|
[1] Y.Liu, C.Li, Z.Ren, S.Yan, andM. R.Bryce, “All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes,” Nat. Rev. Mater., vol. 3, no. 4, p. 18020, 2018. [2] Y.Tao, C.Yang, andJ.Qin, “Organic host materials for phosphorescent organic light-emitting diodes,” Chem. Soc. Rev., vol. 40, no. 5, pp. 2943–2970, 2011. [3] E. H.Rhoderick, “Metal-semiconductor contacts,” IEE Proc. I-Solid-State Electron Devices, vol. 129, no. 1, p. 1, 1982. [4] J. H.Burroughes et al., “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, no. 6293, pp. 539–541, 1990. [5] A. B.Holmes et al., “Photoluminescence and electroluminescence in conjugated polymeric systems,” Synth. Met., vol. 57, no. 1, pp. 4031–4040, 1993. [6] M.Wohlgenannt, K.Tandon, S.Mazumdar, S.Ramasesha, andZ.VVardeny, “Formation cross-sections of singlet and triplet excitons in π-conjugated polymers,” Nature, vol. 409, no. 6819, pp. 494–497, 2001. [7] G. G.Malliaras andJ. C.Scott, “The roles of injection and mobility in organic light emitting diodes,” J. Appl. Phys., vol. 83, no. 10, pp. 5399–5403, 1998. [8] I. D.Parker, “Carrier tunneling and device characteristics in polymer light‐emitting diodes,” J. Appl. Phys., vol. 75, no. 3, pp. 1656–1666, 1994. [9] P. W. M.Blom, M. J. M.DeJong, andJ. J. M.Vleggaar, “Electron and hole transport in poly (p‐phenylene vinylene) devices,” Appl. Phys. Lett., vol. 68, no. 23, pp. 3308–3310, 1996. [10] A. R.Brown et al., “Electroluminescence from multilayer conjugated polymer devices: spatial control of exciton formation and emission,” Chem. Phys. Lett., vol. 200, no. 1–2, pp. 46–54, 1992. [11] A. R.Brown et al., “Poly (p‐phenylenevinylene) light‐emitting diodes: Enhanced electroluminescent efficiency through charge carrier confinement,” Appl. Phys. Lett., vol. 61, no. 23, pp. 2793–2795, 1992. [12] N. C.Greenham, S. C.Moratti, D. D. C.Bradley, R. H.Friend, andA. B.Holmes, “Efficient light-emitting diodes based on polymers with high electron affinities,” Nature, vol. 365, no. 6447, pp. 628–630, 1993. [13] T.Osada, T.Kugler, P.Bröms, andW. R.Salaneck, “Polymer-based light-emitting devices: investigations on the role of the indium—tin oxide (ITO) electrode,” Synth. Met., vol. 96, no. 1, pp. 77–80, 1998. [14] C. C.Wu, C. I.Wu, J. C.Sturm, andA.Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices,” Appl. Phys. Lett., vol. 70, no. 11, pp. 1348–1350, 1997. [15] Y.Yang andA. J.Heeger, “Polyaniline as a transparent electrode for polymer light‐emitting diodes: Lower operating voltage and higher efficiency,” Appl. Phys. Lett., vol. 64, no. 10, pp. 1245–1247, 1994. [16] S.-A.Chen andG.-W.Hwang, “Synthesis of water-soluble self-acid-doped polyaniline,” J. Am. Chem. Soc., vol. 116, no. 17, pp. 7939–7940, 1994. [17] S.-A.Chen andG.-W.Hwang, “Water-soluble self-acid-doped conducting polyaniline: structure and properties,” J. Am. Chem. Soc., vol. 117, no. 40, pp. 10055–10062, 1995. [18] Y.Cao, G.Yu, C.Zhang, R.Menon, andA. J.Heeger, “Polymer light-emitting diodes with polyethylene dioxythiophene–polystyrene sulfonate as the transparent anode,” Synth. Met., vol. 87, no. 2, pp. 171–174, 1997. [19] 許志平, “以水溶性自身酸摻雜聚苯胺作為電洞傳輸層應用於高分子發光二極體及太陽能電池之研究,” 清華大學化學工程學系學位論文, pp. 1–127, 2012. [20] D. J.Pinner, R. H.Friend, andN.Tessler, “Transient electroluminescence of polymer light emitting diodes using electrical pulses,” J. Appl. Phys., vol. 86, no. 9, pp. 5116–5130, 1999. [21] H. M.Lee, D. K.Oh, C. H.Lee, C. E.Lee, D. W.Lee, andJ.IlJin, “Time-of-flight measurements of charge-carrier mobilities in a poly (p-phenylenevinylene) derivative carrying an electron-transporting moiety,” Synth. Met., vol. 119, no. 1–3, pp. 473–474, 2001. [22] B. K.Crone, I. H.Campbell, P. S.Davids, andD. L.Smith, “Charge injection and transport in single-layer organic light-emitting diodes,” Appl. Phys. Lett., vol. 73, no. 21, pp. 3162–3164, 1998. [23] Z.Ren, R. S.Nobuyasu, F. B.Dias, A. P.Monkman, S.Yan, andM. R.Bryce, “Pendant homopolymer and copolymers as solution-processable thermally activated delayed fluorescence materials for organic light-emitting diodes,” Macromolecules, vol. 49, no. 15, pp. 5452–5460, 2016. [24] S.Shao, J.Hu, X.Wang, L.Wang, X.Jing, andF.Wang, “Blue thermally activated delayed fluorescence polymers with nonconjugated backbone and through-space charge transfer effect,” J. Am. Chem. Soc., vol. 139, no. 49, pp. 17739–17742, 2017. [25] M.Hung, K.Tsai, S.Sharma, J.Wu, andS.Chen, “Acridan‐Grafted Poly (biphenyl germanium) with High Triplet Energy, Low Polarizability, and an External Heavy‐Atom Effect for Highly Efficient Sky‐Blue TADF Electroluminescence,” Angew. Chemie Int. Ed., vol. 58, no. 33, pp. 11317–11323, 2019. [26] K.-Y.Peng, S.-A.Chen, andW.-S.Fann, “Efficient light harvesting by sequential energy transfer across aggregates in polymers of finite conjugational segments with short aliphatic linkages,” J. Am. Chem. Soc., vol. 123, no. 46, pp. 11388–11397, 2001. [27] M. K.Etherington, J.Gibson, H. F.Higginbotham, T. J.Penfold, andA. P.Monkman, “Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence,” Nat. Commun., vol. 7, no. 1, pp. 1–7, 2016. [28] W.Zhang, J.Jin, Z.Huang, S.Zhuang, andL.Wang, “A new way towards high-efficiency thermally activated delayed fluorescence devices via external heavy-atom effect,” Sci. Rep., vol. 6, no. 1, pp. 1–8, 2016. [29] M.Rae, A.Fedorov, andM. N.Berberan-Santos, “Fluorescence quenching with exponential distance dependence: Application to the external heavy-atom effect,” J. Chem. Phys., vol. 119, no. 4, pp. 2223–2231, 2003. [30] H.Uoyama, K.Goushi, K.Shizu, H.Nomura, andC.Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature, vol. 492, no. 7428, pp. 234–238, 2012. [31] Z.Yang et al., “Recent advances in organic thermally activated delayed fluorescence materials,” Chem. Soc. Rev., vol. 46, no. 3, pp. 915–1016, 2017. [32] D.Song, S.Zhao, Y.Luo, andH.Aziz, “Causes of efficiency roll-off in phosphorescent organic light emitting devices: Triplet-triplet annihilation versus triplet-polaron quenching,” Appl. Phys. Lett., vol. 97, no. 24, p. 268, 2010. [33] K.Masui, H.Nakanotani, andC.Adachi, “Analysis of exciton annihilation in high-efficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence,” Org. Electron., vol. 14, no. 11, pp. 2721–2726, 2013. [34] M.Sarma andK.-T.Wong, “Exciplex: an intermolecular charge-transfer approach for TADF,” ACS Appl. Mater. Interfaces, vol. 10, no. 23, pp. 19279–19304, 2018. [35] M. K.Etherington et al., “Persistent dimer emission in thermally activated delayed fluorescence materials,” J. Phys. Chem. C, vol. 123, no. 17, pp. 11109–11117, 2019. [36] J.-M.Teng, Y.-F.Wang, andC.-F.Chen, “Recent progress of narrowband TADF emitters and their applications in OLEDs,” J. Mater. Chem. C, 2020. [37] D.Graves, V.Jankus, F. B.Dias, andA.Monkman, “Photophysical Investigation of the Thermally Activated Delayed Emission from Films of m‐MTDATA: PBD Exciplex,” Adv. Funct. Mater., vol. 24, no. 16, pp. 2343–2351, 2014. [38] V.Jankus et al., “Highly efficient TADF OLEDs: how the emitter–host interaction controls both the excited state species and electrical properties of the devices to achieve near 100% triplet harvesting and high efficiency,” Adv. Funct. Mater., vol. 24, no. 39, pp. 6178–6186, 2014. [39] M.-K.洪妙肯 TA - Hung, “高三重態能量σ-π共軛高分子載體應用於高效率電致發光元件之研究 TT - Investigation of High Triplet σ‒π Conjugated Polymer Hosts for Highly Efficient Electroluminescence Devices,” 國立清華大學, 新竹市, 2019. [40] D.Zhang, X.Song, M.Cai, andL.Duan, “Blocking Energy‐Loss Pathways for Ideal Fluorescent Organic Light‐Emitting Diodes with Thermally Activated Delayed Fluorescent Sensitizers,” Adv. Mater., vol. 30, no. 6, p. 1705250, 2018. [41] X.Liu et al., “Remanagement of Singlet and Triplet Excitons in Single‐Emissive‐Layer Hybrid White Organic Light‐Emitting Devices Using Thermally Activated Delayed Fluorescent Blue Exciplex,” Adv. Mater., vol. 27, no. 44, pp. 7079–7085, 2015.
|