帳號:guest(3.149.23.182)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):古智友
作者(外文):Ku, Chih-Yu
論文名稱(中文):軟碳之預鋰化於鋰離子電容器之應用
論文名稱(外文):The prelithiation of soft carbons for lithium-ion capacitors
指導教授(中文):胡啟章
指導教授(外文):Hu, Chi-Chang
口試委員(中文):蔡德豪
陳翰儀
口試委員(外文):Tsai, De-Hao
Chen, Han-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032516
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:160
中文關鍵詞:混合型超電容離子電容器預鋰化高充電率軟碳結晶度
外文關鍵詞:Hybrid supercapacitorslithium-ion capacitorsprelithiationhigh C-ratesoft carboncrystallinity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:146
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,為因應高功率高能量之儲能需求,新型混合型鋰離子電容器受到學者們關注,其分別由超電容器之正極與鋰離子電池之負極所組成。而鋰離子電容器之負極中最常見之材料為碳材,然而於首次充電時,電解液會於電極材料表面發生化學反應,在負極表面生成鈍化膜,使得溶液中有效鋰離子損失,造成鋰離子電容器效能降低。而預鋰化技術能使負極先生成鈍化膜,並儲存鋰離子,在組裝成鋰離子電容器時,不會使系統內有效鋰離子損失,因此預鋰化技術十分重要。本研究以KOH鹼活化軟碳作為鋰離子電容器之負極碳材,並以電化學預鋰化進行預鋰化,並探討其預鋰化參數。
在預鋰化技術中,電化學預鋰化能精準控制預鋰化程度,但耗時長,因此希望能減少其預鋰化所需之時間。本研究發現,定電壓方法可使預鋰化能更完全,電容量更快達到穩定,使所需循環圈數減少。一般常使用0.1 C進行預鋰化,是因為石墨在低電位時,離子需慢慢擴散至碳層中,而軟碳石墨化程度不完全,具有一定程度之缺陷,故藉由高充放電率使得預鋰化時間減少。但是軟碳於低電位時,鋰離子仍需擴散至碳層內,故在低電位以0.1 C充電,使鋰離子能擴散至碳層中。以預鋰化時間考量,以1 C 充電至0.1 V,再以0.1 C 充電至0.01 V,並於0.01 V定電壓2小時,此兩階段充放電率法,相比傳統預鋰化方法,能減少50 %的預鋰化時間。
由於鹼活化軟碳AlSA04其電容量較低,為了提升鋰離子電容器之電化學表現,希望能使用電容量較高之電極材料,而鹼活化處理使得電容量下降,因此研究未鹼活化處理之軟碳,本研究以四種不同結晶度之軟碳觀察其電容量之影響,從XRD繞射圖與Raman光譜中可以得知四種軟碳具有不同結晶度。而以0.2 C充電、不同充放電率放電下,隨著結晶度愈低,其電容量則愈高;而以相同充放電率充放電之下,在低充放電率下,隨著結晶度愈低,其電容量則愈高;但在高充放電率時,軟碳HCS電容量則最高,其原因為軟碳HCS結晶性較低,鋰離子有足夠之活性位嵌入嵌出,且其層間距也較大,使鋰離子更容易進出碳層,因此在高功率下能有較好的電化學表現。因此軟碳HCS為較適合之負極材料,於10 C時電容維持率相對於0.1 C仍有33 %。
在之前的研究發現鹼活化軟碳AlSA04經由電化學活化後,能有效提升其電容值,經過5.4 V電化學活化後,其於2.0 – 4.6 V時有較高的電容值及庫倫效率,最後將軟碳HCS作為負極與鹼活化軟碳AlSA04作為正極組成鋰離子電容器,並以高充放電率下之電容量進行電量平衡,在正負活性材料重量比0.9時,與MCMB / AlSA04鋰離子電容器比較,可以發現在低功率下,兩者皆無太大差異,但當功率提升至10 kW kg-1時,MCMB / AlSA04 幾乎無法儲能,而HCS / AlSA04則仍有能量密度10 Wh kg-1。
最後將預鋰化電位控制於0.01 V,使鋰離子充份儲存於負極材料中,在功率密度10 kW kg-1時,其能量密度高達30 Wh kg-1,且在500 mA g-1下,相對於第一圈,仍具有90.2%的能量密度維持率,有一定程度的循環壽命,凸顯HCS / AlSA04鋰離子電容器在高功率下之優勢。
In this study, KOH-alkali soft carbon was used as lithium-ion negative carbonaceous material. Soft carbons are low-specific surface area materials, and its effective surface increases via alkali activation. With various prelithiation parameters for prelithiation of the negative electrode, electrochemical prelithiation has been discussed.
For prelithiation, the constant voltage method can improve the charging process and prelithiation, making the capacity more stable, and also reducing the required number of cycles. Since the degree of graphitization of soft carbon is incomplete, the prelithiation time is reduced by charging at high C-rate. However, at lower potential, lithium-ions still need to diffuse slowly into the carbon layers, so the charging rate at lower potential should decrease to 0.1 C. Considering the prelithiation time, the soft carbon is charged to 0.1 V at 1 C and charged to 0.01 V at 0.1 C with constant voltage at 0.01 V for 2 hours. This method, two-step C-rate method can reduce 50% prelithiation time at the 1st cycle compared to traditional method.
Due to the low capacity of alkali-soft carbon AlSA04, the soft carbons with different crystallinity were studied in order to improve the capacity of the negative electrode. From the XRD diffraction pattern and Raman spectra, we can know that these four soft carbons have different microcrystal structure. The discharging ability was studied for four soft carbons with different crystallinity at various discharging rates. At low C-rate, as the crystallinity is lower, the capacity is higher. However, at high C-rates, the capacity of soft carbon HCS is the largest, because of the low crystallinity, which has enough active sites for lithium-ions to intercalate/de-intercalate, and broader interlayer spacing that makes lithium-ions easier to intercalate/de-intercalate into the carbon layers. Even at 10 C, it also has 33% capacity retention rate corresponding to 0.1 C. To assembly lithium-ion capacitors, which need to be charged and discharged quickly, soft carbon HCS is more suitable material.
Compared with MCMB anode, the utilization of HCS anode can obviously improve the specific power of LIC device. When the AlSA04 as cathode is coupled with HCS with prelithiation potential of 0.01 V as anode, the LIC device shows the optimal electrochemical performance, high specific energy up to 30 Wh kg-1 and specific power as high as 10 kW kg-1 (based on active material mass of two electrodes), excellent specific energy retention of 90.2 % after 5,000 cycles. This work indicates the advantages of HCS / AlSA04 lithium-ion capacitors of high specific power and long cycle time.
摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 i
表目錄 viii
第一章 緒論 1
1-1 電化學電容器 1
1-1-1 傳統電容器 1
1-1-2 電化學電容器 3
1-1-2-1 電雙層電容器 4
1-1-2-2 擬電容電化學電容器 6
1-1-2-3 混合型電化學電容器 8
1-1-3 鋰離子電容器 9
1-2 鋰離子電容器之負極碳材 13
1-2-1 石墨 15
1-2-2 非晶型碳材 18
1-2-2-1 硬碳 19
1-2-2-2 軟碳 21
1-2-3 碳材鹼活化處理 25
1-3 預鋰化 28
1-3-1 化學預鋰化 31
1-3-2 電極添加物預鋰化 32
1-3-3 直接接觸預鋰化 33
1-3-4 電化學預鋰化 34
1-4 研究動機 37
第二章 實驗方法與步驟 44
2-1 實驗方法與儀器 44
2-1-1 實驗藥品及材料 44
2-1-2 實驗儀器 46
2-2 儀器和電化學分析 48
2-2-1 儀器分析 48
2-2-1-1 場發射式掃描電子顯微鏡 48
2-2-1-2 X-ray繞射分析儀 50
2-2-1-3 氮氣吸脫附曲線 52
2-2-1-4 拉曼光譜 55
2-2-1-5 X射線光電子能譜 56
2-2-2 電化學分析方法 58
2-3 鹼活化軟碳之製備 60
2-4 電極製備 61
2-4-1 負極製備 61
2-4-2 正極製備 61
2-5 電化學系統之組裝 62
第三章 軟碳於負極之電化學表現 63
3-1 鹼活化軟碳之材料分析 63
3-1-1 X-ray繞射圖譜分析 63
3-1-2 Raman光譜 66
3-1-3 SEM 影像分析 68
3-1-4 氮氣吸脫附曲線分析 70
3-1-5 XPS光譜分析 72
3-2 循環伏安法 74
3-3 黏著劑之影響 76
3-4 負極預鋰化 79
3-4-1 預鋰化方法 79
3-4-2 定電壓方法 82
3-4-3 不同充放電率 84
3-4-4 不同電位 86
3-4-5 高充放電率充電與定電壓方法 88
3-4-5-1 不同定電壓時間 88
3-4-5-2 不同充放電率 91
3-4-6 充放電率測試 95
3-5 小結 96
第四章 不同微晶軟碳於負極之行為 97
4-1 不同微晶軟碳之材料分析 97
4-1-1 X-ray繞射圖分析 97
4-1-2 Raman 光譜分析 101
4-1-3 SEM 影像分析 103
4-1-4 氮氣吸脫附曲線分析 105
4-1-5 XPS光譜分析 108
4-2 不同微晶軟碳之電化學行為 111
4-2-1 循環伏安法 111
4-2-2 循環壽命圖 115
4-2-3 充放電率圖 117
4-2-4 鋰離子電容器 120
4-2-4-1 鹼活化軟碳於正極之電化學活化表現 120
4-2-4-2 正負極活性材料重量比 124
4-2-4-3 預鋰化電位 144
4-3 小結 147
第五章 結論與未來展望 150
5-1 結論 150
5-2 未來展望 153
參考文獻 154
1. Braff WA, Mueller JM, Trancik JE. Value of storage technologies for wind and solar energy. Nature Climate Change 2016;6(10):964
2. Kittner N, Lill F, Kammen DM. Energy storage deployment and innovation for the clean energy transition. Nature Energy 2017;2(9):17125
3. Erickson RW, Maksimovic D. Fundamentals of power electronics. Springer Science & Business Media; 2007.
4. Frackowiak E, Béguin F, Supercapacitors: Materials, Systems and Applications. 2013, Wiley-VCH: Weinheim, Germany.
5. Lewandowski A, Galinski M. Practical and theoretical limits for electrochemical double-layer capacitors. Journal of Power Sources 2007;173(2):822-28
6. Chen C, Zhao D, Wang X. Influence of addition of tantalum oxide on electrochemical capacitor performance of molybdenum nitride. Materials Chemistry and Physics 2006;97(1):156-61
7. Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science 2014;343(6176):1210-11
8. Zheng JP. Theoretical energy density for electrochemical capacitors with intercalation electrodes. Journal of the Electrochemical Society 2005;152(9):A1864-A69
9. Conway BE. Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media; 2013.
10. Endo M, Takeda T, Kim Y, Koshiba K, Ishii K. High power electric double layer capacitor (EDLC's); from operating principle to pore size control in advanced activated carbons. Carbon Letters 2001;1(3_4):117-28
11. Conway BE. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. Journal of the Electrochemical Society 1991;138(6):1539-48
12. Jayalakshmi M, Balasubramanian K. Simple capacitors to supercapacitors-an overview. Int. J. Electrochem. Sci 2008;3(11):1196-217
13. Couper AM, Pletcher D, Walsh FC. Electrode materials for electrosynthesis. Chemical Reviews 1990;90(5):837-65
14. Wendt H. Electrocatalysis in organic electrochemistry. Electrochimica Acta 1984;29(11):1513-25
15. Marsan B, Fradette N, Beaudoin G. Physicochemical and Electrochemical Properties of CuCo2 O 4 Electrodes Prepared by Thermal Decomposition for Oxygen Evolution. Journal of The Electrochemical Society 1992;139(7):1889-96
16. Nanni L, Polizzi S, Benedetti A, De Battisti A. Morphology, Microstructure, and Electrocatalytic Properties of RuO2‐SnO2 Thin Films. Journal of the Electrochemical Society 1999;146(1):220-25
17. Aida T, Yamada K, Morita M. An advanced hybrid electrochemical capacitor that uses a wide potential range at the positive electrode. Electrochemical and Solid-State Letters 2006;9(12):A534-A36
18. Kisacikoglu M, Uzunoglu M, Alam M. Load sharing using fuzzy logic control in a fuel cell/ultracapacitor hybrid vehicle. International Journal of Hydrogen Energy 2009;34(3):1497-507
19. Choi NS, Chen Z, Freunberger SA, Ji X, Sun YK, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG. Challenges facing lithium batteries and electrical double‐layer capacitors. Angewandte Chemie International Edition 2012;51(40):9994-10024
20. Di Lecce D, Verrelli R, Hassoun J. Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations. Green Chemistry 2017;19(15):3442-67
21. Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews 2017;46(22):6816-54
22. Zhou L, Zhang K, Hu Z, Tao Z, Mai L, Kang YM, Chou SL, Chen J. Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithium‐Ion Batteries. Advanced Energy Materials 2018;8(6):1701415
23. Young K, Wang C, Wang LY, Strunz K, Electric vehicle battery technologies, in Electric vehicle integration into modern power networks. 2013, Springer. p. 15-56.
24. Su C-L, Chin H-M, Leou R-C, Lin C-H. Power quality measurements of distribution systems with LRT ultra-fast charging infrastructures. in 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017-ECCE Asia). 2017. IEEE.
25. Xiong G, Kundu A, Fisher TS, Thermal management in electrochemical energy storage systems, in Thermal Effects in Supercapacitors. 2015, Springer. p. 1-10.
26. Manthiram A. An outlook on lithium ion battery technology. ACS Central Science 2017;3(10):1063-69
27. Xin S, You Y, Wang S, Gao H-C, Yin Y-X, Guo Y-G. Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects. ACS Energy Letters 2017;2(6):1385-94
28. Salunkhe RR, Lee YH, Chang KH, Li JM, Simon P, Tang J, Torad NL, Hu CC, Yamauchi Y. Nanoarchitectured graphene‐based supercapacitors for next‐generation energy‐storage applications. Chemistry–A European Journal 2014;20(43):13838-52
29. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S. Carbon materials for chemical capacitive energy storage. Advanced Materials 2011;23(42):4828-50
30. Li B, Zheng J, Zhang H, Jin L, Yang D, Lv H, Shen C, Shellikeri A, Zheng Y, Gong R. Electrode materials, electrolytes, and challenges in nonaqueous lithium‐ion capacitors. Advanced Materials 2018;30(17):1705670
31. Cericola D, Kötz R. Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits. Electrochimica Acta 2012;72:1-17
32. Wang H, Zhu C, Chao D, Yan Q, Fan HJ. Nonaqueous hybrid lithium‐ion and sodium‐ion capacitors. Advanced Materials 2017;29(46):1702093
33. Barcellona S, Piegari L. A lithium-ion capacitor model working on a wide temperature range. Journal of Power Sources 2017;342:241-51
34. Cappetto A, Cao W, Luo J, Hagen M, Adams D, Shelikeri A, Xu K, Zheng J. Performance of wide temperature range electrolytes for Li-Ion capacitor pouch cells. Journal of Power Sources 2017;359:205-14
35. Han P, Xu G, Han X, Zhao J, Zhou X, Cui G. Lithium ion capacitors in organic electrolyte system: scientific problems, material development, and key technologies. Advanced Energy Materials 2018;8(26):1801243
36. Simon P, Gogotsi Y, Materials for electrochemical capacitors, in Nanoscience And Technology: A Collection of Reviews from Nature Journals. 2010, World Scientific. p. 320-29.
37. Dell R, Rand DAJ, Bailey Jr R. Understanding batteries. Royal Society of Chemistry; 2001.
38. Lu J, Lei Y, Lau KC, Luo X, Du P, Wen J, Assary RS, Das U, Miller DJ, Elam JW. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nature Communications 2013;4:2383
39. Taberna P-L, Mitra S, Poizot P, Simon P, Tarascon J-M. High rate capabilities Fe 3 O 4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Materials 2006;5(7):567
40. Vetter J. P. Nov ák, MR Wagner, C. Veit, K. C. M€ oller, J. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, Ageing mechanisms in lithium-ion batteries, J. Power Sources 2005;147
41. Wang W, Wang X. Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery. Electrochimica Acta 2007;52(24):6755-62
42. Fong R, Von Sacken U, Dahn JR. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. Journal of The Electrochemical Society 1990;137(7):2009-13
43. Inaba M, Yoshida H, Ogumi Z. In situ Roman Study of Electrochemical Lithium Insertion into Mesocarbon Microbeads Heat‐Treated at Various Temperatures. Journal of The Electrochemical Society 1996;143(8):2572-78
44. 陳金銘. 高容量碳粉材料. 工業材料 1998;133
45. Kelly BT. Physics of graphite. 1981
46. Inagaki M, Kang F. Materials science and engineering of carbon: fundamentals. Butterworth-Heinemann; 2014.
47. Herold A. Recherches sur les composes dinsertion du graphite. Bulletin de la Société Chimique de France 1955(7-8):999-1012
48. Dresselhaus M, Dresselhaus G. Intercalation compounds of graphite. Advances in Physics 1981;30(2):139-326
49. Ogumi Z, Inaba M. Electrochemical lithium intercalation within carbonaceous materials: intercalation processes, surface film formation, and lithium diffusion. Bulletin of the Chemical Society of Japan 1998;71(3):521-34
50. Robertson J. Amorphous carbon. Advances in Physics 1986;35(4):317-74
51. Robertson J, O’reilly E. Electronic and atomic structure of amorphous carbon. Physical Review B 1987;35(6):2946
52. Inagaki M. New carbons-control of structure and functions. Elsevier; 2000.
53. Loeffler BN, Bresser D, Passerini S, Copley M. Secondary lithium-ion battery anodes: from first commercial batteries to recent research activities. Johnson Matthey Technology Review 2015;59(1):34-44
54. Dahn JR, Zheng T, Liu Y, Xue J. Mechanisms for lithium insertion in carbonaceous materials. Science 1995;270(5236):590-93
55. Mochida I, Ku C-H, Yoon S-H, Korai Y. Anodic performance and mechanism of mesophase-pitch-derived carbons in lithium ion batteries. Journal of Power Sources 1998;75(2):214-22
56. 黃鉦致, 以不同原料和四種活化方法製備活性碳之物理化學與吸附特性. 國立聯合大學化學工程學系碩士論文, 2009.
57. Lewis, I., Chemistry of carbonization. Carbon, 1982. 20: p. 11.
58. Otowa, T., R. Tanibata, and M. ltoh, Production and adsorption characteristics of MAXSORB: high-surface-area active carbon Gas Separation & Purification, 1993. 7(4): p. 5.
59. Lozano-Castello´, D., et al., Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon, 2007. 45: p. 8.
60. Romanos, J., et al., Nanospace engineering of KOH activated carbon. Nanotechnology, 2012. 23(1): p. 015401.
61. Aida T, Murayama I, Yamada K, Morita M (2007) High-energydensity hybrid electrochemical capacitor using graphitizable carbon activated with KOH for positive electrode. J Power Sources 166:462–470.
62. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood III DL. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016;105:52-76
63. Holtstiege F, Wilken A, Winter M, Placke T. Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries. Physical Chemistry Chemical Physics 2017;19(38):25905-18
64. Michan AL, Divitini G, Pell AJ, Leskes M, Ducati C, Grey CP. Solid electrolyte interphase growth and capacity loss in silicon electrodes. Journal of the American Chemical Society 2016;138(25):7918-31
65. Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 2010;55(22):6332-41
66. Winter M. The solid electrolyte interphase–the most important and the least understood solid electrolyte in rechargeable Li batteries. Zeitschrift für Physikalische Chemie 2009;223(10-11):1395-406
67. Placke T, Siozios V, Schmitz R, Lux S, Bieker P, Colle C, Meyer H-W, Passerini S, Winter M. Influence of graphite surface modifications on the ratio of basal plane to “non-basal plane” surface area and on the anode performance in lithium ion batteries. Journal of Power Sources 2012;200:83-91
68. Winter M, Novák P, Monnier A. Graphites for lithium‐ion cells: the correlation of the first‐cycle charge loss with the brunauer‐emmett‐teller surface area. Journal of the Electrochemical Society 1998;145(2):428-36
69. Krueger S, Kloepsch R, Li J, Nowak S, Passerini S, Winter M. How do reactions at the anode/electrolyte interface determine the cathode performance in lithium-ion batteries? Journal of the Electrochemical Society 2013;160(4):A542-A48
70. Winter M, Appel WK, Evers B, Hodal T, Möller K-C, Schneider I, Wachtler M, Wagner MR, Wrodnigg GH, Besenhard JO, Studies on the anode/electrolyte interface in lithium ion batteries, in Electroactive Materials. 2001, Springer. p. 53-66.
71. Aravindan V, Lee YS, Madhavi S. Best Practices for Mitigating Irreversible Capacity Loss of Negative Electrodes in Li‐Ion Batteries. Advanced Energy Materials 2017;7(17):1602607
72. De La Llave E, Borgel V, Park K-J, Hwang J-Y, Sun Y-K, Hartmann P, Chesneau F-F, Aurbach D. Comparison between Na-Ion and Li-Ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior. ACS Applied Materials & Interfaces 2016;8(3):1867-75
73. Holtstiege F, Bärmann P, Nölle R, Winter M, Placke T. Pre-lithiation strategies for rechargeable energy storage technologies: concepts, promises and challenges. Batteries 2018;4(1):4
74. Cai M, Sun X, Nie Y, Chen W, Qiu Z, Chen L, Liu Z, Tang H. Electrochemical performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes as anode. Nano 2017;12(04):1750051
75. Zhang J, Shi Z, Wang C. Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitors. Electrochimica Acta 2014;125:22-28
76. Scott M, Whitehead A, Owen J. Chemical Formation of a Solid Electrolyte Interface on the Carbon Electrode of a Li‐Ion Cell. Journal of the Electrochemical Society 1998;145(5):1506-10
77. Tabuchi T, Yasuda H, Yamachi M. Li-doping process for LixSiO-negative active material synthesized by chemical method for lithium-ion cells. Journal of Power Sources 2005;146(1-2):507-09
78. Veluchamy A, Doh C-H, Kim D-H, Lee J-H, Lee D-J, Ha K-H, Shin H-M, Jin B-S, Kim H-S, Moon S-I. Improvement of cycle behaviour of SiO/C anode composite by thermochemically generated Li4SiO4 inert phase for lithium batteries. Journal of Power Sources 2009;188(2):574-77
79. Liu Y, Horikawa K, Fujiyosi M, Imanishi N, Hirano A, Takeda Y. Layered lithium transition metal nitrides as novel anodes for lithium secondary batteries. Electrochimica Acta 2004;49(21):3487-96
80. Liu D, Du F, Pan W, Chen G, Wang C, Wei Y. Electrochemical characterizations of Li2. 6Co0. 4N/Graphite anodes for lithium ion batteries. Materials Letters 2009;63(3-4):504-06
81. Liu Y, Hanai K, Horikawa K, Imanishi N, Hirano A, Takeda Y. Electrochemical characterization of a novel Si–graphite–Li2. 6Co0. 4N composite as anode material for lithium secondary batteries. Materials Chemistry and Physics 2005;89(1):80-84
82. Shellikeri A, Watson VG, Adams DL, Kalu EE, Read JA, Jow TR, Zheng JP. Pre-Lithiation of Carbon Anodes Using Different Lithium-Sources. ECS Transactions 2017;77(11):293-303
83. Beltrop K, Beuker S, Heckmann A, Winter M, Placke T. Alternative electrochemical energy storage: potassium-based dual-graphite batteries. Energy & Environmental Science 2017;10(10):2090-94
84. Sun H, He X, Ren J, Li J, Jiang C, Wan C. Hard carbon/lithium composite anode materials for Li-ion batteries. Electrochimica Acta 2007;52(13):4312-16
85. Fei L, Yoo SH, Villamayor RAR, Williams BP, Gong SY, Park S, Shin K, Joo YL. Graphene Oxide Involved Air-Controlled Electrospray for Uniform, Fast, Instantly Dry, and Binder-Free Electrode Fabrication. ACS Applied Materials & Interfaces 2017;9(11):9738-46
86. Jarvis C, Lain M, Yakovleva M, Gao Y. A prelithiated carbon anode for lithium-ion battery applications. Journal of Power Sources 2006;162(2):800-02
87. Sun Y, Tang J, Qin F, Yuan J, Zhang K, Li J, Zhu D-M, Qin L-C. Hybrid lithium-ion capacitors with asymmetric graphene electrodes. Journal of Materials Chemistry A 2017;5(26):13601-09
88. Liu C, Kim N, Rubloff GW, Lee SB. High performance asymmetric V2O5–SnO2 nanopore battery by atomic layer deposition. Nanoscale 2017;9(32):11566-73
89. Kim HJ, Choi S, Lee SJ, Seo MW, Lee JG, Deniz E, Lee YJ, Kim EK, Choi JW. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Letters 2015;16(1):282-88
90. 羅聖全. 科學基礎研究之重要利器—掃瞄式電子顯微鏡 (SEM).
91. Facility CMR. Scanning Electron Microscopy.
92. Discover BD. X-ray diffraction.
93. Sennu, Palanichamy, et al. All carbon based high energy lithium-ion capacitors from biomass: The role of crystallinity. Journal of Power Sources, 2019, 414: 96-102.
94. Sun, Congkai, et al. High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Storage Materials, 2020, 24: 160-166.
95. Zhang, Jin, et al. Mesoporous carbon material as cathode for high performance lithium-ion capacitor. Chinese Chemical Letters, 2018, 29.4: 620-623.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *