帳號:guest(18.191.132.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):毛翊恆
作者(外文):Mao, Yi-Hen
論文名稱(中文):主體與熱活化延遲螢光客體分子間作用產生的發光物種以及其對光致與電致發光影響之研究
論文名稱(外文):Intermolecular Interacting Emission Species in Host and Thermally Activated Delayed Fluorescence Guest System and their Effects on Photo- and Electroluminescence
指導教授(中文):陳壽安
指導教授(外文):Chen, Show-an
口試委員(中文):陳信龍
林顯光
口試委員(外文):Chen, Hsin-Lung
Lin, Hsien-Kuang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032526
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:66
中文關鍵詞:有機發光二極體熱活化延遲螢光濕式製程激發複合態
外文關鍵詞:polymer light-emitting diode (PLED)thermally activated delayed fluorescence (TADF)solution processexciplex
相關次數:
  • 推薦推薦:0
  • 點閱點閱:492
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
有機發光二極體(OLED)因為具有低操作電壓、高亮度、全彩發光、響應速度快等優點,同時又具備相當潛力發展在大面積且可繞曲的薄膜裝置上,因此近三十年來有相當多研究團隊投入這塊領域。近年來熱活化延遲螢光(TADF)發光體由於其不須使用重金屬且能使用100%激子進行發光的特性而受到矚目,電致發光元件透過在發光層將發光體摻入主體的方式能獲得極高的效率。然而由於熱活化延遲螢光材料是由予體和受體組成,主體上也會含有予體和/或受體,因此TADF材料和主體之間容易產生予體-受體反應。
在這篇論文中我們會對TADF發光體的內部重原子效應以及主體-客體系統中產生的發光物質進行討論,針對前者我們提出三個結構為donor-σ-acceptor (D-σ-A)的新TADF發光體,且分別使用C、Si、Ge作為spacer,目的是研究內部重原子效應對元件效率以及光學性質的影響。研究中,我們觀察到隨著spacer的原子序上升,reversed intersystem crossing (RISC) 和intersystem crossing (ISC)速率都會顯著上升,由於電致發光會產生25%的單重態激子和75%三重態激子,因此數量更多的三重態激子能被更有效率的使用。此研究工作為未來TADF發光體設計提供了新的方針。
為了探討主體-客體系統中產生的發光物質對光/電致發光的影響,我們使用了紅光的TADF發光體作為客體,以及在poly(biphenyl-Si/Ge)上接不同的予體作為主體。透過分析主體-客體間和客體-客體間的反應,我們發現除了發光體本身的發光(ICT)*之外還會產生客體/客體激發錯合體(Dg/Ag)*、主體/客體激發錯合體(Dh/Ag)*以及透過電子非定域化作用形成的聚集體(Aggregate)*。非放光性的3(Dh/Ag)* (∆EST≈0.5 eV)會增加內轉變的速率(kIC)以及降低延遲性放光的比例,這兩點會造成PLQY的降低。而放光性的 3(Dh/Ag)* (∆EST≦0.15 eV)依據三重態能量高低可能會對PLQY有正面或負面的影響。(Aggregate)*的能量低於發光體,因此能量會從TADF發光體傳遞至(Aggregate)*,由於(Aggregate)*低PLQY的特性會造成整體的效率下降。(Dh/Ag)*和(Aggregate)*也會造成發光光譜的半高寬上升,使發光的純度下降。在我們這次使用的主體中,P(Cz-Si)與發光體TPA-DCPP形成的3(Dh/Ag)*有最高的三重態能量,透過將3(Dh/Ag)*的能量傳輸給3(ICT)*有助於抑制內轉換速率並提高元件電制發光的效率。這些予體-受體反應以及聚集體的形成在小分子的主/客體系統中也應會發生,因此我們認為在未來的TADF發光體以及主體分子設計中分子間反應必須被考慮進去,以達到更高的元件效率。
Organic light-emitting diodes (OLED) have the advantages of low operating voltage, high brightness, full-color light emission, and fast response speed. It also has considerable potential for development in large-area and flexible thin-film devices. Recently, thermally activated delayed fluorescence (TADF) emitters have attracted considerable interest because no need to use heavy metals and can harvest 100% excitons to emit light. Thermally activated delayed fluorescence (TADF) based electroluminescence (EL) device adopting host/guest strategy is capable to realize high efficiency. However, TADF emitters composed of donor and acceptor moieties as guests dispersed in organic host materials containing donor and/or acceptor are subject to donor-acceptor (D-A) interactions.
In order to study the internal heavy atom effect on EL devices and optical properties, we propose three new TADF emitters with donor-σ-acceptor (D-σ-A) structure using C, Si, and Ge as spacers. As atomic number of spacer increases, the reversed intersystem crossing rate (RISC) and intersystem crossing rate (ISC) will increase significantly, which will lead to increased delay fluorescence since more triplet excitons can be harvested. Consequently, the triplet exciton utilization is improved with Si and Ge atoms, affording greatly advanced EL efficiencies compared with C atom. This work provides new guidelines for designing future TADF emitters.
To investigate the intermolecular emitting species produced in host-guest system, we use the red TADF emitter as guest, and the poly(biphenyl-Si/Ge) grafted with various donor moieties as hosts. Through the analysis of host-guest and guest-guest interactions, we found that in addition to the luminescence of intramolecular charge transfer (ICT)*, there is also guest/guest exciplex (Dg/Ag)*, host/guest exciplex (Dh/Ag)* and the aggregates formed by the delocalization of electrons. The non-radiative 3(Dh/Ag)* (∆EST≈0.5 eV) will increase the internal transition rate (kIC) and reduce the ratio of delayed luminescence, both of which will cause a decrease in PLQY. The luminescence 3(Dh/Ag)* (∆EST≦0.15 eV) may have a positive or negative impact on PLQY depending on the triplet energy. The energy of (Aggregate)* is lower than that of the (ICT)*, so energy will be transferred from (ICT)* to (Aggregate)*. The low PLQY of (Aggregate)* means that it is more likely to cause quench in devices. (Dh/Ag)* and (Aggregate)* will also increase full-width at half-maximum (FWHM) and lower the color purity. The red emitter doped P(Cz-Si) show a higher T1 level of radiative 3(Dh/Ag)*, which is beneficial for achieving high PL efficiency and therefore EL efficiency by energy transfer to the triplet species 3(ICT)* and thereby reducing unwanted internal conversion (IC) process in TADF guests. These D-A interactions could also occur in small molecule host/guest systems and non-doped systems. Therefore, we believe the D-A interactions must be considered in the future TADF emitters and host molecules design to achieve higher device efficiency.
圖目錄-----------------------VII
表目錄-----------------------X
第一章 緒論------------------1
1-1 前言--------------------1
1-2放光機制------------------2
1-3 金屬半導體理論-----------3
1-3-1 界面接合---------------3
1-3-2 電流傳遞過程------------5
1-4 高分子發光二極體的發展-----5
1-4-1 電荷注入/傳遞的機制------7
1-4-2 電子的注入--------------9
1-4-3 電洞的注入--------------11
1-4-4 發光層載子的傳遞特性-----12
第二章 文獻回顧----------------17
2-1高分子TADF元件--------------17
2-2 聚集體對光學性質以及元件效率的影響-22
2-3 文獻分析-------------------27
第三章 實驗內容-----------------28
3-1 實驗藥品--------------------28
3-2 儀器設備--------------------28
3-3發光二極體元件製作------------29
3-4元件特性之量測----------------30
第四章 重原子對光學性質與元件效率影響-31
前言-------------------------------31
4-1. 重原子對光學性質的影響----------31
4-2. 重原子對元件的影響--------------34
第五章 主客體系統分子間作用對光學性質與元件效率影響-38
第六章 參考文獻----------------------63

[1] Y.Liu, C.Li, Z.Ren, S.Yan, andM. R.Bryce, “All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes,” Nat. Rev. Mater., vol. 3, no. 4, p. 18020, 2018.
[2] Y.Tao, C.Yang, andJ.Qin, “Organic host materials for phosphorescent organic light-emitting diodes,” Chem. Soc. Rev., vol. 40, no. 5, pp. 2943–2970, 2011.
[3] E. H.Rhoderick, “Metal-semiconductor contacts,” IEE Proc. I-Solid-State Electron Devices, vol. 129, no. 1, p. 1, 1982.
[4] J. H.Burroughes et al., “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, no. 6293, pp. 539–541, 1990.
[5] A. B.Holmes et al., “Photoluminescence and electroluminescence in conjugated polymeric systems,” Synth. Met., vol. 57, no. 1, pp. 4031–4040, 1993.
[6] M.Wohlgenannt, K.Tandon, S.Mazumdar, S.Ramasesha, andZ.VVardeny, “Formation cross-sections of singlet and triplet excitons in π-conjugated polymers,” Nature, vol. 409, no. 6819, pp. 494–497, 2001.
[7] G. G.Malliaras andJ. C.Scott, “The roles of injection and mobility in organic light emitting diodes,” J. Appl. Phys., vol. 83, no. 10, pp. 5399–5403, 1998.
[8] I. D.Parker, “Carrier tunneling and device characteristics in polymer light‐emitting diodes,” J. Appl. Phys., vol. 75, no. 3, pp. 1656–1666, 1994.
[9] P. W. M.Blom, M. J. M.DeJong, andJ. J. M.Vleggaar, “Electron and hole transport in poly (p‐phenylene vinylene) devices,” Appl. Phys. Lett., vol. 68, no. 23, pp. 3308–3310, 1996.
[10] A. R.Brown et al., “Electroluminescence from multilayer conjugated polymer devices: spatial control of exciton formation and emission,” Chem. Phys. Lett., vol. 200, no. 1–2, pp. 46–54, 1992.
[11] A. R.Brown et al., “Poly (p‐phenylenevinylene) light‐emitting diodes: Enhanced electroluminescent efficiency through charge carrier confinement,” Appl. Phys. Lett., vol. 61, no. 23, pp. 2793–2795, 1992.
[12] N. C.Greenham, S. C.Moratti, D. D. C.Bradley, R. H.Friend, andA. B.Holmes, “Efficient light-emitting diodes based on polymers with high electron affinities,” Nature, vol. 365, no. 6447, pp. 628–630, 1993.
[13] T.Osada, T.Kugler, P.Bröms, andW. R.Salaneck, “Polymer-based light-emitting devices: investigations on the role of the indium—tin oxide (ITO) electrode,” Synth. Met., vol. 96, no. 1, pp. 77–80, 1998.
[14] C. C.Wu, C. I.Wu, J. C.Sturm, andA.Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett., vol. 70, no. 11, pp. 1348–1350, 1997.
[15] Y.Yang andA. J.Heeger, “Polyaniline as a transparent electrode for polymer light‐emitting diodes: Lower operating voltage and higher efficiency,” Appl. Phys. Lett., vol. 64, no. 10, pp. 1245–1247, 1994.
[16] S.-A.Chen andG.-W.Hwang, “Synthesis of water-soluble self-acid-doped polyaniline,” J. Am. Chem. Soc., vol. 116, no. 17, pp. 7939–7940, 1994.
[17] S.-A.Chen andG.-W.Hwang, “Water-soluble self-acid-doped conducting polyaniline: structure and properties,” J. Am. Chem. Soc., vol. 117, no. 40, pp. 10055–10062, 1995.
[18] Y.Cao, G.Yu, C.Zhang, R.Menon, andA. J.Heeger, “Polymer light-emitting diodes with polyethylene dioxythiophene–polystyrene sulfonate as the transparent anode,” Synth. Met., vol. 87, no. 2, pp. 171–174, 1997.
[19] 許志平, “以水溶性自身酸摻雜聚苯胺作為電洞傳輸層應用於高分子發光二極體及太陽能電池之研究,” 清華大學化學工程學系學位論文, pp. 1–127, 2012.
[20] D. J.Pinner, R. H.Friend, andN.Tessler, “Transient electroluminescence of polymer light emitting diodes using electrical pulses,” J. Appl. Phys., vol. 86, no. 9, pp. 5116–5130, 1999.
[21] H. M.Lee, D. K.Oh, C. H.Lee, C. E.Lee, D. W.Lee, andJ.IlJin, “Time-of-flight measurements of charge-carrier mobilities in a poly (p-phenylenevinylene) derivative carrying an electron-transporting moiety,” Synth. Met., vol. 119, no. 1–3, pp. 473–474, 2001.
[22] B. K.Crone, I. H.Campbell, P. S.Davids, andD. L.Smith, “Charge injection and transport in single-layer organic light-emitting diodes,” Appl. Phys. Lett., vol. 73, no. 21, pp. 3162–3164, 1998.
[23] Z.Ren, R. S.Nobuyasu, F. B.Dias, A. P.Monkman, S.Yan, andM. R.Bryce, “Pendant homopolymer and copolymers as solution-processable thermally activated delayed fluorescence materials for organic light-emitting diodes,” Macromolecules, vol. 49, no. 15, pp. 5452–5460, 2016.
[24] S.Shao, J.Hu, X.Wang, L.Wang, X.Jing, andF.Wang, “Blue thermally activated delayed fluorescence polymers with nonconjugated backbone and through-space charge transfer effect,” J. Am. Chem. Soc., vol. 139, no. 49, pp. 17739–17742, 2017.
[25] M.Hung, K.Tsai, S.Sharma, J.Wu, andS.Chen, “Acridan‐Grafted Poly (biphenyl germanium) with High Triplet Energy, Low Polarizability, and an External Heavy‐Atom Effect for Highly Efficient Sky‐Blue TADF Electroluminescence,” Angew. Chemie Int. Ed., vol. 58, no. 33, pp. 11317–11323, 2019.
[26] K.-Y.Peng, S.-A.Chen, andW.-S.Fann, “Efficient light harvesting by sequential energy transfer across aggregates in polymers of finite conjugational segments with short aliphatic linkages,” J. Am. Chem. Soc., vol. 123, no. 46, pp. 11388–11397, 2001.
[27] M. K.Etherington, J.Gibson, H. F.Higginbotham, T. J.Penfold, andA. P.Monkman, “Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence,” Nat. Commun., vol. 7, no. 1, pp. 1–7, 2016.
[28] W.Zhang, J.Jin, Z.Huang, S.Zhuang, andL.Wang, “A new way towards high-efficiency thermally activated delayed fluorescence devices via external heavy-atom effect,” Sci. Rep., vol. 6, no. 1, pp. 1–8, 2016.
[29] M.Rae, A.Fedorov, andM. N.Berberan-Santos, “Fluorescence quenching with exponential distance dependence: Application to the external heavy-atom effect,” J. Chem. Phys., vol. 119, no. 4, pp. 2223–2231, 2003.
[30] H.Uoyama, K.Goushi, K.Shizu, H.Nomura, andC.Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature, vol. 492, no. 7428, pp. 234–238, 2012.
[31] Z.Yang et al., “Recent advances in organic thermally activated delayed fluorescence materials,” Chem. Soc. Rev., vol. 46, no. 3, pp. 915–1016, 2017.
[32] D.Song, S.Zhao, Y.Luo, andH.Aziz, “Causes of efficiency roll-off in phosphorescent organic light emitting devices: Triplet-triplet annihilation versus triplet-polaron quenching,” Appl. Phys. Lett., vol. 97, no. 24, p. 268, 2010.
[33] K.Masui, H.Nakanotani, andC.Adachi, “Analysis of exciton annihilation in high-efficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence,” Org. Electron., vol. 14, no. 11, pp. 2721–2726, 2013.
[34] M.Sarma andK.-T.Wong, “Exciplex: an intermolecular charge-transfer approach for TADF,” ACS Appl. Mater. Interfaces, vol. 10, no. 23, pp. 19279–19304, 2018.
[35] M. K.Etherington et al., “Persistent dimer emission in thermally activated delayed fluorescence materials,” J. Phys. Chem. C, vol. 123, no. 17, pp. 11109–11117, 2019.
[36] J.-M.Teng, Y.-F.Wang, andC.-F.Chen, “Recent progress of narrowband TADF emitters and their applications in OLEDs,” J. Mater. Chem. C, 2020.
[37] D.Graves, V.Jankus, F. B.Dias, andA.Monkman, “Photophysical Investigation of the Thermally Activated Delayed Emission from Films of m‐MTDATA: PBD Exciplex,” Adv. Funct. Mater., vol. 24, no. 16, pp. 2343–2351, 2014.
[38] V.Jankus et al., “Highly efficient TADF OLEDs: how the emitter–host interaction controls both the excited state species and electrical properties of the devices to achieve near 100% triplet harvesting and high efficiency,” Adv. Funct. Mater., vol. 24, no. 39, pp. 6178–6186, 2014.
[39] M.-K.洪妙肯 TA - Hung, “高三重態能量σ-π共軛高分子載體應用於高效率電致發光元件之研究 TT - Investigation of High Triplet σ‒π Conjugated Polymer Hosts for Highly Efficient Electroluminescence Devices,” 國立清華大學, 新竹市, 2019.
[40] D.Zhang, X.Song, M.Cai, andL.Duan, “Blocking Energy‐Loss Pathways for Ideal Fluorescent Organic Light‐Emitting Diodes with Thermally Activated Delayed Fluorescent Sensitizers,” Adv. Mater., vol. 30, no. 6, p. 1705250, 2018.
[41] X.Liu et al., “Remanagement of Singlet and Triplet Excitons in Single‐Emissive‐Layer Hybrid White Organic Light‐Emitting Devices Using Thermally Activated Delayed Fluorescent Blue Exciplex,” Adv. Mater., vol. 27, no. 44, pp. 7079–7085, 2015.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 順式二苯乙烯之螺旋體衍生物於有機發光二極體與鈣鈦礦太陽能電池材料的應用
2. 硼摻雜型石墨烯電極與熱活化延遲螢光雙硼材料於有機發光二極體元件之應用
3. 有機發光二極體之研究: 聚電解質電子傳輸層對深藍光聚茀系高分子光色影響及利用交聯式電洞傳輸層達到紅綠藍高效率熱活化延遲螢光發光二極體
4. 高三重態能量σ-π共軛高分子載體應用於高效率電致發光元件之研究
5. 設計與合成深藍與橘紅延遲螢光客體材料及與有機發光二極體元件之應用
6. 熱活化延遲放光與三重態-三重態激發子淬熄之有機發光材料及其於有機電致發光元件之應用
7. 設計與合成苯甲醯吡啶和嘧啶衍生物之熱活化延遲螢光材料及其於效率有機發光二極體之應用
8. 高效率和穩定雙硼熱活化延遲螢光有機發光二極體
9. 熱活化延遲螢光材料於螢光有機發光二極體元件之應用
10. 設計與合成紅色延遲螢光客體材料及於有機發光二極體元件之應用
11. 設計與合成3,5-二氰基吡啶衍生物之高效率熱活化延遲螢光材料
12. 純藍光熱活化延遲螢光之分子設計及其在發光二極體之應用
13. 合成設計含亞氨基二苄雙硼衍生物應用於紅光有機發光二極體
14. 設計與合成具室溫有機餘暉之含硼五苯荑衍生物材料
15. 合成具有不同橋基雙硼分子與其熱活化延遲螢光性質探討
 
* *