帳號:guest(3.145.201.79)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄧義臻
作者(外文):Teng, Yi-Chen
論文名稱(中文):以水性硝酸鉛前驅物製備鈣鈦礦太陽能模組之研究
論文名稱(外文):Perovskite Solar Module Fabricated Using Aqueous Lead Nitrate Precursors
指導教授(中文):衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員(中文):童永樑
劉振良
口試委員(外文):Tung, Yung-Liang
Liou, Jen-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032520
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:134
中文關鍵詞:鈣鈦礦太陽能模組單片互聯技術水性硝酸鉛前驅物
外文關鍵詞:perovskite solar modulemonolithic interconnectionaqueous lead nitrate precursors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來鈣鈦礦太陽能電池快速的發展,其經由認證的光電轉換效率從原先3.8%已經大幅提升到25.2%,除了效率的提升以外,鈣鈦礦太陽能電池本身優良的光電性質以及能使用低成本溶液製程製作的優勢,被認為具有商業化的潛力。然而目前高效率鈣鈦礦太陽能電池的研究大多數著眼在小型元件中(約為0.1cm2),大面積製作的鈣鈦礦太陽能模組表現落後於小型元件甚多,故元件放大製程的開發亦開始被重視。開發放大製程過程中會遇到的問題包括設備需求、鍍膜方法品質以及環境的要求。其中無孔洞且均勻的阻隔層被視為改善大面積鈣鈦礦太陽能電池的關鍵因素之一。
本實驗室擁有以電沉積方法製備二氧化鈦阻隔層之技術,其所需的設備以及製程相較於其他大面積沉積技術簡單,而該方法可通過改變電極系統參數控制二氧化鈦薄膜的形貌和厚度。此外本實驗室過去也成功開發水性硝酸鉛前驅物製程,改善以往被廣泛應用在碘化鉛前驅物系統的有毒溶劑二甲基甲醯胺,將製備鈣鈦礦薄膜過程趨向環保。然而上述兩種技術尚未在真正大面積鈣鈦礦太陽能模組的平台試驗,而這正是本研究的目標。
首先利用薄膜太陽能模組中常見的單片互聯P1&P2&P3劃線技術製備鈣鈦礦太陽能模組,開發出可在模組上量測單一電池以及串聯模組的結構。接著比較電沉積法與常見旋轉塗佈法阻隔層在模組中的表現,最後將水性硝酸鉛製程應用於鈣鈦礦太陽能模組並對其進行優化,提供相對於碘化鉛前驅物製程對人體以及環境較友善的鈣鈦礦太陽能模組製程技術。

Recently, significant progress of organometallic halide perovskite solar cell (PSC) has been achieved, boosting the power conversion efficiency (PCE) to 25.2%. Based on this rapid development, PSCs are regarded as a potential candidate for the commercial application. However, most high PCE of PSCs are recorded in tiny areas, typically around 0.1cm2 or less. The PCEs of large-area perovskite solar cells and modules still lag behind those of small area devices. The quality requirement of the films in large-area PSC is much more severe than that in small area devices. For example, a pinhole-less and uniform blocking layer (BL) is regarded as one of the key factors to improve the PCE of large-area PSC.
We previously developed the bottom-up deposition method to prepare TiO2 BL by electrodeposition technology and the low-toxicity Pb(NO3)2/water system to fabricate perovskite thin film. Electrodeposition method provides controllability for the morphology and thickness of resultant TiO2 films by simply manipulating deposition parameters. Low-toxicity Pb(NO3)2/water system compared to the PbI2/DMF system is an environmentally friendly fabrication of PSCs. However, these two technologies have still not been extensively investigated on perovskite solar modules (PSM).
In this report, we tried our efforts in developing monolithic PSM. In particular, the interconnect structure, P1&P2&P3 scribe, was established. Moreover, based on our unique pattern design of PSMs, the PCE of single cell and series module can be individually measured. Subsequently, we compared PSMs equipped with electrodeposited and spin-coated TiO2 BL. Uniformity, thickness, and PCE are compared and discussed. Finally, we fabricated PSM by using low-toxicity Pb(NO3)2/water system and optimized characteristics of perovskite thin film boosting the device performance. Our approach is compatible with up-scalable deposition techniques and we pave the way for eco-friendly fabrication of efficient PSM.




摘要 I
目錄 V
表目錄 VIII
圖目錄 X
第一章 緒論 1
1-1 前言 1
第二章 文獻回顧 7
2-1 鈣鈦礦太陽能電池簡介 7
2-1-1 鈣鈦礦結構的發現 7
2-1-2 鈣鈦礦太陽能電池起源與發展 8
2-1-3 鈣鈦礦太陽能電池結構與工作原理 11
2-1-4 有機無機混合含鉛鈣鈦礦簡介[21] 14
2-2 鈣鈦礦太陽能模組(Perovskite solar module, PSM) 19
2-2-1 鈣鈦礦太陽能模組的發展現況 19
2-2-2 鈣鈦礦太陽模組單片互聯技術和劃線技術(scribing technique) 24
2-2-3 鈣鈦礦太陽能模組大面積沉積技術 26
2-2-3-1. 旋轉塗佈法(Spin Coating) 26
2-2-3-2噴霧式塗佈(Spray Coating) 28
2-2-3-3噴墨印刷法(Inkjet Printing) 32
2-2-3-4 狹縫式塗佈法(Slot Die Coating) 34
2-4-4-5 刮刀式塗佈法(Blade Coating) 35
2-4-4-6 氣相沉積技術(Vapor Phase Deposition ,VPD) 40
2-3 水性硝酸鉛前驅物製程與電沉積二氧化鈦技術 44
2-3-1水性硝酸鉛前驅物製程 44
2-3-2 電沉積二氧化鈦技術 47
2-4 研究目的與動機 52
第三章 實驗方法與儀器分析 53
3-1 實驗藥品與材料 53
3-1-1 藥品與材料 53
3-1-2 藥品製備與配製 55
3-2 實驗儀器 56
3-2-1 實驗儀器與分析相關設備 56
3-2-2 設備與分析儀器簡介 57
3-3 實驗方法 67
3-3-1 模組P1劃線以及FTO導電玻璃前處理流程 67
3-3-2 TiO2阻隔層製備流程 67
3-3-3 TiO2多孔層製備流程 68
3-3-4 兩步法鈣鈦礦層製備流程 68
3-3-5 模組P2劃線以及電洞傳輸層製備流程 69
3-3-6 模組P3劃線以及背電極製備流程 70
第四章 實驗結果與討論 72
4-1 鈣鈦礦太陽能模組(PSM)系統建立 72
4-1-1 PSM上單顆電池及多顆電池串聯量測平台 72
4-1-2 雷射劃線參數調控 75
4-1-3 P1以及P3劃線 76
4-1-4 P2劃線 77
4-2 鈣鈦礦太陽能模組(PSM)與小型電池(PSC)之比較 84
4-2-1 PSM串聯機制以及PSC之比較 84
4-2-2 PSM量測異常問題 92
4-3 電沉積二氧化鈦阻隔層鈣鈦礦太陽能模組系統 96
4-3-1 電沉積二氧化鈦阻隔層性質分析 96
4-3-2 電沉積二氧化鈦阻隔層鈣鈦礦太陽能模組討論 100
4-3-3 電沉積與旋轉塗佈二氧化鈦阻隔層鈣鈦礦太陽能模組之比較 102
4-4 水性硝酸鉛前驅物鈣鈦礦太陽能模組 103
4-4-1 鈣鈦礦太陽能模組中碘化鉛兩步連續旋塗法之困境 103
4-4-2 水性硝酸鉛與傳統碘化鉛兩步浸泡法鈣鈦礦太陽能模組比較 105
4-4-3 水性硝酸鉛系統鈣鈦礦太陽能模組優化 110
第五章 結論 120
第六章 未來工作 122
參考文獻 123
[1] The NASA Earth's Energy Budget Poster (7 ed.). Available: https://science-edu.larc.nasa.gov/energy_budget/ (2016)
[2] Becquerel, A. E. Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques. CR Acad. Sci, 9(145), 1. (1839)
[3] Chodos, A. April 25, 1954: Bell labs demonstrates the first practical silicon solar cell. APS News-This month in Physics history. (2009)
[4] Reported timeline of solar cell energy conversion efficiencies (National Renewable Energy Laboratory) (2020)
[5] Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051. (2009)
[6] Snapshot of Global Photovoltaic Markets, ISBN 978-3-906042-83-1. (2019)
[7] Wiendlocha, B., Tobola, J., Kaprzyk, S., & Fruchart, D. Electronic structure, superconductivity and magnetism study of Cr3GaN and Cr3RhN. Journal of alloys and compounds, 442(1-2), 289-291. (2007)
[8] Tokura, Y., Tomioka, Y., Kuwahara, H., Asamitsu, A., Moritomo, Y., & Kasai, M. Origins of colossal magnetoresistance in perovskite‐type manganese oxides. Journal of Applied Physics, 79(8), 5288-5291. (1996)
[9] Nuraje, N., & Su, K. Perovskite ferroelectric nanomaterials. Nanoscale, 5(19), 8752-8780. (2013)
[10] Philipp, J. B. et al. Spin-dependent transport in the double-perovskite Sr 2 CrWO 6. Applied physics letters, 79(22), 3654-3656 (2001)
[11] Im, J. H., Lee, C. R., Lee, J. W., Park, S. W., & Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10), 4088-4093. (2011)
[12] Kim, H. S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2(1), 1-7. (2012)
[13] Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society, 134(42), 17396-17399. (2012)
[14] Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338(6107), 643-647. (2012)
[15] Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316-319. (2013)
[16] Liu, M., Johnston, M. B., & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467), 395-398. (2013)
[17] Zhou, H., Chen et al. Interface engineering of highly efficient perovskite solar cells. Science, 345(6196), 542-546. (2014)
[18] Seo, J., Noh, J. H., & Seok, S. I. Rational strategies for efficient perovskite solar cells. Accounts of chemical research, 49(3), 562-572. (2016)
[19] Song, Z., Watthage, S. C., Phillips, A. B., & Heben, M. J. Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. Journal of Photonics for Energy, 6(2), 022001. (2016)
[20] Leijtens, T., Lauber, B., Eperon, G. E., Stranks, S. D., & Snaith, H. J. (2014). The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells. The journal of physical chemistry letters, 5(7), 1096-1102. (2014)
[21] Park, N. G. Perovskite solar cells: an emerging photovoltaic technology. Materials today, 18(2), 65-72. (2015)
[22] Stoumpos, C. C., & Kanatzidis, M. G. The renaissance of halide perovskites and their evolution as emerging semiconductors. Accounts of chemical research, 48(10), 2791-2802. (2015)
[23] Shockley, W., & Queisser, H. J. Detailed balance limit of efficiency of p‐n junction solar cells. Journal of applied physics, 32(3), 510-519. (1961)
[24] Anaya, M., Lozano, G., Calvo, M. E., & Míguez, H. ABX3 perovskites for tandem solar cells. Joule, 1(4), 769-793. (2017)
[25] Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 7(3), 982-988. (2014)
[26] Leijtens, T., Bush, K., Cheacharoen, R., Beal, R., Bowring, A., & McGehee, M. D. Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. Journal of Materials Chemistry A, 5(23), 11483-11500. (2017)
[27] Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517(7535), 476-480. (2015)
[28] Eperon, G. E., Paternò, G. M., Sutton, R. J., Zampetti, A., Haghighirad, A. A., Cacialli, F., & Snaith, H. J. Inorganic caesium lead iodide perovskite solar cells. Journal of Materials Chemistry A, 3(39), 19688-19695. (2015)
[29] Kulbak, M., Gupta, S., Kedem, N., Levine, I., Bendikov, T., Hodes, G., & Cahen, D. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. The journal of physical chemistry letters, 7(1), 167-172. (2016)
[30] Li, Z., Yang, M., Park, J. S., Wei, S. H., Berry, J. J., & Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials, 28(1), 284-292. (2016)
[31] Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano letters, 13(4), 1764-1769. (2013)
[32] Dualeh, A., Moehl, T., Tétreault, N., Teuscher, J., Gao, P., Nazeeruddin, M. K., & Grätzel, M. Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS nano, 8(1), 362-373. (2013)
[33] Dualeh, A., Tétreault, N., Moehl, T., Gao, P., Nazeeruddin, M. K., & Grätzel, M. Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid‐state solar cells. Advanced Functional Materials, 24(21), 3250-3258. (2014)
[34] You, J., Hong, Z. et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS nano, 8(2), 1674-1680. (2014)
[35] Conings, B., Baeten, L., De Dobbelaere, C., D'Haen, J., Manca, J., & Boyen, H. G. Perovskite‐based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Advanced Materials, 26(13), 2041-2046. (2014)
[36] Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials, 13(9), 897-903. (2014)
[37] Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., ... & Huang, J. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science, 7(8), 2619-2623. (2014)
[38] Hsieh, T. Y., Huang, C. K., Su, T. S., Hong, C. Y., & Wei, T. C. Crystal growth and dissolution of methylammonium lead iodide perovskite in sequential deposition: correlation between morphology evolution and photovoltaic performance. ACS applied materials & interfaces, 9(10), 8623-8633. (2017)
[39] Matteocci, F. et al. Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process. Physical Chemistry Chemical Physics, 16(9), 3918-3923. (2014)
[40] Razza, S. et al. Perovskite solar cells and large area modules (100ácm2) based on an air flow-assisted PbI2 blade coating deposition process. Journal of Power Sources, 277, 286-291. (2015)
[41] Heo, J. H., Han, H. J., Kim, D., Ahn, T. K., & Im, S. H. Hysteresis-less inverted CH 3 NH 3 PbI 3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science, 8(5), 1602-1608. (2015)
[42] Di Giacomo, F. et al. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV‐irradiated TiO2 scaffolds on plastic substrates. Advanced Energy Materials, 5(8), 1401808. (2015)
[43] Cai, Y., Liang, L., & Gao, P. Promise of commercialization: Carbon materials for low-cost perovskite solar cells. Chinese Physics B, 27(1), 018805. (2018)
[44] Priyadarshi, A. et al. A large area (70 cm 2) monolithic perovskite solar module with a high efficiency and stability. Energy & Environmental Science, 9(12), 3687-3692. (2016)
[45] Grancini, G. et al. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nature communications, 8(1), 1-8. (2017)
[46] Walter, A., Moon et al. Closing the cell-to-module efficiency gap: a fully laser scribed perovskite minimodule with 16% steady-state aperture area efficiency. IEEE Journal of Photovoltaics, 8(1), 151-155. (2018)
[47] Mahmood, K., Sarwar, S., & Mehran, M. T. Current status of electron transport layers in perovskite solar cells: materials and properties. Rsc Advances, 7(28), 17044-17062. (2017)
[48] Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517(7535), 476-480. (2015).
[49] Ye, F. et al. Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy & Environmental Science, 9(7), 2295-2301. (2016)
[50] Yang, M., Zhou, Y., Zeng, Y., Jiang, C. S., Padture, N. P., & Zhu, K. Square‐centimeter solution‐processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Advanced Materials, 27(41), 6363-6370. (2015)
[51] Qiu, W. et al. Pinhole-free perovskite films for efficient solar modules. Energy & Environmental Science, 9(2), 484-489. (2016)
[52] Spray Shaping Systems: Sono-Tek, https://www.sono-tek.com/ultrasonic-coating/spray-shaping-systems, 2019 Accessed, April. (2019)
[53] Barrows, A. T., Pearson, A. J., Kwak, C. K., Dunbar, A. D., Buckley, A. R., & Lidzey, D. G. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 7(9), 2944-2950. (2014)
[54] Das, S. et al. High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. Acs Photonics, 2(6), 680-686. (2015)
[55] Heo, J. H., Lee, M. H., Jang, M. H., & Im, S. H. Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. Journal of Materials Chemistry A, 4(45), 17636-17642. (2016)
[56] Chai, G., Luo, S., Zhou, H., & Daoud, W. A. CH3NH3PbI3−xBrx perovskite solar cells via spray assisted two-step deposition: Impact of bromide on stability and cell performance. Materials & Design, 125, 222-229. (2017)
[57] Huang, H., Shi, J., Zhu, L., Li, D., Luo, Y., & Meng, Q. Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. Nano Energy, 27, 352-358. (2016)
[58] Liang, C. et al. One‐step inkjet printed perovskite in air for efficient light harvesting. Solar Rrl, 2(2), 1700217. (2018)
[59] Li, P. et al. Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells. Nano Energy, 46, 203-211. (2018)
[60] Bag, M., Jiang, Z., Renna, L. A., Jeong, S. P., Rotello, V. M., & Venkataraman, D. Rapid combinatorial screening of inkjet-printed alkyl-ammonium cations in perovskite solar cells. Materials Letters, 164, 472-475. (2016)
[61] Li, S. G. et al. Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO 2 film for highly efficient perovskite solar cells. Journal of Materials Chemistry A, 3(17), 9092-9097. (2015)
[62] Shalan, A. E. Challenges and approaches towards upscaling the assembly of hybrid perovskite solar cells. Materials Advances. (2020)
[63] Krebs, F. C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar energy materials and solar cells, 93(4), 394-412. (2019)
[64] Lee, D. et al. Slot-die coated perovskite films using mixed lead precursors for highly reproducible and large-area solar cells. ACS applied materials & interfaces, 10(18), 16133-16139. (2018)
[65] Hwang, K. et al. Toward large scale roll‐to‐roll production of fully printed perovskite solar cells. Advanced materials, 27(7), 1241-1247. (2015)
[66] Kim, J. E., Jung, Y. S., Heo, Y. J., Hwang, K., Qin, T., Kim, D. Y., & Vak, D. Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. Solar Energy Materials and Solar Cells, 179, 80-86. (2018)
[67] Swartwout, R., Hoerantner, M. T., & Bulović, V. Scalable Deposition Methods for Large‐area Production of Perovskite Thin Films. Energy & Environmental Materials, 2(2), 119-145. (2019)
[68] Di Giacomo, F. et al. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Solar Energy Materials and Solar Cells, 181, 53-59. (2018)
[69] Yang, Z., Chueh, C. C., Zuo, F., Kim, J. H., Liang, P. W., & Jen, A. K. Y. High‐performance fully printable perovskite solar cells via blade‐coating technique under the ambient condition. Advanced Energy Materials, 5(13), 1500328. (2015)
[70] Zhong, Y. et al. Blade-coated hybrid perovskite solar cells with efficiency> 17%: an in situ investigation. ACS Energy Letters, 3(5), 1078-1085. (2018)
[71] Kim, M. K. et al. Effects of temperature and coating speed on the morphology of solution-sheared halide perovskite thin-films. Journal of Materials Chemistry A, 6(48), 24911-24919. (2018)
[72] Tang, S. et al. Composition engineering in doctor‐blading of perovskite solar cells. Advanced Energy Materials, 7(18), 1700302.. (2017)
[73] Yang, M. et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nature Energy, 2(5), 1-9. (2017)
[74] Wang, S. et al. Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method. Journal of Materials Chemistry A, 3(28), 14631-14641. (2015)
[75] Costa, J. C., Azevedo, J., Santos, L. M., & Mendes, A. On the deposition of lead halide perovskite precursors by physical vapor method. The Journal of Physical Chemistry C, 121(4), 2080-2087. (2017)
[76] Liu, M., Johnston, M. B., & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467), 395-398. (2013)
[77] Borchert, J. et al. Large-area, highly uniform evaporated formamidinium lead triiodide thin films for solar cells. ACS Energy Letters, 2(12), 2799-2804. (2017)
[78] Jiang, Y. et al. Combination of Hybrid CVD and Cation Exchange for Upscaling Cs‐Substituted Mixed Cation Perovskite Solar Cells with High Efficiency and Stability. Advanced Functional Materials, 28(1), 1703835. (2018)
[79] Bu, T. et al. Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Advanced Energy Materials, 7(20), 1700576. (2017)
[80] Agresti, A. et al. Graphene interface engineering for perovskite solar modules: 12.6% power conversion efficiency over 50 cm2 active area. ACS Energy Letters, 2(1), 279-287. (2017)
[81] Deng, Y., Zheng, X., Bai, Y., Wang, Q., Zhao, J., & Huang, J. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 3(7), 560-566. (2018)
[82] Jiang, Y. et al. Negligible‐Pb‐Waste and Upscalable Perovskite Deposition Technology for High‐Operational‐Stability Perovskite Solar Modules. Advanced Energy Materials, 9(13), 1803047. (2019)
[83] Hsieh, T. Y., Wei, T. C., Wu, K. L., Ikegami, M., & Miyasaka, T. Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor. Chemical Communications, 51(68), 13294-13297. (2015)
[84] Hsieh, T. Y., Su, T. S., Ikegami, M., Wei, T. C., & Miyasaka, T. Stable and efficient perovskite solar cells fabricated using aqueous lead nitrate precursor: Interpretation of the conversion mechanism and renovation of the sequential deposition. Materials Today Energy, 14, 100125. (2019)
[85] Kavan, L., O'Regan, B., Kay, A., & Grätzel, M. Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3. Journal of Electroanalytical Chemistry, 346(1-2), 291-307. (1993)
[86] Wu, M. S., Tsai, C. H., & Wei, T. C. Anodic deposition of ultrathin TiO2 film with blocking layer and anchoring layer for dye-sensitized solar cells. Journal of The Electrochemical Society, 159(1), B80. (2012)
[87] Su, T. S., Hsieh, T. Y., Hong, C. Y., & Wei, T. C. Electrodeposited ultrathin TiO2 blocking layers for efficient perovskite solar cells. Scientific reports, 5, 16098. (2015)
[88] Su, T. S., Wu, Y. S., Tung, Y. L., & Wei, T. C. One-Pot Electrodeposition of Compact Layer and Mesoporous Scaffold for Perovskite Solar Cells. ACS Applied Energy Materials, 1(6), 2429-2433. (2018)
[89] Neukom, M., Züfle, S., Jenatsch, S., & Ruhstaller, B. Opto-electronic characterization of third-generation solar cells. Science and Technology of advanced MaTerialS, 19(1), 291-316. (2018)
[90] 謝宗育。「以硝酸鉛水溶液系統製備鈣鈦礦太陽能電池之研究」。博士論文,國立清華大學化學工程學系,2019。<https://hdl.handle.net/11296/kbyhyj>。
[91] Bu, T. et al. Dynamic Antisolvent Engineering for Spin Coating of 10× 10 cm2 Perovskite Solar Module Approaching 18%. Solar RRL, 4(2), 1900263. (2020)
[92] Bayer, L., Ye, X., Lorenz, P., & Zimmer, K. Studies on perovskite film ablation and scribing with ns-, ps-and fs-laser pulses. Applied Physics A, 123(10), 619. (2017)
[93] Hoppe, H., Seeland, M., & Muhsin, B. Optimal geometric design of monolithic thin-film solar modules: Architecture of polymer solar cells. Solar energy materials and solar cells, 97, 119-126. (2012).
[94] Chen, Q. et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano letters, 14(7), 4158-4163. (2014)
[95] Microquanta reaches 17.9% efficiency for perovskite solar mini-module. Retrieved from https://www.perovskite-info.com/microquanta-reaches-179-efficiency-perovskite-solar-mini-module. (Jul 03, 2018)
[96] Microquanta announces 14.24% efficiency with large-area perovskite solar module. Retrieved from https://www.perovskite-info.com/microquanta-announces-1424-efficiency-large-area-perovskite-solar-module. (Oct 27, 2019)
[97] Toshiba Achieves World's Highest Conversion Efficiency in 5 cm X 5 cm Film-based Perovskite Solar Cell Mini-modules. Retrieved from https://www.toshiba.co.jp/rdc/rd/detail_e/e1709_02.html (25 Sep, 2017)
[98] Toshiba and NEDO develop a large film-based perovskite photovoltaic module With 11.7% PCE. Retrieved from https://www.perovskite-info.com/toshiba-and-nedo-develop-large-film-based-perovskite-photovoltaic-module-117-pce (Jul 16, 2018)
[99] Japan's NEDO and Panasonic Achieve the World's Highest Conversion Efficiency of 16.09% for Largest-area Perovskite Solar Cell Module. Retrieved fromhttps://news.panasonic.com/global/press/data/2020/02/en200207-2/en200207-2.html (Feb 07, 2020)
[100] Li, J. et al. Highly efficient thermally co-evaporated perovskite solar cells and mini-modules. Joule. (2020)
[101] Solubility curve of lead nitrate. Available: https://socratic.org/questions/what-are-solubility-curves
[102] Wang, C. et al. How to fabricate efficient perovskite solar mini-modules in lab. Journal of Power Sources, 228321. (2020)
[103] Matteocci, F. et al. High efficiency photovoltaic module based on mesoscopic organometal halide perovskite. Progress in Photovoltaics: Research and Applications, 24(4), 436-445. (2016)
[104] Chiang, C. H., Nazeeruddin, M. K., Grätzel, M., & Wu, C. G. The synergistic effect of H 2 O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy & Environmental Science, 10(3), 808-817. (2017)
[105] Seo, J., Park, S., Kim, Y. C., Jeon, N. J., Noh, J. H., Yoon, S. C., & Seok, S. I. Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy & Environmental Science, 7(8), 2642-2646. (2014)

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *