發現:高壓系統下的反應效率高於常壓系統;於加熱初期微波能量使用效率最高,並隨著反應進行下降;計算Small-scale與Large-scale之EFF發現隨著反應總重增加數值減小,代表反應單位反應物所需能量下降,可以推斷微波對於Scale-up製程有顯著的優化效果。
Microwave heating have numerous advantages such as consume less energy than conventional heating and could reduce the reaction time. There are more and more researches on microwave heating. In this study, the effects of microwave synthesis of room temperature ionic liquids were investigated by synthesizing 1-methyl-3-propylimidazole chloride (PMIC) and 1-methyl-3-butylimidazole chloride (BMIC) Moreover, I’ll scale up to the kg-scale and increase the yield to over 90%. Selecting the Discover Microwave Synthesizer, a microwave reactor designed by CEM Corporation to synthesize small-scale BMIC 0.025 mole, with a total weight of 4.56 g, and a light substance with an excess ratio of 1.1. The total reaction time is 30 min. Power to Time mode is used in the heating zone. The power is 300 W, when the temperature reaches 150°C, it is changed to the Fixed Temp mode, and finally analyzed by HPLC. The yield can reach 95.5%. Next, the bio-diesel microwave reactor designed in collaboration with the Institute of Physics was used to manufacture large-scale ionic liquid. The total moles were 5 mole and 10 mole, and the total weight was 919.6 g and 1839.2 g. At the beginning of the reaction, 1500 W heating was set and kept the temperature at 150 °C, reaction time is 150 min. The yield can reach 96.9% and 93.5%. After successfully synthesizing BMIC, PMIC was synthesized by the same process but the reaction temperature decreased from 150°C to 120°C. The small-scale yield was up to 94.7%. The yield of large-scale reaction 5 mole at 96.8% and 10 mole yields at 92.1%.
According to the results, it can be found that the reaction efficiency under the high-pressure system is higher than the normal pressure system; the microwave energy efficiency is highest at the initial stage of heating, and decreases as the reaction proceeds; calculating the EFF of different scales found that with the total weight of the reaction increase in the value decreases, which means that the microwave energy required per unit of reactant decreases. It can be concluded that microwave has a significant optimization effect on the scale-up process.
摘要-I
Abstract-II
致謝-III
目錄-IV
圖目錄-VI
表目錄-VIII
第一章 緒論-1
1-1 研究背景-1
1-1-1 前言-1
1-1-2 室溫離子液體-2
1-1-3 PMIC與BMIC的性質與應用-3
1-2 微波加熱文獻回顧-7
1-3 微波合成BMIC文獻回顧-16
1-4 研究動機-24
第二章 研究方法-25
2-1 實驗設備與儀器-25
2-2 實驗藥品-26
2-3 儀器介紹與實驗步驟-27
2-3-1 Small-Scale封閉系統-27
2-3-2 Large-Scale 封閉系統-28
2-3-3 開放冷凝回流系統-29
2-4 定性分析-30
2-5 定量分析-33
2-5-1 定量分析儀器介紹-33
2-5-2 流動相製備-33
2-5-3 檢量線配製-34
2-5-4 定量分析步驟-36
2-6 微波模式介紹-37
2-6-1 Ramp to Temp-37
2-6-2 Power to Time-38
2-6-3 Two Steps Control-39
第三章 結果與討論-40
3-1 BMIC合成與討論-40
3-1-1 Small-scale BMIC-40
3-1-2 Kg-scale BMIC-42
3-1-3 BMIC微波能量使用效率討論-45
3-2 PMIC結果與討論-47
3-2-1 PMIC開放系統-47
3-2-2 Small-scale PMIC-48
3-2-3 Large-scale PMIC-50
3-2-4 PMIC微波能量使用效率討論-53
第四章 總結-56
第五章 參考文獻-58
1. Anastas, P., & Eghbali, N. (2010). Green chemistry: principles and practice. Chemical Society Reviews, 39(1), 301-312.
2. Tang, S. L., Smith, R. L., & Poliakoff, M. (2005). Principles of green chemistry: PRODUCTIVELY. Green Chemistry, 7(11), 761-762.
3. de Marco, B. A., Rechelo, B. S., Tótoli, E. G., Kogawa, A. C., & Salgado, H. R. N. (2019). Evolution of green chemistry and its multidimensional impacts: A review. Saudi pharmaceutical journal, 27(1), 1-8.
4. Yao, N., Bo Wang, H., & Lin Hu, Y. (2017). Recent progress on electrochemical application of room-temperature ionic liquids. Mini-Reviews in Organic Chemistry, 14(3), 237-254.
5. Javed, F., Ullah, F., Zakaria, M. R., & Akil, H. M. (2018). An approach to classification and hi-tech applications of room-temperature ionic liquids (RTILs): a review. Journal of Molecular Liquids, 271, 403-420.
6. Kar, M., Plechkova, N. V., Seddon, K. R., Pringle, J. M., & MacFarlane, D. R. (2019). Ionic liquids–further progress on the fundamental issues. Australian Journal of Chemistry, 72(2), 3-10.
7. Wilkes, J. S. (2002). A short history of ionic liquids—from molten salts to neoteric solvents. Green Chemistry, 4(2), 73-80.
8. Thomas, P. A., & Marvey, B. B. (2016). Room temperature ionic liquids as green solvent alternatives in the metathesis of oleochemical feedstocks. Molecules, 21(2), 184.
9. Shiflett, M. B., & Scurto, A. M. (2017). Ionic Liquids: Current State and Future Directions. In Ionic Liquids: Current State and Future Directions (pp. 1-13). American Chemical Society.
10. Earle, M. J., McCormac, P. B., & Seddon, K. R. (1998). Regioselective alkylation in ionic liquids. Chemical communications, (20), 2245-2246.
11. Gray, G. E., Winnick, J., & Kohl, P. A. (1996). Plating and Stripping of Sodium from a Room Temperature 1‐Methyl‐3‐propylimidazolium Chloride Melt. Journal of The Electrochemical Society, 143(12), 3820-3824.
12. Chen, M. L., Zhao, Y. N., Zhang, D. W., Tian, Y., & Wang, J. H. (2010). The immobilization of hydrophilic ionic liquid for Cr (VI) retention and chromium speciation. Journal of Analytical Atomic Spectrometry, 25(11), 1688-1694.
13. 佟靜,鄭煦,李慧.遼寧大學 (2018),1-甲基-3-丙基咪唑牛磺酸離子液體及其製備方法與應用,CN107602475A
14. Parvin, M. N., Jin, H., Ansari, M. B., Oh, S. M., & Park, S. E. (2012). Imidazolium chloride immobilized SBA-15 as a heterogenized organocatalyst for solvent free Knoevenagel condensation using microwave. Applied Catalysis A: General, 413, 205-212.
15. Yu, Z., Tu, J., Wang, C., & Jiao, S. (2019). A Rechargeable Al/Graphite Battery Based on AlCl3/1‐butyl‐3‐methylimidazolium Chloride Ionic Liquid Electrolyte. ChemistrySelect, 4(11), 3018-3024.
16. de Menezes, D. É. S., de Alcântara Pessôa Filho, P., & Fuentes, M. D. R. (2020). Use of 1-butyl-3-methylimidazolium-based ionic liquids as methane hydrate inhibitors at high pressure conditions. Chemical Engineering Science, 212, 115-323.
17. Kotov, N., Raus, V., Urbanová, M., Zhigunov, A., Dybal, J., & Brus, J. (2020). Impact of Cellulose Dissolution on 1-Butyl-3-Methylimidazolium Chloride Crystallization Studied by Raman Spectroscopy, Wide-Angle X-ray Scattering, and Solid-State NMR. Crystal Growth & Design, 20(3), 1706-1715.
18. Dharaskar, S. A., Wasewar, K. L., Varma, M. N., & Shende, D. Z. (2016). Synthesis, characterization, and application of 1-butyl-3-methylimidazolium thiocyanate for extractive desulfurization of liquid fuel. Environmental Science and Pollution Research, 23(10), 9284-9294.
19. Kappe, C. O. (2004). Controlled microwave heating in modern organic synthesis. Angewandte Chemie International Edition, 43(46), 6250-6284.
20. Walden, P. (1914). Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Imper. Sci.(St. Petersburg), 1800.
21. de la Hoz, A., Diaz-Ortiz, A., & Moreno, A. (2005). Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chemical Society Reviews, 34(2), 164-178.
22. Mishra, R. R., & Sharma, A. K. (2016). Microwave–material interaction phenomena: heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 81, 78-97.
23. Zhang, X., Hayward, D. O., Lee, C., & Mingos, D. M. P. (2001). Microwave assisted catalytic reduction of sulfur dioxide with methane over MoS2 catalysts. Applied Catalysis B: Environmental, 33(2), 137-148.
24. Hayward, D. (1999). Apparent equilibrium shifts and hot-spot formation for catalytic reactions induced by microwave dielectric heating. Chemical Communications, (11), 975-976.
25. Zhang, X., Hayward, D. O., & Mingos, D. M. P. (2003). Effects of microwave dielectric heating on heterogeneous catalysis. Catalysis Letters, 88(1-2), 33-38.
26. Stefanidis, G. D., Munoz, A. N., Sturm, G. S., & Stankiewicz, A. (2014). A helicopter view of microwave application to chemical processes: reactions, separations, and equipment concepts. Reviews in Chemical Engineering, 30(3), 233-259.
27. Siores, E., & Do Rego, D. (1995). Microwave applications in materials joining. Journal of Materials Processing Technology, 48(1-4), 619-625.
28. Rana, K. K., & Rana, S. (2014). Microwave reactors: a brief review on its fundamental aspects and applications. Open Access Library Journal, 1(6), 1-20.
29. Gedye, R., Smith, F., Westaway, K., Ali, H., & Baldisera, L. (1986). The use of microwave ovens for rapid organic synthesis. Tetrahedron letters, 27(3), 279-282.
30. Giguere, R. J., Bray, T. L., Duncan, S. M., & Majetich, G. (1986). Application of commercial microwave ovens to organic synthesis. Tetrahedron letters, 27(41), 4945-4948.
31. D. Bogdal, J. Pielichowski and A. Boron, Synlett, (1996), 873
32. Mishra, R. R., & Sharma, A. K. (2016). Microwave–material interaction phenomena: heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 81, 78-97.
33. Zhang, X., Hayward, D. O., Lee, C., & Mingos, D. M. P. (2001). Microwave assisted catalytic reduction of sulfur dioxide with methane over MoS2 catalysts. Applied Catalysis B: Environmental, 33(2), 137-148.
34. Khadilkar, B. M., & Rebeiro, G. L. (2002). Microwave-assisted synthesis of room-temperature ionic liquid precursor in closed vessel. Organic process research & development, 6(6), 826-828.
35. Deetlefs, M., & Seddon, K. R. (2003). Improved preparations of ionic liquids using microwave irradiation. Green Chemistry, 5(2), 181-186.
36. Erdmenger, T., Paulus, R. M., Hoogenboom, R., & Schubert, U. S. (2008). Up-scaling the synthesis of 1-butyl-3-methylimidazolium chloride under microwave irradiation. Polymer Preprints, 49(2), 959-960.
37. Maton, C., De Vos, N., & Stevens, C. V. (2013). Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chemical Society Reviews, 42(13), 5963-5977.
38. 楊维清. (2002) "微波促進的有機合成反應研究."碩士學位論文.四川大學.
39. Thammana, M. (2016). A review on high performance liquid chromatography (HPLC). Res Rev J Pharm Anal RRJPA, 5(2), 22-28.
40. Rosés, M., Canals, I., Allemann, H., Siigur, K., & Bosch, E. (1996). Retention of ionizable compounds on HPLC. 2. Effect of pH, ionic strength, and mobile phase composition on the retention of weak acids. Analytical chemistry, 68(23), 4094-4100.
41. Böwing, A. G., & Jess, A. (2005). Kinetics of single-and two-phase synthesis of the ionic liquid 1-butyl-3-methylimidazolium chloride. Green Chemistry, 7(4), 230-235.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *