|
[1] C. Papadopoulou, H. Matralis, X. Verykios, Utilization of Biogas as a Renewable Carbon Source: Dry Reforming of Methane, in: Catalysis for Alternative Energy Generation, 2012, pp. 57-127. [2] D. Pakhare, J. Spivey, A Review of Dry (CO2) Reforming of Methane over Noble Metal Catalysts, Chemical Society Reviews, 43 (2014) 7813-7837. [3] J.R. Rostrup-Nielsen, J.H.B. Hansen, CO2-Reforming of Methane over Transition Metals, Journal of Catalysis, 144 (1993) 38-49. [4] J.R. Rostrup-Nielsen, J. Sehested, J.K. Nørskov, Hydrogen and Synthesis Gas by Steam and CO2 Reforming, in: Advances in Catalysis, Academic Press, 2002, pp. 65-139. [5] M. Aresta, Carbon Dioxide as Chemical Feedstock, Wiley-VCH, Weinheim, 2010. [6] M.C.J. Bradford, M.A. Vannice, CO2 Reforming of CH4, Catalysis Reviews, 41 (1999) 1-42. [7] M.C.J. Bradford, M.A. Vannice, Catalytic Reforming of Methane with Carbon Dioxide over Nickel Catalysts I. Catalyst Characterization and Activity, Applied Catalysis A: General, 142 (1996) 73-96. [8] J.D. Holladay, J. Hu, D.L. King, Y. Wang, An Overview of Hydrogen Production Technologies, Catalysis Today, 139 (2009) 244-260. [9] S.D. Angeli, G. Monteleone, A. Giaconia, A.A. Lemonidou, State-of-the-art Catalysts for CH4 Steam Reforming at Low Temperature, International Journal of Hydrogen Energy, 39 (2014) 1979-1997. [10] Y. Matsumura, T. Nakamori, Steam Reforming of Methane over Nickel Catalysts at Low Reaction Temperature, Applied Catalysis A: General, 258 (2004) 107-114. [11] Q. Wei, X. Gao, G. Liu, R. Yang, H. Zhang, G. Yang, Y. Yoneyama, N. Tsubaki, Facile One-step Synthesis of Mesoporous Ni-Mg-Al Catalyst for Syngas Production Using Coupled Methane Reforming Process, Fuel, 211 (2018) 1-10. [12] V.R. Choudhary, K.C. Mondal, CO2 Reforming of Methane Combined with Steam Reforming or Partial Oxidation of Methane to Syngas over NdCoO3 Perovskite-type Mixed Metal-Oxide Catalyst, Applied Energy, 83 (2006) 1024-1032. [13] Y.J.O. Asencios, E.M. Assaf, Combination of Dry Reforming and Partial Oxidation of Methane on NiO–MgO–ZrO2 Catalyst: Effect of Nickel Content, Fuel Processing Technology, 106 (2013) 247-252. [14] R.A. Dixon, R.G. Egdell, Direct Observation of Sintering in a Model Oxide Supported Metal Catalyst STM of Pd on WO3(001), Journal of the Chemical Society, Faraday Transactions, 94 (1998) 1329-1331. [15] J.Q. Tian, B. Ma, S.Y. Bu, Q.H. Yuan, C. Zhao, One-pot Synthesis of Highly Sintering- and Coking-resistant Ni Nanoparticles Encapsulated in Dendritic Mesoporous SiO2 for Methane Dry Reforming, Chem Commun (Camb), 54 (2018) 13993-13996. [16] Z. Li, Z. Wang, S. Kawi, Sintering and Coke Resistant Core/Yolk Shell Catalyst for Hydrocarbon Reforming, ChemCatChem, 11 (2019) 202-224. [17] Z. Li, Z. Wang, B. Jiang, S. Kawi, Sintering Resistant Ni Nanoparticles Exclusively Confined within SiO2 Nanotubes for CH4 Dry Reforming, Catalysis Science & Technology, 8 (2018) 3363-3371. [18] Y. Nagai, T. Hirabayashi, K. Dohmae, N. Takagi, T. Minami, H. Shinjoh, S.i. Matsumoto, Sintering Inhibition Mechanism of Platinum Supported on Ceria-based Oxide and Pt-oxide–support Interaction, Journal of Catalysis, 242 (2006) 103-109. [19] H. Ay, D. Üner, Dry reforming of Methane over CeO2 Supported Ni, Co and Ni–Co Catalysts, Applied Catalysis B: Environmental, 179 (2015) 128-138. [20] V.M. Gonzalez-Delacruz, R. Pereñiguez, F. Ternero, J.P. Holgado, A. Caballero, Modifying the Size of Nickel Metallic Particles by H2/CO Treatment in Ni/ZrO2 Methane Dry Reforming Catalysts, ACS Catalysis, 1 (2011) 82-88. [21] T.D. Gould, A. Izar, A.W. Weimer, J.L. Falconer, J.W. Medlin, Stabilizing Ni Catalysts by Molecular Layer Deposition for Harsh, Dry Reforming Conditions, ACS Catalysis, 4 (2014) 2714-2717. [22] T.Y. Liang, C.Y. Lin, F.C. Chou, M.Q. Wang, D.H. Tsai, Gas-Phase Synthesis of Ni–CeOx Hybrid Nanoparticles and Their Synergistic Catalysis for Simultaneous Reforming of Methane and Carbon Dioxide to Syngas, The Journal of Physical Chemistry C, 122 (2018) 11789-11798. [23] M. Khzouz, J. Wood, B. Pollet, W. Bujalski, Characterization and Activity Test of Commercial Ni/Al2O3, Cu/ZnO/Al2O3 and Prepared Ni–Cu/Al2O3 Catalysts for Hydrogen Production from Methane and Methanol Fuels, International Journal of Hydrogen Energy, 38 (2013) 1664-1675. [24] S. Das, J. Ashok, Z. Bian, N. Dewangan, M.H. Wai, Y. Du, A. Borgna, K. Hidajat, S. Kawi, Silica–Ceria Sandwiched Ni Core–Shell Catalyst for Low Temperature Dry Reforming of Biogas: Coke Resistance and Mechanistic Insights, Applied Catalysis B: Environmental, 230 (2018) 220-236. [25] C.J. Chen, X.G. Wang, H.G. Huang, X.J. Zou, F.G. Gu, F.B. Su, X.G. Lu, Synthesis of Mesoporous Ni–La–Si Mixed Oxides for CO2 Reforming of CH4 with a high H2 selectivity, Fuel Processing Technology, 185 (2019) 56-67. [26] Z. Li, Y. Kathiraser, J. Ashok, U. Oemar, S. Kawi, Simultaneous Tuning Porosity and Basicity of Nickel@Nickel–Magnesium Phyllosilicate Core–Shell Catalysts for CO2 Reforming of CH4, Langmuir, 30 (2014) 14694-14705. [27] X. Zhao, H. Li, J. Zhang, L. Shi, D. Zhang, Design and Synthesis of NiCe@m-SiO2 Yolk-shell Framework Catalysts with Improved Coke- and Sintering-resistance in Dry Reforming of Methane, International Journal of Hydrogen Energy, 41 (2016) 2447-2456. [28] A. Jalal, A. Uzun, An Ordinary Nickel Catalyst Becomes Completely Selective for Partial Hydrogenation of 1,3-butadiene when Coated with Tributyl(methyl)phosphonium Methyl Sulfate, Applied Catalysis A: General, 562 (2018) 321-326. [29] A. Jalal, A. Uzun, An Exceptional Selectivity for Partial Hydrogenation on a Supported Nickel Catalyst Coated with [BMIM][BF4], Journal of Catalysis, 350 (2017) 86-96. [30] X.j. Du, D.s. Zhang, L.y. Shi, R.h. Gao, J.p. Zhang, Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane, The Journal of Physical Chemistry C, 116 (2012) 10009-10016. [31] Z.W. Li, L.Y. Mo, Y. Kathiraser, S. Kawi, Yolk–Satellite–Shell Structured Ni–Yolk@Ni@SiO2 Nanocomposite: Superb Catalyst toward Methane CO2 Reforming Reaction, ACS Catalysis, 4 (2014) 1526-1536. [32] H. Tian, X. Li, L. Zeng, J. Gong, Recent Advances on the Design of Group VIII Base-Metal Catalysts with Encapsulated Structures, ACS Catalysis, 5 (2015) 4959-4977. [33] C.E. Daza, A. Kiennemann, S. Moreno, R. Molina, Dry Reforming of Methane Using Ni–Ce Catalysts Supported on a Modified Mineral Clay, Applied Catalysis A: General, 364 (2009) 65-74. [34] R. Yang, C. Xing, C. Lv, L. Shi, N. Tsubaki, Promotional Effect of La2O3 and CeO2 on Ni/γ-Al2O3 Catalysts for CO2 Reforming of CH4, Applied Catalysis A: General, 385 (2010) 92-100. [35] X. Gao, Z. Tan, K. Hidajat, S. Kawi, Highly Reactive Ni-Co/SiO2 Bimetallic Catalyst via Complexation with Oleylamine/Oleic Acid Organic Pair for Dry Reforming of Methane, Catalysis Today, 281 (2017) 250-258. [36] Z. Bian, S. Das, M.H. Wai, P. Hongmanorom, S. Kawi, A Review on Bimetallic Nickel-Based Catalysts for CO2 Reforming of Methane, ChemPhysChem, 18 (2017) 3117-3134. [37] S. Wang, G.Q. Lu, Role of CeO2 in Ni/CeO2–Al2O3 Catalysts for Carbon Dioxide Reforming of Methane, Applied Catalysis B: Environmental, 19 (1998) 267-277. [38] V.M. Gonzalez-delaCruz, R. Pereñiguez, F. Ternero, J.P. Holgado, A. Caballero, In Situ XAS Study of Synergic Effects on Ni–Co/ZrO2 Methane Reforming Catalysts, The Journal of Physical Chemistry C, 116 (2012) 2919-2926. [39] R. Dębek, M. Radlik, M. Motak, M.E. Galvez, W. Turek, P. Da Costa, T. Grzybek, Ni-containing Ce-promoted Hydrotalcite Derived Materials as Catalysts for Methane Reforming with Carbon Dioxide at Low Temperature – On the Effect of Basicity, Catalysis Today, 257 (2015) 59-65. [40] H.J. Wang, X.D. Li, X.C. Lan, T.F. Wang, Supported Ultrafine NiCo Bimetallic Alloy Nanoparticles Derived from Bimetal-Organic Frameworks: A Highly Active Catalyst for Furfuryl Alcohol Hydrogenation, ACS Catalysis, 8 (2018) 2121-2128. [41] Z. Lian, S.O. Olanrele, C. Si, M. Yang, B. Li, Critical Role of Interfacial Sites between Nickel and CeO2 Support in Dry Reforming of Methane: Revisit of Reaction Mechanism and Origin of Stability, Journal of Physical Chemistry C, 124 (2020) 5118-5124. [42] W.T. Gibbons, L.J. Venstrom, R.M. De Smith, J.H. Davidson, G.S. Jackson, Ceria-based Electrospun Fibers for Renewable Fuel Production via Two-Step Thermal Redox Cycles for Carbon Dioxide Splitting, Physical Chemistry Chemical Physics, 16 (2014) 14271-14280. [43] X.L. Zhu, P.P. Huo, Y.P. Zhang, D.G. Cheng, C.J. Liu, Structure and Reactivity of Plasma treated Ni/Al2O3 Catalyst for CO2 Reforming of Methane, Applied Catalysis B: Environmental, 81 (2008) 132-140. [44] D.S. Jung, S.B. Park, Y.C. Kang, Design of Particles by Spray Pyrolysis and Recent Progress in its Application, Korean Journal of Chemical Engineering, 27 (2010) 1621-1645. [45] A.K. Peterson, D.G. Morgan, S.E. Skrabalak, Aerosol Synthesis of Porous Particles Using Simple Salts as a Pore Template, Langmuir, 26 (2010) 8804-8809. [46] H. Chang, H.D. Jang, Controlled Synthesis of Porous Particles via Aerosol Processing and their Applications, Advanced Powder Technology, 25 (2014) 32-42. [47] F.C. Lee, Y.F. Lu, F.C. Chou, C.F. Cheng, R.M. Ho, D.H. Tsai, Mechanistic Study of Gas-Phase Controlled Synthesis of Copper Oxide-Based Hybrid Nanoparticle for CO Oxidation, The Journal of Physical Chemistry C, 120 (2016) 13638-13648. [48] C.Y. Lin, F.C. Chou, D.H. Tsai, Mechanistic Understanding of Surface Reduction of CuCeO Hybrid Nanoparticles for Catalytic Methane Combustion, Journal of the Taiwan Institute of Chemical Engineers, 92 (2018) 80-90. [49] Y.F. Lu, F.C. Chou, F.C. Lee, C.Y. Lin, D.H. Tsai, Synergistic Catalysis of Methane Combustion Using Cu–Ce–O Hybrid Nanoparticles with High Activity and Operation Stability, The Journal of Physical Chemistry C, 120 (2016) 27389-27398. [50] W. Liu, W.D. Wu, C. Selomulya, X.D. Chen, Facile Spray-Drying Assembly of Uniform Microencapsulates with Tunable Core–Shell Structures and Controlled Release Properties, Langmuir, 27 (2011) 12910-12915. [51] D.A. Firmansyah, S.-G. Kim, K.-S. Lee, R. Zahaf, Y.H. Kim, D. Lee, Microstructure-Controlled Aerosol–Gel Synthesis of ZnO Quantum Dots Dispersed in SiO2 Nanospheres, Langmuir, 28 (2012) 2890-2896. [52] Y. Isomura, T. Narushima, H. Kawasaki, T. Yonezawa, Y. Obora, Surfactant-free Single-nano-sized Colloidal Cu Nanoparticles for Use as an Active Catalyst in Ullmann-Coupling Reaction, Chem Commun, 48 (2012) 3784-3786. [53] R.K. Pati, I.C. Lee, S.C. Hou, O. Akhuemonkhan, K.J. Gaskell, Q. Wang, A.I. Frenkel, D. Chu, L.G. Salamanca-Riba, S.H. Ehrman, Flame Synthesis of Nanosized Cu−Ce−O, Ni−Ce−O, and Fe−Ce−O Catalysts for the Water-Gas Shift (WGS) Reaction, ACS Applied Materials & Interfaces, 1 (2009) 2624-2635. [54] H.L. Wang, H. Yeh, Y.C. Chen, Y.C. Lai, C.Y. Lin, K.Y. Lu, R.M. Ho, B.H. Lo, C.H. Lin, D.H. Tsai, Thermal Stability of Metal-Organic Frameworks and Encapsulation of CuO Nanocrystals for Highly Active Catalysis, ACS Applied Materials & Interfaces, 10 (2018) 9332-9341. [55] H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to Metal–Organic Frameworks, Chemical Reviews, 112 (2012) 673-674. [56] S. Dang, Q.L. Zhu, Q. Xu, Nanomaterials Derived from Metal–Organic Frameworks, Nature Reviews Materials, 3 (2017) 17075. [57] X.R. Li, X.C. Yang, H.G. Xue, H. Pang, Q. Xu, Metal-Organic Frameworks as a Platform for Clean Energy Applications, EnergyChem, (2020) 100027. [58] Z.B. Liang, R. Zhao, T.J. Qiu, R.Q. Zou, Q. Xu, Metal-Organic Framework-Derived Materials for Electrochemical Energy Applications, EnergyChem, 1 (2019) 100001. [59] B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-Organic Framework as a Template for Porous Carbon Synthesis, Journal of the American Chemical Society, 130 (2008) 5390-5391. [60] L. Oar-Arteta, T. Wezendonk, X. Sun, F. Kapteijn, J. Gascon, Metal Organic Frameworks as Precursors for the Manufacture of Advanced Catalytic Materials, Materials Chemistry Frontiers, 1 (2017) 1709-1745. [61] J.K. Sun, Q. Xu, Functional Materials Derived from Open Framework Templates/precursors: Synthesis and Applications, Energy & Environmental Science, 7 (2014) 2071-2100. [62] W. Xia, A. Mahmood, R.Q. Zou, Q. Xu, Metal–Organic Frameworks and their Derived Nanostructures for Electrochemical Energy Storage and Conversion, Energy & Environmental Science, 8 (2015) 1837-1866. [63] Z. Bian, I.Y. Suryawinata, S. Kawi, Highly Carbon Resistant Multicore-Shell Catalyst Derived from Ni-Mg Phyllosilicate Nanotubes@Silica for Dry Reforming of Methane, Applied Catalysis B: Environmental, 195 (2016) 1-8. [64] N. Wang, K. Shen, L.H. Huang, X.P. Yu, W.Z. Qian, W. Chu, Facile Route for Synthesizing Ordered Mesoporous Ni–Ce–Al Oxide Materials and Their Catalytic Performance for Methane Dry Reforming to Hydrogen and Syngas, ACS Catalysis, 3 (2013) 1638-1651. [65] R.L. Vander Wal, T.M. Ticich, V.E. Curtis, Substrate–Support Interactions in Metal-Catalyzed Carbon Nanofiber Growth, Carbon, 39 (2001) 2277-2289. [66] V.A. Tsipouriari, X.E. Verykios, Kinetic Study of the Catalytic Reforming of Methane with Carbon Dioxide to Synthesis Gas over Ni/La2O3 catalyst, Catalysis Today, 64 (2001) 83-90. [67] Y. Yang, W. Li, H. Xu, A New Explanation for the Carbon Deposition and Elimination over Supported Ni, Ni-Ce and Ni-Co Catalysts for CO2-reforming of Methane, Reaction Kinetics and Catalysis Letters, 77 (2002) 155-162. [68] Y.T. Tseng, W.H. Tseng, C.H. Lin, R.M. Ho, Fabrication of Double‐Length‐Scale Patterns via Lithography, Block Copolymer Templating, and Electrodeposition, Advanced Materials, 19 (2007) 3584-3588. [69] T.Y. Liang, H.H. Chen, D.H. Tsai, Nickel Hybrid Nanoparticle Decorating on Alumina Nanoparticle Cluster for Synergistic Catalysis of Methane Dry Reforming, Fuel Processing Technology, 201 (2020) 106335. [70] H.D. Jang, H. Chang, K. Cho, F. Kim, K. Sohn, J. Huang, Co-Assembly of Nanoparticles in Evaporating Aerosol Droplets: Preparation of Nanoporous Pt/TiO2 Composite Particles, Aerosol Science and Technology, 44 (2010) 1140-1145. [71] C. Shang, Z. Wu, W.D. Wu, X.D. Chen, Chemical Crosslinking Assembly of ZSM-5 Nanozeolites into Uniform and Hierarchically Porous Microparticles for High-Performance Acid Catalysis, ACS Applied Materials & Interfaces, 11 (2019) 16693-16703. [72] Y.A. Sun, L.T. Chen, S.Y. Hsu, C.C. Hu, D.H. Tsai, Silver Nanoparticles-Decorating Manganese Oxide Hybrid Nanostructures for Supercapacitor Applications, Langmuir, 35 (2019) 14203-14212. [73] D. Senthil Raja, H.W. Lin, S.Y. Lu, Synergistically Well-mixed MOFs Grown on Nickel Foam as Highly Efficient Durable Bifunctional Electrocatalysts for Overall Water Splitting at High Current Densities, Nano Energy, 57 (2019) 1-13. [74] J. Dixkens, H. Fissan, Development of an Electrostatic Precipitator for Off-Line Particle Analysis, Aerosol Science and Technology, 30 (1999) 438-453. [75] G.H. Lai, J.H. Lak, D.H. Tsai, Hydrogen Production via Low-Temperature Steam–Methane Reforming Using Ni–CeO2–Al2O3 Hybrid Nanoparticle Clusters as Catalysts, ACS Applied Energy Materials, 2 (2019) 7963-7971. [76] P. Pal, R.K. Singha, A. Saha, R. Bal, A.B. Panda, Defect-Induced Efficient Partial Oxidation of Methane over Nonstoichiometric Ni/CeO2 Nanocrystals, Journal of Physical Chemistry C, 119 (2015) 13610-13618. [77] S.A. Theofanidis, V.V. Galvita, H. Poelman, G.B. Marin, Enhanced Carbon-Resistant Dry Reforming Fe-Ni Catalyst: Role of Fe, ACS Catalysis, 5 (2015) 3028-3039. [78] R. Dębek, M. Motak, M.E. Galvez, T. Grzybek, P. Da Costa, Promotion Effect of Zirconia on Mg(Ni,Al)O Mixed Oxides Derived from Hydrotalcites in CO2 Methane Reforming, Applied Catalysis B: Environmental, 223 (2018) 36-46. [79] M. Jafarbegloo, A. Tarlani, A.W. Mesbah, S. Sahebdelfar, Thermodynamic Analysis of Carbon Dioxide Reforming of Methane and its Practical Relevance, International Journal of Hydrogen Energy, 40 (2015) 2445-2451. [80] C.j. Liu, J.y. Ye, J.j. Jiang, Y.x. Pan, Progresses in the Preparation of Coke Resistant Ni-based Catalyst for Steam and CO2 Reforming of Methane, ChemCatChem, 3 (2011) 529-541. [81] B. Pawelec, S. Damyanova, K. Arishtirova, J.L.G. Fierro, L. Petrov, Structural and Surface Features of PtNi Catalysts for Reforming of Methane with CO2, Applied Catalysis A: General, 323 (2007) 188-201. [82] I.V. Yentekakis, G. Goula, M. Hatzisymeon, I. Betsi-Argyropoulou, G. Botzolaki, K. Kousi, D.I. Kondarides, M.J. Taylor, C.M.A. Parlett, A. Osatiashtiani, G. Kyriakou, J.P. Holgado, R.M. Lambert, Effect of Support Oxygen Storage Capacity on the Catalytic Performance of Rh Nanoparticles for CO2 Reforming of Methane, Applied Catalysis B: Environmental, 243 (2019) 490-501. [83] Y. Kathiraser, W. Thitsartarn, K. Sutthiumporn, S. Kawi, Inverse NiAl2O4 on LaAlO3–Al2O3: Unique Catalytic Structure for Stable CO2 Reforming of Methane, The Journal of Physical Chemistry C, 117 (2013) 8120-8130. [84] T.Y. Liang, D. Senthil Raja, K.C. Chin, C.-L. Huang, S.A.P. Sethupathi, L.K. Leong, D.H. Tsai, S.-Y. Lu, Bimetallic Metal–Organic Framework-Derived Hybrid Nanostructures as High-Performance Catalysts for Methane Dry Reforming, ACS Applied Materials & Interfaces, 12 (2020) 15183-15193. [85] R. Dębek, M. Motak, D. Duraczyska, F. Launay, M.E. Galvez, T. Grzybek, P. Da Costa, Methane Dry Reforming over Hydrotalcite-derived Ni–Mg–Al Mixed Oxides: the Influence of Ni Content on Catalytic Activity, Selectivity and Stability, Catalysis Science & Technology, 6 (2016) 6705-6715. [86] C.J. Chen, X.G. Wang, H.G. Huang, X.J. Zou, F.N. Gu, F.B. Su, X.G. Lu, Synthesis of Mesoporous Ni-La-Si Mixed Oxides for CO2 Reforming of CH4 with a High H2 Selectivity, Fuel Processing Technology, 185 (2019) 56-67. [87] A. Carné-Sánchez, I. Imaz, M. Cano-Sarabia, D. Maspoch, A Spray-Drying Strategy for Synthesis of Nanoscale Metal–Organic Frameworks and their Assembly into Hollow Superstructures, Nature Chemistry, 5 (2013) 203. [88] H.S. Roh, K.W. Jun, W.S. Dong, S.E. Park, Y.S. Baek, Highly Stable Ni Catalyst Supported on Ce–ZrO2 for Oxy-Steam Reforming of Methane, Catalysis Letters, 74 (2001) 31-36. [89] W.S. Dong, H.S. Roh, K.W. Jun, S.E. Park, Y.S. Oh, Methane Reforming over Ni/Ce-ZrO2 Catalysts: Effect of Nickel Content, Applied Catalysis A: General, 226 (2002) 63-72. [90] A. Vita, G. Cristiano, C. Italiano, L. Pino, S. Specchia, Syngas Production by Methane Oxy-Steam Reforming on Me/CeO2 (Me=Rh, Pt, Ni) Catalyst lined on Cordierite Monoliths, Applied Catalysis B: Environmental, 162 (2015) 551-563. [91] N. Kumar, Z. Wang, S. Kanitkar, J. Spivey, Methane Reforming over Ni-based Pyrochlore Catalyst: Deactivation Studies for Different Reactions, Applied Petrochemical Research, 6 (2016) 201-207. [92] K.Y. Koo, H.S. Roh, Y.T. Seo, D.J. Seo, W.L. Yoon, S.B. Park, Coke Study on MgO-promoted Ni/Al2O3 Catalyst in Combined H2O and CO2 Reforming of Methane for Gas to Liquid (GTL) Process, Applied Catalysis A: General, 340 (2008) 183-190. [93] K.Y. Koo, H.S. Roh, U.H. Jung, D.J. Seo, Y.S. Seo, W.L. Yoon, Combined H2O and CO2 reforming of CH4 over Nano-sized Ni/MgO-Al2O3 Catalysts for Synthesis Gas Production for Gas to Liquid (GTL): Effect of Mg/Al Mixed Ratio on Coke Formation, Catalysis Today, 146 (2009) 166-171. [94] D.Y. Qin, J. Lapszewicz, X.Z. Jiang, Comparison of Partial Oxidation and Steam-CO2 Mixed Reformingof CH4 to Syngas on MgO-Supported Metals, Journal of Catalysis, 159 (1996) 140-149.
|