帳號:guest(3.128.95.148)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳昱婷
作者(外文):Chen, Yu-Ting.
論文名稱(中文):木質素薄膜之製備與滲透蒸發脫鹽程序之應用
論文名稱(外文):Lignin-based membranes: preparation and application for pervaporation desalination
指導教授(中文):劉英麟
指導教授(外文):Liu, Ying-Ling
口試委員(中文):鄭如忠
陳美瑾
口試委員(外文):Jeng, Ru-Jong
Chen, Mei-Chin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032505
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:155
中文關鍵詞:木質素薄膜製備滲透蒸發脫鹽程序
外文關鍵詞:Ligninmembrane preparationpervaporationdesalination
相關次數:
  • 推薦推薦:0
  • 點閱點閱:158
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以木質素為主體 (Lignin-based) 製備出複合薄膜應用於滲透蒸發脫鹽程序,分析木質素比例、選擇層厚度、操作溫度、進料濃度及不同入料離子對通透量及去鹽率造成的影響。
首先因木質素本身性質無法獨立成膜,故使用一親水性高分子聚乙烯醇作為黏著劑,並以馬來酸酐進行交聯,後利用FT-IR、DSC、TGA確認交聯結構及性質研究。
第二部份進行聚丙烯腈超濾膜的最佳水解時間分析,將不同水解時間的聚丙烯腈超濾膜分別利用ATR-FTIR、Contact angle、SEM及滲透蒸發脫鹽程序進行分析,最後確認以水解半小時作為最佳水解時間。
第三部份為製備出以木質素為主體 (Lignin-based) 之複合薄膜應用於3.5wt%氯化鈉水溶液,首先製備出不同木質素於薄膜中比例之複合薄膜,確認當木質素比例為90wt%時於滲透蒸發脫鹽程序中表現最好,其選擇層厚度約為470 nm,通透量為6.1 kg/h-m^2,去鹽率為99.95%,後探討不同選擇層厚度對通透量及去鹽率的影響,得知選擇層厚度約為470 nm為本研究之極限厚度,並以此複合薄膜用於後續長效性測試、不同操作溫度 (25℃-45℃)、不同進料濃度 (3.5wt%-15wt% NaCl aqueous solution)、不同入料鹽類 (單離子、雙離子及基團離子) 等,CR-Lignin/PVA (90/10) 之複合薄膜皆擁有高去鹽率之表現。
Herein this study, Lignin-based composite membranes are used in pervaporation desalination and the different ratio of Lignin, the selective layer thickness, the operation temperature, the feed concentration and the different feed salts of monovalent, bivalent and multivalent ions are investigated.
In the first part, Poly(vinyl alcohol) (PVA) used as a binder and Maleic anhydride used for crosslinking are introduced into Lignin because of Lignin’s intrinsic properties of film formation difficultly. After that, the cross-linked structure and properties are confirmed by FT-IR, DSC and TGA analysis.
In the second part, the optimal hydrolysis time of the polyacrylonitrile (PAN) ultrafiltration membrane is analyzed. The characteristics of various hydrolysis times of PAN substrates are confirmed using ATR-FTIR, Contact angle, SEM and pervaporation desalination procedures. After the above-mentioned experiments, the best reaction time of half an hour for PAN substrates is defined.
In the third part, the CR-Lignin/PVA composite membranes are prepared to test for pervaporation desalination on 3.5wt% NaCl aqueous solution. The CR-Lignin/PVA (90/10) composite membrane, which has the thickness of selective layer about 470nm exhibits the best performance on pervaporation desalination. The flux of CR-Lignin/PVA (90/10) composite membrane is 6.1 kg/h-m^2 and salt rejection is 99.95% when separating salts and aqueous solution with 3.5wt% NaCl at 25℃. After exploring the influence between the thickness of selective layer, flux and salt rejection, the limit thickness about 470 nm is known in this work. This composite membrane is applied to the long-term stability testing, the operation temperature in the range of 25℃ to 45℃, the feed concentration of NaCl aqueous solution with 3.5wt% to 15wt%, and different feed salts of monovalent, bivalent and multivalent ions. The CR-Lignin/PVA (90/10) composite membrane reveals the good potential and performance on the salt rejection for pervaporation desalination.

摘要 I
Abstract III
目錄 V
圖目錄 X
表目錄 XXI
第一章、緒論 1
1-1前言 1
1-2薄膜分離程序 3
1-2-1微米過濾分離程序 5
1-2-2超過濾分離程序 6
1-2-3奈米過濾分離程序 7
1-2-4逆滲透分離程序 8
1-2-5薄膜蒸餾分離程序 9
1-2-6氣體分離程序 10
1-2-7滲透蒸發分離程序 12
1-3薄膜分離應用於脫鹽程序 14
1-3-1逆滲透分離程序應用於脫鹽程序 14
1-3-2薄膜蒸餾分離程序應用於脫鹽程序 19
1-3-3奈米過濾分離程序應用於脫鹽程序 22
1-3-4滲透蒸發分離程序應用於脫鹽程序 24
第二章、文獻回顧 27
2-1滲透蒸發脫鹽程序之應用 27
2-1-1前言 27
2-1-2以親水性高分子應用於滲透蒸發脫鹽程序 28
2-1-3以有機/無機材料應用於滲透蒸發脫鹽程序 35
2-2木質素簡介 40
2-3木質素之應用 42
2-4木質素於薄膜分離之應用 45
2-5文獻回顧小結 49
第三章、實驗 50
3-1實驗藥品 50
3-2實驗儀器 53
3-3滲透蒸發脫鹽程序實驗步驟 55
3-4前言 57
3-4-1聚丙烯腈超濾膜製作90, 91 58
3-4-2以木質素為主體與聚乙烯醇高分子複合薄膜製備96 59
第四章、結果與分析 61
4-1前言 61
4-2以木質素為主體之交聯鑑定分析 62
4-3聚丙烯腈水解時間選擇 72
4-3-1衰滅式全反射傅立葉轉換紅外線光譜測試 73
4-3-2不同水解時間之聚丙烯腈表面對水接觸角測試 74
4-3-3不同水解時間之聚丙烯腈表面掃描電子顯微鏡測量 76
4-3-4滲透蒸發脫鹽程序測試 80
4-3-5木質素複合薄膜之掃描電子顯微鏡測量 82
4-3-6木質素複合薄膜表面對水接觸角測試 85
4-4不同木質素比例之複合薄膜滲透蒸發脫鹽程序測試 86
4-5以木質素為主體之複合薄膜應用滲透蒸發脫鹽程序於通透量與選擇層厚度比較 89
4-6以木質素為主體之複合薄膜應用滲透蒸發脫鹽程序於不同操作溫度 92
4-7以木質素為主體之複合薄膜應用滲透蒸發脫鹽程序於長效性測試 95
4-8以木質素為主體之複合薄膜與文獻結果之比較 97
4-9以木質素為主體之複合薄膜應用滲透蒸發脫鹽程序於不同進料濃度 99
4-10以木質素為主體之複合薄膜應用滲透蒸發脫鹽程序於不同入料離子比較 101
4-11以木質素為主體之複合薄膜應用於滲透蒸發脫鹽程序於入料為人造海水與文獻結果之比較 105
4-12以木質素為主體之複合薄膜於對水接觸角測試 107
4-13以木質素為主體之吸水率測試 108
4-14以木質素為主體之交聯度測試 110
4-15以木質素為主體之複合薄膜掃描電子顯微鏡測量 111
第五章、結論 119
第六章、參考文獻 121
附錄A、其餘木質素薄膜製備及滲透蒸發脫鹽程序效能測試 134
A-1以木質素為主體與聚氧代氮代苯并環己烷高分子薄膜製備 134
A-2以木質素為主體與聚氨酯高分子薄膜製備139 137
A-2-1聚氨酯高分子MA_MDI_PEG鑑定分析 138
A-2-2以木質素為主體與聚氨酯高分子薄膜外觀 143
A-2-2-1以木質素為主體與聚氨酯高分子薄膜改質及應用於滲透蒸發脫鹽程序 144
A-2-2-1-1以木質素為主體與聚氨酯高分子薄膜浸泡戊二醛水溶液 144
A-2-2-1-1-1以木質素為主體與聚氨酯高分子薄膜浸泡戊二醛水溶液對水接觸角測試 145
A-2-2-1-1-2以木質素為主體與聚氨酯高分子薄膜浸泡戊二醛水溶液滲透蒸發脫鹽程序 146
A-2-2-1-2以木質素為主體與聚氨酯高分子和聚乙烯醇高分子薄膜製備 147
A-2-2-1-3以木質素為主體與聚氨酯高分子和聚乙烯醇縮丁醛薄膜外觀 148
A-3以木質素為主體與還原氧化石磨烯複合薄膜製備6 149
A-3-1以木質素為主體與還原氧化石磨烯複合薄膜外觀 150
A-4木質素添加於聚醯亞胺薄膜製備 151
A-4-1木質素添加於聚醯亞胺薄膜應用於滲透蒸發脫鹽程序 152
A-5木質素添加於含聚醚之聚氧代氮代苯并環己烷薄膜製備 153
A-5-1含聚醚之聚氧代氮代苯并環己烷摻混木質素薄膜應用於滲透蒸發脫鹽程序 154
A-6幾丁聚醣摻混木質素薄膜製備 155

1.Elimelech, M.; Phillip, W. A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333 (6043), 712-717
2.Zhou, Y.; Tol, R. S. J. Evaluating the costs of desalination and water transport. Water Resources Research 2005, 41 (3).
3.Khawaji, A. D.; Kutubkhanah, I. K.; Wie, J.-M. Advances in seawater desalination technologies. Desalination 2008, 221 (1), 47-69.
4.Greenlee, L. F.; Lawler, D. F.; Freeman, B. D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Research 2009, 43 (9), 2317-2348.
5.Mohammad, A. W.; Teow, Y. H.; Ang, W. L.; Chung, Y. T.; Oatley-Radcliffe, D. L.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination 2015, 356, 226-254.
6.Cheng, C.; Shen, L.; Yu, X.; Yang, Y.; Li, X.; Wang, X. Robust construction of a graphene oxide barrier layer on a nanofibrous substrate assisted by the flexible poly(vinylalcohol) for efficient pervaporation desalination. Journal of Materials Chemistry A 2017, 5 (7), 3558-3568.
7.Varcoe, J. R.; Atanassov, P.; Dekel, D. R.; Herring, A. M.; Hickner, M. A.; Kohl, P. A.; Kucernak, A. R.; Mustain, W. E.; Nijmeijer, K.; Scott, K.; Xu, T.; Zhuang, L. Anion-exchange membranes in electrochemical energy systems. Energy & Environmental Science 2014, 7 (10), 3135-3191.
8.Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane distillation: A comprehensive review. Desalination 2012, 287, 2-18.
9.Anjali Devi, D.; Smitha, B.; Sridhar, S.; Aminabhavi, T. M. Pervaporation separation of isopropanol/water mixtures through crosslinked chitosan membranes. Journal of Membrane Science 2005, 262 (1), 91-99.
10.Yeom, C. K.; Lee, K.-H. Characterization of sodium alginate membrane crosslinked with glutaraldehyde in pervaporation separation. Journal of Applied Polymer Science 1998, 67 (2), 209-219.
11.Zhang, W.; Li, G.; Fang, Y.; Wang, X. Maleic anhydride surface-modification of crosslinked chitosan membrane and its pervaporation performance. Journal of Membrane Science 2007, 295 (1), 130-138.
12.Svang-Ariyaskul, A.; Huang, R. Y. M.; Douglas, P. L.; Pal, R.; Feng, X.; Chen, P.; Liu, L. Blended chitosan and polyvinyl alcohol membranes for the pervaporation dehydration of isopropanol. Journal of Membrane Science 2006, 280 (1), 815-823.
13. Chanachai, A.; Jiraratananon, R.; Uttapap, D.; Moon, G. Y.; Anderson, W. A.; Huang, R. Y. M. Pervaporation with chitosan/hydroxyethylcellulose (CS/HEC) blended membranes. Journal of Membrane Science 2000, 166 (2), 271-280.
14.Gimenes, M. L.; Liu, L.; Feng, X. Sericin/poly(vinyl alcohol) blend membranes for pervaporation separation of ethanol/water mixtures. Journal of Membrane Science 2007, 295 (1), 71-79.
15.Uragami, T.; Matsugi, H.; Miyata, T. Pervaporation Characteristics of Organic−Inorganic Hybrid Membranes Composed of Poly(vinyl alcohol-co-acrylic acid) and Tetraethoxysilane for Water/Ethanol Separation. Macromolecules 2005, 38 (20), 8440-8446.
16.Liu, Y.-L.; Su, Y.-H.; Lee, K.-R.; Lai, J.-Y. Crosslinked organic–inorganic hybrid chitosan membranes for pervaporation dehydration of isopropanol–water mixtures with a long-term stability. Journal of Membrane Science 2005, 251 (1), 233-238.
17.Shi, G. M.; Yang, T.; Chung, T. S. Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols. Journal of Membrane Science 2012, 415-416, 577-586.
18.Ghazali, M.; Nawawi, M.; Huang, R. Y. M. Pervaporation dehydration of isopropanol with chitosan membranes. Journal of Membrane Science 1997, 124 (1), 53-62.
19.Yang, G.; Zhang, L.; Peng, T.; Zhong, W. Effects of Ca2+ bridge cross-linking on structure and pervaporation of cellulose/alginate blend membranes. Journal of Membrane Science 2000, 175 (1), 53-60.
20.Dubey, V.; Saxena, C.; Singh, L.; Ramana, K. V.; Chauhan, R. S. Pervaporation of binary water–ethanol mixtures through bacterial cellulose membrane. Separation and Purification Technology 2002, 27 (2), 163-171.
21.Mulder, M., Basic principles of membrane technology. Springer Science & Business Media: 2012; pp 1-15.
22.Law, K.-Y. Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. The Journal of Physical Chemistry Letters 2014, 5 (4), 686-688.
23.Scott, K., INTRODUCTION TO MEMBRANE SEPARATIONS. In Handbook of Industrial Membranes, Scott, K., Ed. Elsevier Science: Amsterdam, 1995; pp 3-185.
24.Wenten, I. G.; Khoiruddin. Reverse osmosis applications: Prospect and challenges. Desalination 2016, 391, 112-125.
25.Lee, K. P.; Arnot, T. C.; Mattia, D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. Journal of Membrane Science 2011, 370 (1), 1-22.
26.Achiou, B.; Elomari, H.; Bouazizi, A.; Karim, A.; Ouammou, M.; Albizane, A.; Bennazha, J.; Alami Younssi, S.; El Amrani, I. E. Manufacturing of tubular ceramic microfiltration membrane based on natural pozzolan for pretreatment of seawater desalination. Desalination 2017, 419, 181-187.
27.Majouli, A.; Tahiri, S.; Alami Younssi, S.; Loukili, H.; Albizane, A. Elaboration of new tubular ceramic membrane from local Moroccan Perlite for microfiltration process. Application to treatment of industrial wastewaters. Ceramics International 2012, 38 (5), 4295-4303.
28.Jönsson, A.-S.; Trägårdh, G. Fundamental principles of ultrafiltration. Chemical Engineering and Processing: Process Intensification 1990, 27 (2), 67-81.
29.Michaels, A. S.; Nelsen, L.; Porter, M. C., Ultrafiltration. In Membrane Processes in Industry and Biomedicine: Proceedings of a Symposium held at the 160th National Meeting of the American Chemical Society, under the sponsorship of the Division of Industrial and Engineering Chemistry, Chicago, Illinois, September 16 and 17, 1970, Bier, M., Ed. Springer US: Boston, MA, 1971; pp 197-232.
30.Bernardo, P.; Drioli, E.; Golemme, G. Membrane Gas Separation: A Review/State of the Art. Industrial & Engineering Chemistry Research 2009, 48 (10), 4638-4663.
31.Pardo, F.; Zarca, G.; Urtiaga, A. Separation of Refrigerant Gas Mixtures Containing R32, R134a, and R1234yf through Poly(ether-block-amide) Membranes. ACS Sustainable Chemistry & Engineering 2020, 8 (6), 2548-2556.
32.Winter, D.; Koschikowski, J.; Wieghaus, M. Desalination using membrane distillation: Experimental studies on full scale spiral wound modules. Journal of Membrane Science 2011, 375 (1), 104-112.
33.Essalhi, M.; Khayet, M. Application of a porous composite hydrophobic/hydrophilic membrane in desalination by air gap and liquid gap membrane distillation: A comparative study. Separation and Purification Technology 2014, 133, 176-186.
34.Strathmann, H. Electrodialysis, a mature technology with a multitude of new applications. Desalination 2010, 264 (3), 268-288.
35.Mishchuk, N. A. Electro-osmosis of the second kind near the heterogeneous ion-exchange membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1998, 140 (1), 75-89.
36.Chapter 7 Microfiltration. In Membrane Science and Technology, van Rijn, C. J. M., Ed. Elsevier: 2004; Vol. 10, pp 169-253.
37.So, M. T.; Eirich, F. R.; Strathmann, H.; Baker, R. W. Preparation of asymmetric loeb-sourirajan membranes. 1973, 11 (3), 201-205.
38.Richard W. Baker Ultrafiltration. In Membrane Technology and Applications, 2004; pp 237-274.
39.Cadotte, J. E.; Petersen, R. J.; Larson, R. E.; Erickson, E. E. A new thin-film composite seawater reverse osmosis membrane. Desalination 1980, 32, 25-31.
40.Gilron, J.; Soffer, A. Knudsen diffusion in microporous carbon membranes with molecular sieving character. Journal of Membrane Science 2002, 209 (2), 339-352.
41.Jia, M.; Peinemann, K.-V.; Behling, R.-D. Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas permeation. Journal of Membrane Science 1991, 57 (2), 289-292.
42.Pandey, P.; Chauhan, R. S. Membranes for gas separation. Progress in Polymer Science 2001, 26 (6), 853-893.
43.Koros, W. J.; Fleming, G. K. Membrane-based gas separation. Journal of Membrane Science 1993, 83 (1), 1-80.
44.Kober, P. PERVAPORATION,PERSTILLATION AND PERCRYSTALLIZATION. Journal of the American Chemical Society 1917, 944-948.
45.Shao, P.; Huang, R. Y. M. Polymeric membrane pervaporation. Journal of Membrane Science 2007, 287 (2), 162-179.
46.Chapman, P. D.; Oliveira, T.; Livingston, A. G.; Li, K. Membranes for the dehydration of solvents by pervaporation. Journal of Membrane Science 2008, 318 (1), 5-37.
47.Feng, X.; Huang, R. Y. M. Liquid Separation by Membrane Pervaporation:  A Review. Industrial & Engineering Chemistry Research 1997, 36 (4), 1048-1066.
48.Dutta, B. K.; Sikdar, S. K. Separation of azeotropic organic liquid mixtures by pervaporation. AIChE Journal 1991, 37 (4), 581-588.
49.Kaddour Djebbar, M.; Nguyen, Q. T.; Clément, R.; Germain, Y. Pervaporation of aqueous ester solutions through hydrophobic poly(ether-block-amide) copolymer membranes. Journal of Membrane Science 1998, 146 (1), 125-133.
50.Malaeb, L.; Ayoub, G. M. Reverse osmosis technology for water treatment: State of the art review. Desalination 2011, 267 (1), 1-8.
51.Fritzmann, C.; Löwenberg, J.; Wintgens, T.; Melin, T. State-of-the-art of reverse osmosis desalination. Desalination 2007, 216 (1), 1-76.
52.Meindersma, G. W.; Guijt, C. M.; de Haan, A. B. Desalination and water recycling by air gap membrane distillation. Desalination 2006, 187 (1), 291-301.
53.Lawson, K. W.; Lloyd, D. R. Membrane distillation. Journal of Membrane Science 1997, 124 (1), 1-25.
54.Alklaibi, A. M.; Lior, N. Membrane-distillation desalination: Status and potential. Desalination 2005, 171 (2), 111-131.
55.Diawara, C. K. Nanofiltration Process Efficiency in Water Desalination. Separation & Purification Reviews 2008, 37 (3), 302-324.
56.Bowen, W. R.; Mohammad, A. W.; Hilal, N. Characterisation of nanofiltration membranes for predictive purposes — use of salts, uncharged solutes and atomic force microscopy. Journal of Membrane Science 1997, 126 (1), 91-105.
57.Agboola, O.; Maree, J.; Kolesnikov, A.; Mbaya, R.; Sadiku, R. Theoretical performance of nanofiltration membranes for wastewater treatment. Environmental Chemistry Letters 2015, 13 (1), 37-47.
58.Wang, Q.; Li, N.; Bolto, B.; Hoang, M.; Xie, Z. Desalination by pervaporation: A review. Desalination 2016, 387, 46-60.
59.Elma, M.; Yacou, C.; Wang, D. K.; Smart, S.; Diniz da Costa, J. C. Microporous Silica Based Membranes for Desalination. Water 2012, 4 (3), 629-649.
60.Cho, C. H.; Oh, K. Y.; Kim, S. K.; Yeo, J. G.; Sharma, P. Pervaporative seawater desalination using NaA zeolite membrane: Mechanisms of high water flux and high salt rejection. Journal of Membrane Science 2011, 371 (1), 226-238.
61.Zwijnenberg, H. J.; Koops, G. H.; Wessling, M. Solar driven membrane pervaporation for desalination processes. Journal of Membrane Science 2005, 250 (1), 235-246.
62.Xie, Z.; Ng, D.; Hoang, M.; Duong, T.; Gray, S. Separation of aqueous salt solution by pervaporation through hybrid organic–inorganic membrane: Effect of operating conditions. Desalination 2011, 273 (1), 220-225.
63.Sule, M.; Jiang, J.; Templeton, M.; Huth, E.; Brant, J.; Bond, T. Salt rejection and water flux through a tubular pervaporative polymer membrane designed for irrigation applications. Environmental Technology 2013, 34 (10), 1329-1339.
64.Liang, B.; Pan, K.; Li, L.; Giannelis, E. P.; Cao, B. High performance hydrophilic pervaporation composite membranes for water desalination. Desalination 2014, 347, 199-206.
65.Chaudhri, S. G.; Rajai, B. H.; Singh, P. S. Preparation of ultra-thin poly(vinyl alcohol) membranes supported on polysulfone hollow fiber and their application for production of pure water from seawater. Desalination 2015, 367, 272-284.
66.Wang, Q.; Lu, Y.; Li, N. Preparation, characterization and performance of sulfonated poly(styrene-ethylene/butylene-styrene) block copolymer membranes for water desalination by pervaporation. Desalination 2016, 390, 33-46.
67.Li, L.; Hou, J.; Ye, Y.; Mansouri, J.; Chen, V. Composite PVA/PVDF pervaporation membrane for concentrated brine desalination: Salt rejection, membrane fouling and defect control. Desalination 2017, 422, 49-58.
68.Liang, B.; Li, Q.; Cao, B.; Li, P. Water permeance, permeability and desalination properties of the sulfonic acid functionalized composite pervaporation membranes. Desalination 2018, 433, 132-140.
69.Austria, H. F. M.; Lecaros, R. L. G.; Hung, W.-S.; Tayo, L. L.; Hu, C.-C.; Tsai, H.-A.; Lee, K.-R.; Lai, J.-Y. Investigation of salt penetration mechanism in hydrolyzed polyacrylonitrile asymmetric membranes for pervaporation desalination. Desalination 2019, 463, 32-39.
70.Malekpour, A.; Samadi-Maybodi, A.; Sadati, M. R. Desalination of aqueous solutions by LTA and MFI zeolite membranes using pervaporation method. Brazilian Journal of Chemical Engineering. 2011, 28, 669-677.
71.Drobek, M.; Yacou, C.; Motuzas, J.; Julbe, A.; Ding, L.; Diniz da Costa, J. C. Long term pervaporation desalination of tubular MFI zeolite membranes. Journal of Membrane Science 2012, 415-416, 816-823.
72.An, W.; Zhou, X.; Liu, X.; Chai, P. W.; Kuznicki, T.; Kuznicki, S. M. Natural zeolite clinoptilolite-phosphate composite Membranes for water desalination by pervaporation. Journal of Membrane Science 2014, 470, 431-438.
73. Liang, B.; Zhan, W.; Qi, G.; Lin, S.; Nan, Q.; Liu, Y.; Cao, B.; Pan, K. High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications. Journal of Materials Chemistry A 2015, 3 (9), 5140-5147.
74.Xu, K.; Feng, B.; Zhou, C.; Huang, A. Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination. Chemical Engineering Science 2016, 146, 159-165.
75.Feng, B.; Xu, K.; Huang, A. Synthesis of graphene oxide/polyimide mixed matrix membranes for desalination. RSC Advances 2017, 7 (4), 2211-2217.
76.Liu, G.; Shen, J.; Liu, Q.; Liu, G.; Xiong, J.; Yang, J.; Jin, W. Ultrathin two-dimensional MXene membrane for pervaporation desalination. Journal of Membrane Science 2018, 548, 548-558.
77.Halakoo, E.; Feng, X. Layer-by-layer assembly of polyethyleneimine/graphene oxide membranes for desalination of high-salinity water via pervaporation. Separation and Purification Technology 2020, 234, 116077.
78.Pomar, F.; Novo, M.; Bernal, M. A.; Merino, F.; Barceló, A. R. Changes in stem lignins (monomer composition and crosslinking) and peroxidase are related with the maintenance of leaf photosynthetic integrity during Verticillium wilt in Capsicum annuum. New Phytologist 2004, 163 (1), 111-123.
79. Whetten, R.; Sederoff, R. Lignin Biosynthesis. Plant Cell 1995, 7 (7), 1001-1013.
80.Wang, J.; Manley, R. S. J.; Feldman, D. Synthetic polymer-lignin copolymers and blends. Progress in Polymer Science 1992, 17 (4), 611-646.
81.Calvo-Flores, F. G.; Dobado, J. A.; Isac-García, J.; Martín-Martínez, F. J., Lignin and lignans as renewable raw materials: chemistry, technology and applications. John Wiley & Sons: 2015.
82.A Abe, K. D., S Kobayashi, Biopolymers:lignin,proteins,bioactive nanocomposites. Springer Science & Business Media 2010; p 4-10.
83.Griffini, G.; Passoni, V.; Suriano, R.; Levi, M.; Turri, S. Polyurethane Coatings Based on Chemically Unmodified Fractionated Lignin. ACS Sustainable Chemistry & Engineering 2015, 3 (6), 1145-1154.
84.Srisasiwimon, N.; Chuangchote, S.; Laosiripojana, N.; Sagawa, T. TiO2/Lignin-Based Carbon Composited Photocatalysts for Enhanced Photocatalytic Conversion of Lignin to High Value Chemicals. ACS Sustainable Chemistry & Engineering 2018, 6 (11), 13968-13976.
85.Fingolo, A. C.; Bettini, J.; da Silva Cavalcante, M.; Pereira, M. P.; Bufon, C. C. B.; Santhiago, M.; Strauss, M. Boosting Electrical Conductivity of Sugarcane Cellulose and Lignin Biocarbons through Annealing under Isopropanol Vapor. ACS Sustainable Chemistry & Engineering 2020, 8 (18), 7002-7010.
86.Ding, Z.; Zhong, L.; Wang, X.; Zhang, L. Effect of lignin–cellulose nanofibrils on the hydrophilicity and mechanical properties of polyethersulfone ultrafiltration membranes. High Performance Polymers 2016, 28 (10), 1192-1200.
87.Zhang, F.; Wu, Y.; Li, W.; Xing, W.; Wang, Y. Depositing lignin on membrane surfaces for simultaneously upgraded reverse osmosis performances: An upscalable route. AIChE Journal 2017, 63 (6), 2221-2231.
88.Bahi, A.; Shao, J.; Mohseni, M.; Ko, F. K. Membranes based on electrospun lignin-zeolite composite nanofibers. Separation and Purification Technology 2017, 187, 207-213.
89.Chen, Y.-T.; Liao, Y.-L.; Sun, Y.-M.; Hu, C.-C.; Lai, J.-Y.; Liu, Y.-L. Lignin as an effective agent for increasing the separation performance of crosslinked polybenzoxazine based membranes in pervaporation dehydration application. Journal of Membrane Science 2019, 578, 156-162.
90.Chao, W.-C.; Huang, S.-H.; An, Q.; Liaw, D.-J.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y. Novel interfacially-polymerized polyamide thin-film composite membranes: Studies on characterization, pervaporation, and positron annihilation spectroscopy. Polymer 2011, 52 (11), 2414-2421.
91.An, Q.-F.; Ang, M. B. M. Y.; Huang, Y.-H.; Huang, S.-H.; Chiao, Y.-H.; Lai, C.-L.; Tsai, H.-A.; Hung, W.-S.; Hu, C.-C.; Wu, Y.-P.; Lee, K.-R. Microstructural characterization and evaluation of pervaporation performance of thin-film composite membranes fabricated through interfacial polymerization on hydrolyzed polyacrylonitrile substrate. Journal of Membrane Science 2019, 583, 31-39.
92.Wang, D.-M.; Lai, J.-Y. Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Current Opinion in Chemical Engineering 2013, 2 (2), 229-237.
93.Guillen, G. R.; Pan, Y.; Li, M.; Hoek, E. M. V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Industrial & Engineering Chemistry Research 2011, 50 (7), 3798-3817.
94.Scharnagl, N.; Buschatz, H. Polyacrylonitrile (PAN) membranes for ultra- and microfiltration. Desalination 2001, 139 (1), 191-198.
95.Zhang, G.; Meng, H.; Ji, S. Hydrolysis differences of polyacrylonitrile support membrane and its influences on polyacrylonitrile-based membrane performance. Desalination 2009, 242 (1), 313-324.
96.Korbag, I.; Mohamed Saleh, S. Studies on the formation of intermolecular interactions and structural characterization of polyvinyl alcohol/lignin film. International Journal of Environmental Studies 2016, 73 (2), 226-235.
97.Deng, Y.; Feng, X.; Zhou, M.; Qian, Y.; Yu, H.; Qiu, X. Investigation of Aggregation and Assembly of Alkali Lignin Using Iodine as a Probe. Biomacromolecules 2011, 12 (4), 1116-1125.
98.Zhao, W.; Xiao, L.-P.; Song, G.; Sun, R.-C.; He, L.; Singh, S.; Simmons, B. A.; Cheng, G. From lignin subunits to aggregates: insights into lignin solubilization. Green Chemistry 2017, 19 (14), 3272-3281.
99.Kubo, S.; Kadla, J. F. Hydrogen Bonding in Lignin:  A Fourier Transform Infrared Model Compound Study. Biomacromolecules 2005, 6 (5), 2815-2821.
100.Wang, J.; Li, Y.; Qiu, X.; Liu, D.; Yang, D.; Liu, W.; Qian, Y. Dissolution of lignin in green urea aqueous solution. Applied Surface Science 2017, 425, 736-741.
101.Liou, F. J.; Wang, Y. J. Preparation and characterization of crosslinked and heat-treated PVA-MA films. Journal of Applied Polymer Science 1996, 59 (9), 1395-1403.
102.Qin, X.-H.; Wang, S.-Y. Electrospun nanofibers from crosslinked poly(vinyl alcohol) and its filtration efficiency. Journal of Applied Polymer Science 2008, 109 (2), 951-956.
103.Yang, G.; Xie, Z.; Cran, M.; Ng, D.; Gray, S. Enhanced desalination performance of poly (vinyl alcohol)/carbon nanotube composite pervaporation membranes via interfacial engineering. Journal of Membrane Science 2019, 579, 40-51.
104.Xie, Z.; Hoang, M.; Duong, T.; Ng, D.; Dao, B.; Gray, S. Sol–gel derived poly(vinyl alcohol)/maleic acid/silica hybrid membrane for desalination by pervaporation. Journal of Membrane Science 2011, 383 (1), 96-103.
105.Hansen, B.; Kusch, P.; Schulze, M.; Kamm, B. Qualitative and Quantitative Analysis of Lignin Produced from Beech Wood by Different Conditions of the Organosolv Process. Journal of Polymers and the Environment 2016, 24 (2), 85-97.
106.Yang, H.; Yan, R.; Chen, H.; Lee, D. H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86 (12), 1781-1788.
107.Fisher, T.; Hajaligol, M.; Waymack, B.; Kellogg, D. Pyrolysis Behaviour and Kinetics of Biomass Derived Materials. Journal of Analytical and Applied Pyrolysis - J ANAL APPL PYROL 2002, 62, 331-349.
108.Litmanovich, A. D.; Platé, N. A. Alkaline hydrolysis of polyacrylonitrile. On the reaction mechanism. Molecular Chemisty and Physics 2000, 201 (16), 2176-2180.
109.Lai, C.-L.; Chao, W.-C.; Hung, W.-S.; An, Q.; De Guzman, M.; Hu, C.-C.; Lee, K.-R. Physicochemical effects of hydrolyzed asymmetric polyacrylonitrile membrane microstructure on dehydrating butanol. Journal of Membrane Science 2015, 490, 275-281.
110. Zhu, Z.; Feng, X.; Penlidis, A. Layer-by-layer self-assembled polyelectrolyte membranes for solvent dehydration by pervaporation. Materials Science and Engineering: C 2007, 27 (4), 612-619.
111. Wang, Z.-G.; Wan, L.-S.; Xu, Z.-K. Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview. Journal of Membrane Science 2007, 304 (1), 8-23.
112. Ratnaweera, D. R.; Saha, D.; Pingali, S. V.; Labbé, N.; Naskar, A. K.; Dadmun, M. The impact of lignin source on its self-assembly in solution. RSC Advances 2015, 5 (82), 67258-67266.
113. Heintz, A.; Stephan, W. A generalized solution—diffusion model of the pervaporation process through composite membranes Part I. Prediction of mixture solubilities in the dense active layer using the UNIQUAC model. Journal of Membrane Science 1994, 89 (1), 143-151.
114. George, S. C.; Thomas, S. Transport phenomena through polymeric systems. Progress in Polymer Science 2001, 26 (6), 985-1017.
115. Binning, R.; Lee, R.; Jennings, J.; Martin, E. Separation of Liquid Mixtures by Permeation. Industrial & Engineering Chemistry 1961, 53 (1), 45-50.
116. Aptel, P.; Cuny, J.; Jozefonvicz, J.; Morel, G.; Neel, J. Liquid transport through membranes prepared by grafting of polar monomers onto poly(tetrafluoroethylene) films. III. Steady-state distribution in membrane during pervaporation. Journal of Applied Polymer Science 1974, 18 (2), 365-378.
117. Işıklan, N.; Şanlı, O. Separation characteristics of acetic acid–water mixtures by pervaporation using poly(vinyl alcohol) membranes modified with malic acid. Chemical Engineering and Processing: Process Intensification 2005, 44 (9), 1019-1027.
118. Burshe, M. C.; Sawant, S. B.; Joshi, J. B.; Pangarkar, V. G. Sorption and permeation of binary water-alcohol systems through PVA membranes crosslinked with multifunctional crosslinking agents. Separation and Purification Technology 1997, 12 (2), 145-156.
119. Kittur, A. A.; Kariduraganavar, M. Y.; Toti, U. S.; Ramesh, K.; Aminabhavi, T. M. Pervaporation separation of water–isopropanol mixtures using ZSM-5 zeolite incorporated poly(vinyl alcohol) membranes. Journal of Applied Polymer Science 2003, 90 (9), 2441-2448.
120.Yong Nam, S.; Moo Lee, Y. Pervaporation separation of methanol/methyl t-butyl ether through chitosan composite membrane modified with surfactants. Journal of Membrane Science 1999, 157 (1), 63-71.
121.Chaudhri, S. G.; Chaudhari, J. C.; Singh, P. S. Fabrication of efficient pervaporation desalination membrane by reinforcement of poly(vinyl alcohol)–silica film on porous polysulfone hollow fiber. Journal of Applied Polymer Science 2018, 135 (3), 45718.
122.Zhang, R.; Liang, B.; Qu, T.; Cao, B.; Li, P. High-performance sulfosuccinic acid cross-linked PVA composite pervaporation membrane for desalination. Environmental Technology 2019, 40 (3), 312-320.
123.Li, Q.; Cao, B.; Li, P. Fabrication of High Performance Pervaporation Desalination Composite Membranes by Optimizing the Support Layer Structures. Industrial & Engineering Chemistry Research 2018, 57 (32), 11178-11185.
124.Zhang, R.; Xu, X.; Cao, B.; Li, P. Fabrication of high-performance PVA/PAN composite pervaporation membranes crosslinked by PMDA for wastewater desalination. Petroleum Science 2018, 15 (1), 146-156.
125.Xue, Y. L.; Huang, J.; Lau, C. H.; Cao, B.; Li, P. Tailoring the molecular structure of crosslinked polymers for pervaporation desalination. Nature Communications 2020, 11 (1), 1461.
126.Ladewig, B. P.; Tan, Y. H.; Lin, C. X. C.; Ladewig, K.; Diniz da Costa, J. C.; Smart, S. Preparation, Characterization and Performance of Templated Silica Membranes in Non-Osmotic Desalination. Materials 2011, 4 (5), 845-856.
127.Elma, M.; Yacou, C.; Diniz da Costa, J. C.; Wang, D. K. Performance and Long Term Stability of Mesoporous Silica Membranes for Desalination. Membranes 2013, 3 (3), 136-150.
128.Lin, C. X. C.; Ding, L. P.; Smart, S.; Diniz da Costa, J. C. Cobalt oxide silica membranes for desalination. Journal of Colloid and Interface Science 2012, 368 (1), 70-76.
129.Singh, P. S.; Chaudhri, S. G.; Kansara, A. M.; Schwieger, W.; Selvam, T.; Reuss, S.; Aswal, V. K. Cetyltrimethylammonium bromide–silica membrane for seawater desalination through pervaporation. Bulletin of Materials Science 2015, 38 (2), 565-572.
130.Yacou, C.; Smart, S.; Diniz da Costa, J. C. Mesoporous TiO2 based membranes for water desalination and brine processing. Separation and Purification Technology 2015, 147, 166-171.
131.Wu, D.; Gao, A.; Zhao, H.; Feng, X. Pervaporative desalination of high-salinity water. Chemical Engineering Research and Design 2018, 136, 154-164.
132.Norgren, M.; Edlund, H.; Wågberg, L. Aggregation of Lignin Derivatives under Alkaline Conditions. Kinetics and Aggregate Structure. Langmuir 2002, 18 (7), 2859-2865.
133.Zhang, H.-Y.; Wen, J.-L.; Shao, Q.; Yuan, A.; Ren, H.-T.; Luo, F.-Y.; Zhang, X.-L. Fabrication of La/Y-codoped microporous organosilica membranes for high-performance pervaporation desalination. Journal of Membrane Science 2019, 584, 353-363.
134.Lia, L.; Dong, J.; Nenoff, T.; Lee, R. Reverse osmosis of ionic aqueous solutions on aMFI zeolite membrane. Desalination 2004, 170, 309-316.
135.Zhou, C.; Zhou, J.; Huang, A. Seeding-free synthesis of zeolite FAU membrane for seawater desalination by pervaporation. Microporous and Mesoporous Materials 2016, 234, 377-383.
136.Zhao, J.; Yu, K.; Hu, Y.; Li, S.; Tan, X.; Chen, F.; Yu, Z. Discharge behavior of Mg–4wt%Ga–2wt%Hg alloy as anode for seawater activated battery. Electrochimica Acta 2011, 56 (24), 8224-8231.
137.Duke, M. C.; O’Brien-Abraham, J.; Milne, N.; Zhu, B.; Lin, J. Y. S.; Diniz da Costa, J. C. Seawater desalination performance of MFI type membranes made by secondary growth. Separation and Purification Technology 2009, 68 (3), 343-350.
138.Lin, C. H.; Chang, S. L.; Shen, T. Y.; Shih, Y. S.; Lin, H. T.; Wang, C. F. Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies. Polymer Chemistry 2012, 3 (4), 935-945.
139.Chen, Y.-C.; Huang, C.-H.; Liu, Y.-L. Polymerization of Meldrum’s Acid and Diisocyanate: An Effective Approach for Preparation of Reactive Polyamides and Polyurethanes. ACS Omega 2019, 4 (4), 7884-7890.


(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *