|
1. Braff WA, Mueller JM, Trancik JE. Value of storage technologies for wind and solar energy. Nature Climate Change 2016;6(10):964 2. Kittner N, Lill F, Kammen DM. Energy storage deployment and innovation for the clean energy transition. Nature Energy 2017;2(9):17125 3. Erickson RW, Maksimovic D. Fundamentals of power electronics. Springer Science & Business Media; 2007. 4. Frackowiak E, Béguin F, Supercapacitors: Materials, Systems and Applications. 2013, Wiley-VCH: Weinheim, Germany. 5. Lewandowski A, Galinski M. Practical and theoretical limits for electrochemical double-layer capacitors. Journal of Power Sources 2007;173(2):822-28 6. Chen C, Zhao D, Wang X. Influence of addition of tantalum oxide on electrochemical capacitor performance of molybdenum nitride. Materials Chemistry and Physics 2006;97(1):156-61 7. Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science 2014;343(6176):1210-11 8. Zheng JP. Theoretical energy density for electrochemical capacitors with intercalation electrodes. Journal of the Electrochemical Society 2005;152(9):A1864-A69 9. Conway BE. Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media; 2013. 10. Endo M, Takeda T, Kim Y, Koshiba K, Ishii K. High power electric double layer capacitor (EDLC's); from operating principle to pore size control in advanced activated carbons. Carbon Letters 2001;1(3_4):117-28 11. Conway BE. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. Journal of the Electrochemical Society 1991;138(6):1539-48 12. Jayalakshmi M, Balasubramanian K. Simple capacitors to supercapacitors-an overview. Int. J. Electrochem. Sci 2008;3(11):1196-217 13. Couper AM, Pletcher D, Walsh FC. Electrode materials for electrosynthesis. Chemical Reviews 1990;90(5):837-65 14. Wendt H. Electrocatalysis in organic electrochemistry. Electrochimica Acta 1984;29(11):1513-25 15. Marsan B, Fradette N, Beaudoin G. Physicochemical and Electrochemical Properties of CuCo2 O 4 Electrodes Prepared by Thermal Decomposition for Oxygen Evolution. Journal of The Electrochemical Society 1992;139(7):1889-96 16. Nanni L, Polizzi S, Benedetti A, De Battisti A. Morphology, Microstructure, and Electrocatalytic Properties of RuO2‐SnO2 Thin Films. Journal of the Electrochemical Society 1999;146(1):220-25 17. Aida T, Yamada K, Morita M. An advanced hybrid electrochemical capacitor that uses a wide potential range at the positive electrode. Electrochemical and Solid-State Letters 2006;9(12):A534-A36 18. Kisacikoglu M, Uzunoglu M, Alam M. Load sharing using fuzzy logic control in a fuel cell/ultracapacitor hybrid vehicle. International Journal of Hydrogen Energy 2009;34(3):1497-507 19. Choi NS, Chen Z, Freunberger SA, Ji X, Sun YK, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG. Challenges facing lithium batteries and electrical double‐layer capacitors. Angewandte Chemie International Edition 2012;51(40):9994-10024 20. Di Lecce D, Verrelli R, Hassoun J. Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations. Green Chemistry 2017;19(15):3442-67 21. Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews 2017;46(22):6816-54 22. Zhou L, Zhang K, Hu Z, Tao Z, Mai L, Kang YM, Chou SL, Chen J. Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithium‐Ion Batteries. Advanced Energy Materials 2018;8(6):1701415 23. Young K, Wang C, Wang LY, Strunz K, Electric vehicle battery technologies, in Electric vehicle integration into modern power networks. 2013, Springer. p. 15-56. 24. Su C-L, Chin H-M, Leou R-C, Lin C-H. Power quality measurements of distribution systems with LRT ultra-fast charging infrastructures. in 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017-ECCE Asia). 2017. IEEE. 25. Xiong G, Kundu A, Fisher TS, Thermal management in electrochemical energy storage systems, in Thermal Effects in Supercapacitors. 2015, Springer. p. 1-10. 26. Manthiram A. An outlook on lithium ion battery technology. ACS Central Science 2017;3(10):1063-69 27. Xin S, You Y, Wang S, Gao H-C, Yin Y-X, Guo Y-G. Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects. ACS Energy Letters 2017;2(6):1385-94 28. Salunkhe RR, Lee YH, Chang KH, Li JM, Simon P, Tang J, Torad NL, Hu CC, Yamauchi Y. Nanoarchitectured graphene‐based supercapacitors for next‐generation energy‐storage applications. Chemistry–A European Journal 2014;20(43):13838-52 29. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S. Carbon materials for chemical capacitive energy storage. Advanced Materials 2011;23(42):4828-50 30. Li B, Zheng J, Zhang H, Jin L, Yang D, Lv H, Shen C, Shellikeri A, Zheng Y, Gong R. Electrode materials, electrolytes, and challenges in nonaqueous lithium‐ion capacitors. Advanced Materials 2018;30(17):1705670 31. Cericola D, Kötz R. Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits. Electrochimica Acta 2012;72:1-17 32. Wang H, Zhu C, Chao D, Yan Q, Fan HJ. Nonaqueous hybrid lithium‐ion and sodium‐ion capacitors. Advanced Materials 2017;29(46):1702093 33. Barcellona S, Piegari L. A lithium-ion capacitor model working on a wide temperature range. Journal of Power Sources 2017;342:241-51 34. Cappetto A, Cao W, Luo J, Hagen M, Adams D, Shelikeri A, Xu K, Zheng J. Performance of wide temperature range electrolytes for Li-Ion capacitor pouch cells. Journal of Power Sources 2017;359:205-14 35. Han P, Xu G, Han X, Zhao J, Zhou X, Cui G. Lithium ion capacitors in organic electrolyte system: scientific problems, material development, and key technologies. Advanced Energy Materials 2018;8(26):1801243 36. Simon P, Gogotsi Y, Materials for electrochemical capacitors, in Nanoscience And Technology: A Collection of Reviews from Nature Journals. 2010, World Scientific. p. 320-29. 37. Dell R, Rand DAJ, Bailey Jr R. Understanding batteries. Royal Society of Chemistry; 2001. 38. Lu J, Lei Y, Lau KC, Luo X, Du P, Wen J, Assary RS, Das U, Miller DJ, Elam JW. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nature Communications 2013;4:2383 39. Taberna P-L, Mitra S, Poizot P, Simon P, Tarascon J-M. High rate capabilities Fe 3 O 4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Materials 2006;5(7):567 40. Vetter J. P. Nov ák, MR Wagner, C. Veit, K. C. M€ oller, J. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, Ageing mechanisms in lithium-ion batteries, J. Power Sources 2005;147 41. Wang W, Wang X. Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery. Electrochimica Acta 2007;52(24):6755-62 42. Fong R, Von Sacken U, Dahn JR. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. Journal of The Electrochemical Society 1990;137(7):2009-13 43. Inaba M, Yoshida H, Ogumi Z. In situ Roman Study of Electrochemical Lithium Insertion into Mesocarbon Microbeads Heat‐Treated at Various Temperatures. Journal of The Electrochemical Society 1996;143(8):2572-78 44. 陳金銘. 高容量碳粉材料. 工業材料 1998;133 45. Kelly BT. Physics of graphite. 1981 46. Inagaki M, Kang F. Materials science and engineering of carbon: fundamentals. Butterworth-Heinemann; 2014. 47. Herold A. Recherches sur les composes dinsertion du graphite. Bulletin de la Société Chimique de France 1955(7-8):999-1012 48. Dresselhaus M, Dresselhaus G. Intercalation compounds of graphite. Advances in Physics 1981;30(2):139-326 49. Ogumi Z, Inaba M. Electrochemical lithium intercalation within carbonaceous materials: intercalation processes, surface film formation, and lithium diffusion. Bulletin of the Chemical Society of Japan 1998;71(3):521-34 50. Robertson J. Amorphous carbon. Advances in Physics 1986;35(4):317-74 51. Robertson J, O’reilly E. Electronic and atomic structure of amorphous carbon. Physical Review B 1987;35(6):2946 52. Inagaki M. New carbons-control of structure and functions. Elsevier; 2000. 53. Loeffler BN, Bresser D, Passerini S, Copley M. Secondary lithium-ion battery anodes: from first commercial batteries to recent research activities. Johnson Matthey Technology Review 2015;59(1):34-44 54. Dahn JR, Zheng T, Liu Y, Xue J. Mechanisms for lithium insertion in carbonaceous materials. Science 1995;270(5236):590-93 55. Mochida I, Ku C-H, Yoon S-H, Korai Y. Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries. Journal of Power Sources 1998;75(2):214-22 56. 黃鉦致, 以不同原料和四種活化方法製備活性碳之物理化學與吸附特性. 國立聯合大學化學工程學系碩士論文, 2009. 57. Lewis, I., Chemistry of carbonization. Carbon, 1982. 20: p. 11. 58. Otowa, T., R. Tanibata, and M. ltoh, Production and adsorption characteristics of MAXSORB: high-surface-area active carbon Gas Separation & Purification, 1993. 7(4): p. 5. 59. Lozano-Castello´, D., et al., Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon, 2007. 45: p. 8. 60. Romanos, J., et al., Nanospace engineering of KOH activated carbon. Nanotechnology, 2012. 23(1): p. 015401. 61. Aida T, Murayama I, Yamada K, Morita M (2007) High-energydensity hybrid electrochemical capacitor using graphitizable carbon activated with KOH for positive electrode. J Power Sources 166:462–470. 62. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood III DL. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016;105:52-76 63. Holtstiege F, Wilken A, Winter M, Placke T. Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries. Physical Chemistry Chemical Physics 2017;19(38):25905-18 64. Michan AL, Divitini G, Pell AJ, Leskes M, Ducati C, Grey CP. Solid electrolyte interphase growth and capacity loss in silicon electrodes. Journal of the American Chemical Society 2016;138(25):7918-31 65. Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 2010;55(22):6332-41 66. Winter M. The solid electrolyte interphase–the most important and the least understood solid electrolyte in rechargeable Li batteries. Zeitschrift für Physikalische Chemie 2009;223(10-11):1395-406 67. Placke T, Siozios V, Schmitz R, Lux S, Bieker P, Colle C, Meyer H-W, Passerini S, Winter M. Influence of graphite surface modifications on the ratio of basal plane to “non-basal plane” surface area and on the anode performance in lithium ion batteries. Journal of Power Sources 2012;200:83-91 68. Winter M, Novák P, Monnier A. Graphites for lithium‐ion cells: the correlation of the first‐cycle charge loss with the brunauer‐emmett‐teller surface area. Journal of the Electrochemical Society 1998;145(2):428-36 69. Krueger S, Kloepsch R, Li J, Nowak S, Passerini S, Winter M. How do reactions at the anode/electrolyte interface determine the cathode performance in lithium-ion batteries? Journal of the Electrochemical Society 2013;160(4):A542-A48 70. Winter M, Appel WK, Evers B, Hodal T, Möller K-C, Schneider I, Wachtler M, Wagner MR, Wrodnigg GH, Besenhard JO, Studies on the anode/electrolyte interface in lithium ion batteries, in Electroactive Materials. 2001, Springer. p. 53-66. 71. Aravindan V, Lee YS, Madhavi S. Best Practices for Mitigating Irreversible Capacity Loss of Negative Electrodes in Li‐Ion Batteries. Advanced Energy Materials 2017;7(17):1602607 72. De La Llave E, Borgel V, Park K-J, Hwang J-Y, Sun Y-K, Hartmann P, Chesneau F-F, Aurbach D. Comparison between Na-Ion and Li-Ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior. ACS Applied Materials & Interfaces 2016;8(3):1867-75 73. Holtstiege F, Bärmann P, Nölle R, Winter M, Placke T. Pre-lithiation strategies for rechargeable energy storage technologies: concepts, promises and challenges. Batteries 2018;4(1):4 74. Cai M, Sun X, Nie Y, Chen W, Qiu Z, Chen L, Liu Z, Tang H. Electrochemical performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes as anode. Nano 2017;12(04):1750051 75. Zhang J, Shi Z, Wang C. Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitors. Electrochimica Acta 2014;125:22-28 76. Scott M, Whitehead A, Owen J. Chemical Formation of a Solid Electrolyte Interface on the Carbon Electrode of a Li‐Ion Cell. Journal of the Electrochemical Society 1998;145(5):1506-10 77. Tabuchi T, Yasuda H, Yamachi M. Li-doping process for LixSiO-negative active material synthesized by chemical method for lithium-ion cells. Journal of Power Sources 2005;146(1-2):507-09 78. Veluchamy A, Doh C-H, Kim D-H, Lee J-H, Lee D-J, Ha K-H, Shin H-M, Jin B-S, Kim H-S, Moon S-I. Improvement of cycle behaviour of SiO/C anode composite by thermochemically generated Li4SiO4 inert phase for lithium batteries. Journal of Power Sources 2009;188(2):574-77 79. Liu Y, Horikawa K, Fujiyosi M, Imanishi N, Hirano A, Takeda Y. Layered lithium transition metal nitrides as novel anodes for lithium secondary batteries. Electrochimica Acta 2004;49(21):3487-96 80. Liu D, Du F, Pan W, Chen G, Wang C, Wei Y. Electrochemical characterizations of Li2. 6Co0. 4N/Graphite anodes for lithium ion batteries. Materials Letters 2009;63(3-4):504-06 81. Liu Y, Hanai K, Horikawa K, Imanishi N, Hirano A, Takeda Y. Electrochemical characterization of a novel Si–graphite–Li2. 6Co0. 4N composite as anode material for lithium secondary batteries. Materials Chemistry and Physics 2005;89(1):80-84 82. Shellikeri A, Watson VG, Adams DL, Kalu EE, Read JA, Jow TR, Zheng JP. Pre-Lithiation of Carbon Anodes Using Different Lithium-Sources. ECS Transactions 2017;77(11):293-303 83. Beltrop K, Beuker S, Heckmann A, Winter M, Placke T. Alternative electrochemical energy storage: potassium-based dual-graphite batteries. Energy & Environmental Science 2017;10(10):2090-94 84. Sun H, He X, Ren J, Li J, Jiang C, Wan C. Hard carbon/lithium composite anode materials for Li-ion batteries. Electrochimica Acta 2007;52(13):4312-16 85. Fei L, Yoo SH, Villamayor RAR, Williams BP, Gong SY, Park S, Shin K, Joo YL. Graphene Oxide Involved Air-Controlled Electrospray for Uniform, Fast, Instantly Dry, and Binder-Free Electrode Fabrication. ACS Applied Materials & Interfaces 2017;9(11):9738-46 86. Jarvis C, Lain M, Yakovleva M, Gao Y. A prelithiated carbon anode for lithium-ion battery applications. Journal of Power Sources 2006;162(2):800-02 87. Sun Y, Tang J, Qin F, Yuan J, Zhang K, Li J, Zhu D-M, Qin L-C. Hybrid lithium-ion capacitors with asymmetric graphene electrodes. Journal of Materials Chemistry A 2017;5(26):13601-09 88. Liu C, Kim N, Rubloff GW, Lee SB. High performance asymmetric V2O5–SnO2 nanopore battery by atomic layer deposition. Nanoscale 2017;9(32):11566-73 89. Kim HJ, Choi S, Lee SJ, Seo MW, Lee JG, Deniz E, Lee YJ, Kim EK, Choi JW. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Letters 2015;16(1):282-88 90. 羅聖全. 科學基礎研究之重要利器—掃瞄式電子顯微鏡 (SEM). 91. Facility CMR. Scanning Electron Microscopy. 92. Discover BD. X-ray diffraction. 93. Sennu, Palanichamy, et al. All carbon based high energy lithium-ion capacitors from biomass: The role of crystallinity. Journal of Power Sources, 2019, 414: 96-102. 94. Sun, Congkai, et al. High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Storage Materials, 2020, 24: 160-166. 95. Zhang, Jin, et al. Mesoporous carbon material as cathode for high performance lithium-ion capacitor. Chinese Chemical Letters, 2018, 29.4: 620-623.
|