|
[1] The NASA Earth's Energy Budget Poster (7 ed.). Available: https://science-edu.larc.nasa.gov/energy_budget/ (2016) [2] Becquerel, A. E. Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques. CR Acad. Sci, 9(145), 1. (1839) [3] Chodos, A. April 25, 1954: Bell labs demonstrates the first practical silicon solar cell. APS News-This month in Physics history. (2009) [4] Reported timeline of solar cell energy conversion efficiencies (National Renewable Energy Laboratory) (2020) [5] Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051. (2009) [6] Snapshot of Global Photovoltaic Markets, ISBN 978-3-906042-83-1. (2019) [7] Wiendlocha, B., Tobola, J., Kaprzyk, S., & Fruchart, D. Electronic structure, superconductivity and magnetism study of Cr3GaN and Cr3RhN. Journal of alloys and compounds, 442(1-2), 289-291. (2007) [8] Tokura, Y., Tomioka, Y., Kuwahara, H., Asamitsu, A., Moritomo, Y., & Kasai, M. Origins of colossal magnetoresistance in perovskite‐type manganese oxides. Journal of Applied Physics, 79(8), 5288-5291. (1996) [9] Nuraje, N., & Su, K. Perovskite ferroelectric nanomaterials. Nanoscale, 5(19), 8752-8780. (2013) [10] Philipp, J. B. et al. Spin-dependent transport in the double-perovskite Sr 2 CrWO 6. Applied physics letters, 79(22), 3654-3656 (2001) [11] Im, J. H., Lee, C. R., Lee, J. W., Park, S. W., & Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10), 4088-4093. (2011) [12] Kim, H. S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2(1), 1-7. (2012) [13] Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society, 134(42), 17396-17399. (2012) [14] Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338(6107), 643-647. (2012) [15] Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316-319. (2013) [16] Liu, M., Johnston, M. B., & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467), 395-398. (2013) [17] Zhou, H., Chen et al. Interface engineering of highly efficient perovskite solar cells. Science, 345(6196), 542-546. (2014) [18] Seo, J., Noh, J. H., & Seok, S. I. Rational strategies for efficient perovskite solar cells. Accounts of chemical research, 49(3), 562-572. (2016) [19] Song, Z., Watthage, S. C., Phillips, A. B., & Heben, M. J. Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. Journal of Photonics for Energy, 6(2), 022001. (2016) [20] Leijtens, T., Lauber, B., Eperon, G. E., Stranks, S. D., & Snaith, H. J. (2014). The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells. The journal of physical chemistry letters, 5(7), 1096-1102. (2014) [21] Park, N. G. Perovskite solar cells: an emerging photovoltaic technology. Materials today, 18(2), 65-72. (2015) [22] Stoumpos, C. C., & Kanatzidis, M. G. The renaissance of halide perovskites and their evolution as emerging semiconductors. Accounts of chemical research, 48(10), 2791-2802. (2015) [23] Shockley, W., & Queisser, H. J. Detailed balance limit of efficiency of p‐n junction solar cells. Journal of applied physics, 32(3), 510-519. (1961) [24] Anaya, M., Lozano, G., Calvo, M. E., & Míguez, H. ABX3 perovskites for tandem solar cells. Joule, 1(4), 769-793. (2017) [25] Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 7(3), 982-988. (2014) [26] Leijtens, T., Bush, K., Cheacharoen, R., Beal, R., Bowring, A., & McGehee, M. D. Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. Journal of Materials Chemistry A, 5(23), 11483-11500. (2017) [27] Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517(7535), 476-480. (2015) [28] Eperon, G. E., Paternò, G. M., Sutton, R. J., Zampetti, A., Haghighirad, A. A., Cacialli, F., & Snaith, H. J. Inorganic caesium lead iodide perovskite solar cells. Journal of Materials Chemistry A, 3(39), 19688-19695. (2015) [29] Kulbak, M., Gupta, S., Kedem, N., Levine, I., Bendikov, T., Hodes, G., & Cahen, D. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. The journal of physical chemistry letters, 7(1), 167-172. (2016) [30] Li, Z., Yang, M., Park, J. S., Wei, S. H., Berry, J. J., & Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials, 28(1), 284-292. (2016) [31] Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano letters, 13(4), 1764-1769. (2013) [32] Dualeh, A., Moehl, T., Tétreault, N., Teuscher, J., Gao, P., Nazeeruddin, M. K., & Grätzel, M. Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS nano, 8(1), 362-373. (2013) [33] Dualeh, A., Tétreault, N., Moehl, T., Gao, P., Nazeeruddin, M. K., & Grätzel, M. Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid‐state solar cells. Advanced Functional Materials, 24(21), 3250-3258. (2014) [34] You, J., Hong, Z. et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS nano, 8(2), 1674-1680. (2014) [35] Conings, B., Baeten, L., De Dobbelaere, C., D'Haen, J., Manca, J., & Boyen, H. G. Perovskite‐based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Advanced Materials, 26(13), 2041-2046. (2014) [36] Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature materials, 13(9), 897-903. (2014) [37] Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., ... & Huang, J. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science, 7(8), 2619-2623. (2014) [38] Hsieh, T. Y., Huang, C. K., Su, T. S., Hong, C. Y., & Wei, T. C. Crystal growth and dissolution of methylammonium lead iodide perovskite in sequential deposition: correlation between morphology evolution and photovoltaic performance. ACS applied materials & interfaces, 9(10), 8623-8633. (2017) [39] Matteocci, F. et al. Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process. Physical Chemistry Chemical Physics, 16(9), 3918-3923. (2014) [40] Razza, S. et al. Perovskite solar cells and large area modules (100ácm2) based on an air flow-assisted PbI2 blade coating deposition process. Journal of Power Sources, 277, 286-291. (2015) [41] Heo, J. H., Han, H. J., Kim, D., Ahn, T. K., & Im, S. H. Hysteresis-less inverted CH 3 NH 3 PbI 3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science, 8(5), 1602-1608. (2015) [42] Di Giacomo, F. et al. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV‐irradiated TiO2 scaffolds on plastic substrates. Advanced Energy Materials, 5(8), 1401808. (2015) [43] Cai, Y., Liang, L., & Gao, P. Promise of commercialization: Carbon materials for low-cost perovskite solar cells. Chinese Physics B, 27(1), 018805. (2018) [44] Priyadarshi, A. et al. A large area (70 cm 2) monolithic perovskite solar module with a high efficiency and stability. Energy & Environmental Science, 9(12), 3687-3692. (2016) [45] Grancini, G. et al. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nature communications, 8(1), 1-8. (2017) [46] Walter, A., Moon et al. Closing the cell-to-module efficiency gap: a fully laser scribed perovskite minimodule with 16% steady-state aperture area efficiency. IEEE Journal of Photovoltaics, 8(1), 151-155. (2018) [47] Mahmood, K., Sarwar, S., & Mehran, M. T. Current status of electron transport layers in perovskite solar cells: materials and properties. Rsc Advances, 7(28), 17044-17062. (2017) [48] Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517(7535), 476-480. (2015). [49] Ye, F. et al. Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy & Environmental Science, 9(7), 2295-2301. (2016) [50] Yang, M., Zhou, Y., Zeng, Y., Jiang, C. S., Padture, N. P., & Zhu, K. Square‐centimeter solution‐processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Advanced Materials, 27(41), 6363-6370. (2015) [51] Qiu, W. et al. Pinhole-free perovskite films for efficient solar modules. Energy & Environmental Science, 9(2), 484-489. (2016) [52] Spray Shaping Systems: Sono-Tek, https://www.sono-tek.com/ultrasonic-coating/spray-shaping-systems, 2019 Accessed, April. (2019) [53] Barrows, A. T., Pearson, A. J., Kwak, C. K., Dunbar, A. D., Buckley, A. R., & Lidzey, D. G. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 7(9), 2944-2950. (2014) [54] Das, S. et al. High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. Acs Photonics, 2(6), 680-686. (2015) [55] Heo, J. H., Lee, M. H., Jang, M. H., & Im, S. H. Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. Journal of Materials Chemistry A, 4(45), 17636-17642. (2016) [56] Chai, G., Luo, S., Zhou, H., & Daoud, W. A. CH3NH3PbI3−xBrx perovskite solar cells via spray assisted two-step deposition: Impact of bromide on stability and cell performance. Materials & Design, 125, 222-229. (2017) [57] Huang, H., Shi, J., Zhu, L., Li, D., Luo, Y., & Meng, Q. Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and large-area perovskite solar cell. Nano Energy, 27, 352-358. (2016) [58] Liang, C. et al. One‐step inkjet printed perovskite in air for efficient light harvesting. Solar Rrl, 2(2), 1700217. (2018) [59] Li, P. et al. Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells. Nano Energy, 46, 203-211. (2018) [60] Bag, M., Jiang, Z., Renna, L. A., Jeong, S. P., Rotello, V. M., & Venkataraman, D. Rapid combinatorial screening of inkjet-printed alkyl-ammonium cations in perovskite solar cells. Materials Letters, 164, 472-475. (2016) [61] Li, S. G. et al. Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO 2 film for highly efficient perovskite solar cells. Journal of Materials Chemistry A, 3(17), 9092-9097. (2015) [62] Shalan, A. E. Challenges and approaches towards upscaling the assembly of hybrid perovskite solar cells. Materials Advances. (2020) [63] Krebs, F. C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar energy materials and solar cells, 93(4), 394-412. (2019) [64] Lee, D. et al. Slot-die coated perovskite films using mixed lead precursors for highly reproducible and large-area solar cells. ACS applied materials & interfaces, 10(18), 16133-16139. (2018) [65] Hwang, K. et al. Toward large scale roll‐to‐roll production of fully printed perovskite solar cells. Advanced materials, 27(7), 1241-1247. (2015) [66] Kim, J. E., Jung, Y. S., Heo, Y. J., Hwang, K., Qin, T., Kim, D. Y., & Vak, D. Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. Solar Energy Materials and Solar Cells, 179, 80-86. (2018) [67] Swartwout, R., Hoerantner, M. T., & Bulović, V. Scalable Deposition Methods for Large‐area Production of Perovskite Thin Films. Energy & Environmental Materials, 2(2), 119-145. (2019) [68] Di Giacomo, F. et al. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Solar Energy Materials and Solar Cells, 181, 53-59. (2018) [69] Yang, Z., Chueh, C. C., Zuo, F., Kim, J. H., Liang, P. W., & Jen, A. K. Y. High‐performance fully printable perovskite solar cells via blade‐coating technique under the ambient condition. Advanced Energy Materials, 5(13), 1500328. (2015) [70] Zhong, Y. et al. Blade-coated hybrid perovskite solar cells with efficiency> 17%: an in situ investigation. ACS Energy Letters, 3(5), 1078-1085. (2018) [71] Kim, M. K. et al. Effects of temperature and coating speed on the morphology of solution-sheared halide perovskite thin-films. Journal of Materials Chemistry A, 6(48), 24911-24919. (2018) [72] Tang, S. et al. Composition engineering in doctor‐blading of perovskite solar cells. Advanced Energy Materials, 7(18), 1700302.. (2017) [73] Yang, M. et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nature Energy, 2(5), 1-9. (2017) [74] Wang, S. et al. Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method. Journal of Materials Chemistry A, 3(28), 14631-14641. (2015) [75] Costa, J. C., Azevedo, J., Santos, L. M., & Mendes, A. On the deposition of lead halide perovskite precursors by physical vapor method. The Journal of Physical Chemistry C, 121(4), 2080-2087. (2017) [76] Liu, M., Johnston, M. B., & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467), 395-398. (2013) [77] Borchert, J. et al. Large-area, highly uniform evaporated formamidinium lead triiodide thin films for solar cells. ACS Energy Letters, 2(12), 2799-2804. (2017) [78] Jiang, Y. et al. Combination of Hybrid CVD and Cation Exchange for Upscaling Cs‐Substituted Mixed Cation Perovskite Solar Cells with High Efficiency and Stability. Advanced Functional Materials, 28(1), 1703835. (2018) [79] Bu, T. et al. Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Advanced Energy Materials, 7(20), 1700576. (2017) [80] Agresti, A. et al. Graphene interface engineering for perovskite solar modules: 12.6% power conversion efficiency over 50 cm2 active area. ACS Energy Letters, 2(1), 279-287. (2017) [81] Deng, Y., Zheng, X., Bai, Y., Wang, Q., Zhao, J., & Huang, J. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 3(7), 560-566. (2018) [82] Jiang, Y. et al. Negligible‐Pb‐Waste and Upscalable Perovskite Deposition Technology for High‐Operational‐Stability Perovskite Solar Modules. Advanced Energy Materials, 9(13), 1803047. (2019) [83] Hsieh, T. Y., Wei, T. C., Wu, K. L., Ikegami, M., & Miyasaka, T. Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor. Chemical Communications, 51(68), 13294-13297. (2015) [84] Hsieh, T. Y., Su, T. S., Ikegami, M., Wei, T. C., & Miyasaka, T. Stable and efficient perovskite solar cells fabricated using aqueous lead nitrate precursor: Interpretation of the conversion mechanism and renovation of the sequential deposition. Materials Today Energy, 14, 100125. (2019) [85] Kavan, L., O'Regan, B., Kay, A., & Grätzel, M. Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3. Journal of Electroanalytical Chemistry, 346(1-2), 291-307. (1993) [86] Wu, M. S., Tsai, C. H., & Wei, T. C. Anodic deposition of ultrathin TiO2 film with blocking layer and anchoring layer for dye-sensitized solar cells. Journal of The Electrochemical Society, 159(1), B80. (2012) [87] Su, T. S., Hsieh, T. Y., Hong, C. Y., & Wei, T. C. Electrodeposited ultrathin TiO2 blocking layers for efficient perovskite solar cells. Scientific reports, 5, 16098. (2015) [88] Su, T. S., Wu, Y. S., Tung, Y. L., & Wei, T. C. One-Pot Electrodeposition of Compact Layer and Mesoporous Scaffold for Perovskite Solar Cells. ACS Applied Energy Materials, 1(6), 2429-2433. (2018) [89] Neukom, M., Züfle, S., Jenatsch, S., & Ruhstaller, B. Opto-electronic characterization of third-generation solar cells. Science and Technology of advanced MaTerialS, 19(1), 291-316. (2018) [90] 謝宗育。「以硝酸鉛水溶液系統製備鈣鈦礦太陽能電池之研究」。博士論文,國立清華大學化學工程學系,2019。<https://hdl.handle.net/11296/kbyhyj>。 [91] Bu, T. et al. Dynamic Antisolvent Engineering for Spin Coating of 10× 10 cm2 Perovskite Solar Module Approaching 18%. Solar RRL, 4(2), 1900263. (2020) [92] Bayer, L., Ye, X., Lorenz, P., & Zimmer, K. Studies on perovskite film ablation and scribing with ns-, ps-and fs-laser pulses. Applied Physics A, 123(10), 619. (2017) [93] Hoppe, H., Seeland, M., & Muhsin, B. Optimal geometric design of monolithic thin-film solar modules: Architecture of polymer solar cells. Solar energy materials and solar cells, 97, 119-126. (2012). [94] Chen, Q. et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano letters, 14(7), 4158-4163. (2014) [95] Microquanta reaches 17.9% efficiency for perovskite solar mini-module. Retrieved from https://www.perovskite-info.com/microquanta-reaches-179-efficiency-perovskite-solar-mini-module. (Jul 03, 2018) [96] Microquanta announces 14.24% efficiency with large-area perovskite solar module. Retrieved from https://www.perovskite-info.com/microquanta-announces-1424-efficiency-large-area-perovskite-solar-module. (Oct 27, 2019) [97] Toshiba Achieves World's Highest Conversion Efficiency in 5 cm X 5 cm Film-based Perovskite Solar Cell Mini-modules. Retrieved from https://www.toshiba.co.jp/rdc/rd/detail_e/e1709_02.html (25 Sep, 2017) [98] Toshiba and NEDO develop a large film-based perovskite photovoltaic module With 11.7% PCE. Retrieved from https://www.perovskite-info.com/toshiba-and-nedo-develop-large-film-based-perovskite-photovoltaic-module-117-pce (Jul 16, 2018) [99] Japan's NEDO and Panasonic Achieve the World's Highest Conversion Efficiency of 16.09% for Largest-area Perovskite Solar Cell Module. Retrieved fromhttps://news.panasonic.com/global/press/data/2020/02/en200207-2/en200207-2.html (Feb 07, 2020) [100] Li, J. et al. Highly efficient thermally co-evaporated perovskite solar cells and mini-modules. Joule. (2020) [101] Solubility curve of lead nitrate. Available: https://socratic.org/questions/what-are-solubility-curves [102] Wang, C. et al. How to fabricate efficient perovskite solar mini-modules in lab. Journal of Power Sources, 228321. (2020) [103] Matteocci, F. et al. High efficiency photovoltaic module based on mesoscopic organometal halide perovskite. Progress in Photovoltaics: Research and Applications, 24(4), 436-445. (2016) [104] Chiang, C. H., Nazeeruddin, M. K., Grätzel, M., & Wu, C. G. The synergistic effect of H 2 O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy & Environmental Science, 10(3), 808-817. (2017) [105] Seo, J., Park, S., Kim, Y. C., Jeon, N. J., Noh, J. H., Yoon, S. C., & Seok, S. I. Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy & Environmental Science, 7(8), 2642-2646. (2014)
|