帳號:guest(3.145.69.150)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊知玫
作者(外文):Young, Chih-Mei
論文名稱(中文):樹狀高分子與界面活性劑靜電錯合物之多重液晶相研究
論文名稱(外文):Tuning Columnar Mesophase of the Electrostatic Complex of Poly(amidoamine) Dendrimer and Oppositely Charged Surfactant
指導教授(中文):陳信龍
指導教授(外文):Chen, Hsin-Lung
口試委員(中文):蘇群仁
朱哲毅
口試委員(外文):Su, Chun-Jen
Chu, Che-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032501
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:88
中文關鍵詞:多重液晶相靜電錯合樹狀高分子
外文關鍵詞:Columnar MesophaseElectrostatic ComplexationPAMAM G4 Dendrimer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:146
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
高分子與兩性界面活性劑(amphiphilic surfactant)錯合所形成的長程有序奈米結構為錯合物中極性(高分子主鏈以及界面活性劑頭基)和非極性(界面面活性劑烷鏈)之間的微相分離所致。在這項研究中,我們驗證了界面活性劑十二烷基硫酸鈉(Sodium dodecyl sulfate, SDS)與所有胺基均帶正電的第四代聚乙二胺樹枝狀高分子(poly(amidoamine) (PAMAM) G4 dendrimer) 的靜電錯合擾動了由SDS所形成的圓柱形微胞。此擾動使微胞排列成面非六邊形的晶格。面心矩形柱狀(centered-rectangular columnar phase)並具有cmm非六邊形的晶格對稱性,此為一帶狀相(ribbon phase)。在SDS與PAMAM G4 dendrimer胺基團的莫耳比範圍內,SDS所形成的微胞排列成面心矩形柱狀(centered-rectangular columnar phase)並具有cmm非六邊形的晶格對稱性。若在界面活性劑SDS與PAMAM G4 dendrimer胺基團的莫耳比相同的情況下錯合,則SDS所形成的微胞排列成單斜柱狀(oblique columnar) 並具有p2斜晶格的對稱性,此兩種柱狀結構均屬於帶狀相結構(ribbon phase)。經過詳細分析容納在由SDS所形成的微胞圓柱體間隙中的PAMAM G4 dendrimer其幾何形狀後,得知PAMAM G4 dendrimer沿著SDS柱狀微胞的長軸被拉長形變為長橢球形,藉此增強兩帶電分子之間的電荷匹配。PAMAM G4 dendrimer的形變程度由靜電自由能(electrostatic free energy)和與變形相關的彈性自由能(elastic free energy)之間的相互作用決定。此外,本研究亦發現在加入鹽類的情況下進行錯合得以緩解PAMAM G4 dendrimer的形變。
除帶狀相結構外,透過調節PAMAM G4 dendrimer的質子化度(dp)和SDS與PAMAM G4 dendrimer的結合率(X),由SAXS結果可得知具有不同dp/X的錯合物可形成體心立方相(Body-centered cubic, BCC)、向列液晶相(Ncol)和其他四種類型的二維柱狀液晶相(2D columnar mesophase)。這些二維柱狀液晶相由PAMAM G4 dendrimer容納在SDS柱狀微胞的間隙所組成,包括六角柱狀相(Colhex),簡單矩形柱狀相(Colsr),單斜柱狀相(Colob)和面心矩形柱狀相(Colcr)。對錯合物中PAMAM G4 dendrimer的幾何結構進行詳細分析可得知,結構的轉變是由PAMAM G4 dendrimer的橫向和軸向變形與SDS微胞的橫截面變形之間的相互作用控制的,兩作用均為提升帶正電的PAMAM G4 dendrimer語帶負電的SDS微胞之間的電荷匹配。本研究證明了PAMAM G4 dendrimer通過靜電相互作用可誘發界面活性劑所形成的圓柱形微胞堆積成豐富的柱狀中間相,此為其開發功能材料的潛力。
The complexation of polymer with amphiphilic surfactant offers a facile route for constructing long-range ordered nanostructures via microphase separation between polar and nonpolar components in the complex. In this study, we demonstrate that the electrostatic complexation of anionic sodium dodecyl sulfate (SDS) surfactant with a positively charged colloid-like macromolecule, poly(amidoamine) (PAMAM) G4 dendrimer perturbed the packing habit of SDS cylindrical micelles to non-hexagonal two-dimensional lattice, forming the ribbon phase. The cylindrical micelles organized in the centered rectangular lattice with orthorhombic cmm symmetry over a broad range of surfactant-to-dendrimer amine group molar ratio. The packing mode transformed to the oblique lattice with monoclinic p2 symmetry at the stoichiometric composition. Detailed analysis of the geometry of the dendrimers accommodated in the interstitial tunnels surrounded by the SDS cylinders revealed that the dendrimer molecules were elongated into prolate ellipsoids along the long axis of the cylinders for enhancing charge matching. The degree of deformation was governed by the interplay among the electrostatic free energies and the elastic free energy associated with dendrimer deformation. The presence of monovalent salt was found to relax the dendrimer deformation due to electrostatic screening, while retaining the packing symmetry of the ribbon phase. In addition to ribbon phases, by adjusting the degree of protonation of dendrimer (dp) and the nominal binding fraction (X) of the SDS to the dendrimer, the SAXS results revealed the formation of body-centered cubic phase (BCC), nematic columnar phase (Ncol) and the other four types of 2D columnar mesophase composed of SDS columnar micelles and dendrimer accommodating within the interstitial tunnels, including hexagonal columnar phase (Colhex), simple rectangular columnar phase (Colsr), oblique columnar phase (Colob) and centered rectangular columnar phase (Colcr). Detailed analysis of the geometry of the dendrimer in the complexes manifested that the structural transition was governed by interplay among the lateral and axial deformation of dendrimer and the deformation of SDS micelle cross section for achieving effective charge matching and accommodation of the dendrimer. The present study demonstrated the power of dendrimer in directing the packing of soft cylinders via electrostatic interaction to yield a rich polymorphism of columnar mesophase for the development of functional materials.
Abstract I
摘要 III
Table of Contents V
List of Figures VII
List of Tables XIII
Chap 1. Introduction and Literature Review 1
1.1 Properties of Dendrimer 1
1.2 Self-assembly of Polymers and Colloid-like Molecules 5
1.3 Liquid Crystalline Colloids of Nanoparticles 9
1.4 Ribbon Phase in Surfactant System 13
1.5 Motivation and Overview of the Dissertation 14
Chap 2. Experimental Section 18
2.1 Materials and Preparation of Complex 18
2.2 Polarized Optical Microscope (POM) Experiment 19
2.3 Cryogenic Electron Microscopy (Cryo-TEM) Experiment 19
2.4 Small Angle X-ray Scattering (SAXS) Measurements 20
2.5 1H NMR Spectroscopy Experiment 20
Chap 3. Results and Discussion 21
3.1 Ribbon Phase of Dendrimer-Surfactant Complexes 21
3.1.1 2D Lattices of the Ribbon Phase 21
3.1.2 Analysis of Dendrimer Geometry in the Complex 32
3.1.3 Discussion on the governing thermodynamic factors of structural formation 37
3.1.4 Effect of Monovalent Salt 40
3.2 Tuning the Structure of Dendrimer-Surfactant Complexes 44
3.2.1 Lattice Structures of the Complexes 44
3.2.2 Arrangement of Dendrimer and SDS Micelle in the Complexes 57
3.2.3 A Summary of The Factors Governing the Phase Transitions 70
Chap 4. Conclusion 73
Reference 75
Appendix A. 1H NMR spectroscopy experiment for determination of actual SDS binding ratio, Xa 82
Appendix B. The actual compositions of Xn/0.5 and Xn/1.0 complexes as a function of salt concentration 87
1. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., A new class of polymers: starburst-dendritic macromolecules. Polymer journal 1985, 17 (1), 117-132.
2. Esfand, R.; Tomalia, D. A., Poly (amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug discovery today 2001, 6 (8), 427-436.
3. Hecht, S.; Fréchet, J. M., Dendritic encapsulation of function: applying nature's site isolation principle from biomimetics to materials science. Angewandte Chemie International Edition 2001, 40 (1), 74-91.
4. Tully, D. C.; Fréchet, J. M., Dendrimers at surfaces and interfaces: chemistry and applications. Chemical Communications 2001, (14), 1229-1239.
5. Piotti, M. E.; Rivera, F.; Bond, R.; Hawker, C. J.; Fréchet, J. M., Synthesis and catalytic activity of unimolecular dendritic reverse micelles with “internal” functional groups. Journal of the American Chemical Society 1999, 121 (40), 9471-9472.
6. Chung, Y.-M.; Rhee, H.-K., Pt-Pd bimetallic nanoparticles encapsulated in dendrimer nanoreactor. Catalysis letters 2003, 85 (3-4), 159-164.
7. Zhao, M.; Sun, L.; Crooks, R. M., Preparation of Cu nanoclusters within dendrimer templates. Journal of the American Chemical Society 1998, 120 (19), 4877-4878.
8. Kumar, C. S., Nanomaterials for cancer therapy. Wiley-VCH: 2006.
9. Tomalia, D. A., Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Progress in Polymer Science 2005, 30 (3-4), 294-324.
10. Klajnert, B.; Bryszewska, M., Dendrimers: properties and applications. Acta biochimica polonica 2001, 48 (1), 199-208.
11. Hawker, C. J.; Frechet, J. M., Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. Journal of the American Chemical Society 1990, 112 (21), 7638-7647.
12. Pourianazar, N. T.; Mutlu, P.; Gunduz, U., Bioapplications of poly (amidoamine)(PAMAM) dendrimers in nanomedicine. Journal of Nanoparticle Research 2014, 16 (4), 2342.
13. Cakara, D.; Kleimann, J.; Borkovec, M., Microscopic protonation equilibria of poly (amidoamine) dendrimers from macroscopic titrations. Macromolecules 2003, 36 (11), 4201-4207.
14. Tomalia, D.; Fréchet, J., Conclusion/Outlook–Toward Higher Macromolecular Complexity in the Twenty‐First Century. Dendrimers and Other Dendritic Polymers 2001, 631-633.
15. Wu, Y.-C.; Kuo, S.-W., Self-assembly supramolecular structure through complementary multiple hydrogen bonding of heteronucleobase-multifunctionalized polyhedral oligomeric silsesquioxane (POSS) complexes. Journal of Materials Chemistry 2012, 22 (7), 2982-2991.
16. Li, M.; Ishihara, S.; Ji, Q.; Akada, M.; Hill, J. P.; Ariga, K., Paradigm shift from self-assembly to commanded assembly of functional materials: recent examples in porphyrin/fullerene supramolecular systems. Science and technology of advanced materials 2012, 13 (5), 053001.
17. Huang, M.; Hsu, C.-H.; Wang, J.; Mei, S.; Dong, X.; Li, Y.; Li, M.; Liu, H.; Zhang, W.; Aida, T.; Wen-Bin, Z.; Kan, Y.; Cheng, S. Z. D., Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science 2015, 348 (6233), 424-428.
18. Yue, K.; Huang, M.; Marson, R. L.; He, J.; Huang, J.; Zhou, Z.; Wang, J.; Liu, C.; Yan, X.; Wu, K.; Zaihong, G.; Hao, L.; Wei, Z.; Peihong, N.; Wesdemiotis, C.; Wen-Bin, Z.; Glotzer, S. C.; Cheng, S. Z. D., Geometry induced sequence of nanoscale Frank–Kasper and quasicrystal mesophases in giant surfactants. Proceedings of the National Academy of Sciences 2016, 113 (50), 14195-14200.
19. Feng, X.; Zhang, R.; Li, Y.; Hong, Y.-l.; Guo, D.; Lang, K.; Wu, K.-Y.; Huang, M.; Mao, J.; Wesdemiotis, C.; Nishiyam, Y.; Wei, Z.; Wei, Z.; Miyoshi, T.; Tao, L.; Cheng, S. Z. D., Hierarchical Self-Organization of AB n Dendron-like Molecules into a Supramolecular Lattice Sequence. ACS central science 2017, 3 (8), 860-867.
20. Ungar, G.; Zeng, X., Frank–Kasper, quasicrystalline and related phases in liquid crystals. Soft Matter 2005, 1 (2), 95-106.
21. Zeng, X.; Ungar, G.; Liu, Y.; Percec, V.; Dulcey, A. E.; Hobbs, J. K., Supramolecular dendritic liquid quasicrystals. Nature 2004, 428 (6979), 157.
22. Ungar, G.; Liu, Y.; Zeng, X.; Percec, V.; Cho, W.-D., Giant supramolecular liquid crystal lattice. Science 2003, 299 (5610), 1208-1211.
23. Prosa, T. J.; Bauer, B. J.; Amis, E. J., From stars to spheres: A SAXS analysis of dilute dendrimer solutions. Macromolecules 2001, 34 (14), 4897-4906.
24. Lescanec, R. L.; Muthukumar, M., Configurational characteristics and scaling behavior of starburst molecules: a computational study. Macromolecules 1990, 23 (8), 2280-2288.
25. Rathgeber, S.; Monkenbusch, M.; Kreitschmann, M.; Urban, V.; Brulet, A., Dynamics of star-burst dendrimers in solution in relation to their structural properties. The Journal of chemical physics 2002, 117 (8), 4047-4062.
26. Chen, W.-R.; Porcar, L.; Liu, Y.; Butler, P. D.; Magid, L. J., Small angle neutron scattering studies of the counterion effects on the molecular conformation and structure of charged G4 PAMAM dendrimers in aqueous solutions. Macromolecules 2007, 40 (16), 5887-5898.
27. Wu, B.; Li, X.; Do, C.; Kim, T.-H.; Shew, C.-Y.; Liu, Y.; Yang, J.; Hong, K.; Porcar, L.; Chen, C.-Y., Spatial distribution of intra-molecular water and polymeric components in polyelectrolyte dendrimers revealed by small angle scattering investigations. The Journal of chemical physics 2011, 135 (14), 144903.
28. Liu, Y.; Bryantsev, V. S.; Diallo, M. S.; Goddard Iii, W. A., PAMAM dendrimers undergo pH responsive conformational changes without swelling. Journal of the American Chemical Society 2009, 131 (8), 2798-2799.
29. Huang, Y.-C.; Su, C.-J.; Chen, C.-Y.; Chen, H.-L.; Jeng, U.-S.; Berezhnoy, N. V.; Nordenskiöld, L.; Ivanov, V. A., Elucidating the DNA–Histone Interaction in Nucleosome from the DNA–Dendrimer Complex. Macromolecules 2016, 49 (11), 4277-4285.
30. Clark, D. J.; Kimura, T., Electrostatic mechanism of chromatin folding. Journal of molecular biology 1990, 211 (4), 883-896.
31. Kannan, R.; Nance, E.; Kannan, S.; Tomalia, D. A., Emerging concepts in dendrimer‐based nanomedicine: from design principles to clinical applications. Journal of internal medicine 2014, 276 (6), 579-617.
32. Goodby, J. W.; Saez, I. M.; Cowling, S. J.; Görtz, V.; Draper, M.; Hall, A. W.; Sia, S.; Cosquer, G.; Lee, S. E.; Raynes, E. P., Transmission and amplification of information and properties in nanostructured liquid crystals. Angewandte Chemie International Edition 2008, 47 (15), 2754-2787.
33. Garbovskiy, Y. A.; Glushchenko, A. V., Liquid crystalline colloids of nanoparticles: preparation, properties, and applications. In Solid State Physics, Elsevier: 2010; Vol. 62, pp 1-74.
34. Chandrasekhar, S., Discotic liquid crystals. A brief review. Liquid Crystals 1993, 14 (1), 3-14.
35. Kato, T., Self-assembly of phase-segregated liquid crystal structures. Science 2002, 295 (5564), 2414-2418.
36. Kumar, S., Discotic liquid crystal-nanoparticle hybrid systems. NPG Asia Materials 2014, 6 (1), e82.
37. Huang, Z.; Qi, P.; Liu, Y.; Chai, C.; Wang, Y.; Song, A.; Hao, J., Ionic-surfactants-based thermotropic liquid crystals. Physical Chemistry Chemical Physics 2019, 21 (28), 15256-15281.
38. McKenna, M. D.; Barberá, J.; Marcos, M.; Serrano, J. L., Discotic liquid crystalline poly (propylene imine) dendrimers based on triphenylene. Journal of the American Chemical Society 2005, 127 (2), 619-625.
39. Peterca, M.; Imam, M. R.; Ahn, C.-H.; Balagurusamy, V. S.; Wilson, D. A.; Rosen, B. M.; Percec, V., Transfer, amplification, and inversion of helical chirality mediated by concerted interactions of C3-supramolecular dendrimers. Journal of the American Chemical Society 2011, 133 (7), 2311-2328.
40. Nickmans, K.; Schenning, A. P., Directed Self‐Assembly of Liquid‐Crystalline Molecular Building Blocks for Sub‐5 nm Nanopatterning. Advanced Materials 2018, 30 (3), 1703713.
41. Gong, M.; Yu, Q.; Ma, S.; Luo, F.; Wang, R.; Chen, D., Self-assembly behavior of triphenylene-based side-chain discotic liquid crystalline polymers. Macromolecules 2017, 50 (14), 5556-5564.
42. Yano, K.; Itoh, Y.; Araoka, F.; Watanabe, G.; Hikima, T.; Aida, T., Nematic-to-columnar mesophase transition by in situ supramolecular polymerization. Science 2019, 363 (6423), 161-165.
43. Lee, H. K.; Lee, H.; Ko, Y. H.; Chang, Y. J.; Oh, N. K.; Zin, W. C.; Kim, K., Synthesis of a nanoporous polymer with hexagonal channels from supramolecular discotic liquid crystals. Angewandte Chemie International Edition 2001, 40 (14), 2669-2671.
44. Lugger, J. A.; Mulder, D. J.; Bhattacharjee, S.; Sijbesma, R. P., Homeotropic self-alignment of discotic liquid crystals for nanoporous polymer films. ACS nano 2018, 12 (7), 6714-6724.
45. Zhao, D.; Huo, Q.; Feng, J.; Kim, J.; Han, Y.; Stucky, G. D., Novel mesoporous silicates with two-dimensional mesostructure direction using rigid bolaform surfactants. Chemistry of materials 1999, 11 (10), 2668-2672.
46. Landskron, K.; Ozin, G. A., Periodic mesoporous dendrisilicas. Science 2004, 306 (5701), 1529-1532.
47. Hagslätt, H.; Söderman, O.; Jönsson, B., Ribbon phases in surfactant systems Comparisons between experimental results and predictions of a theoretical model. Liquid Crystals 1994, 17 (2), 157-177.
48. Hagslätt, H.; Söderman, O.; Jönsson, B., The structure of intermediate ribbon phases in surfactant systems. Liquid Crystals 1992, 12 (4), 667-688.
49. Liew, C. Y.; Salim, M.; Zahid, N. I.; Hashim, R., Biomass derived xylose Guerbet surfactants: thermotropic and lyotropic properties from small-angle X-ray scattering. RSC Advances 2015, 5 (120), 99125-99132.
50. Lombardo, D.; Kiselev, M. A.; Magazù, S.; Calandra, P., Amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches. Advances in Condensed Matter Physics 2015, 2015.
51. Antonietti, M.; Wenzel, A.; Thünemann, A., The “egg-carton” phase: A new morphology of complexes of polyelectrolytes with natural lipid mixtures. Langmuir 1996, 12 (8), 2111-2114.
52. Antonietti, M.; Maskos, M., Fine-tuning of phase structures and thermoplasticity of polyelectrolyte− surfactant complexes: Copolymers of ionic monomers with N-alkylacrylamides. Macromolecules 1996, 29 (12), 4199-4205.
53. Liu, C.-Y.; Chen, H.-L., Undulating the Lamellar Interface of Polymer–Surfactant Complex by Dendrimer. Macromolecules 2017, 50 (17), 6501-6508.
54. Zhou, S.; Chu, B., Assembled materials: polyelectrolyte–surfactant complexes. Advanced Materials 2000, 12 (8), 545-556.
55. Antonietti, M.; Henke, S.; Thünemann, A., Highly ordered materials with ultra‐low surface energies: Polyelectrolyte–surfactant, complexes with fluorinated surfactants. Advanced Materials 1996, 8 (1), 41-45.
56. Thünemann, A. F., Nano‐structured materials with low surface energies formed by polyelectrolytes and fluorinated amphiphiles (PEFA). Polymer international 2000, 49 (7), 636-644.
57. Antonietti, M.; Conrad, J.; Thuenemann, A., Polyelectrolyte-surfactant complexes: a new type of solid, mesomorphous material. Macromolecules 1994, 27 (21), 6007-6011.
58. Antonietti, M.; Conrad, J., Herstellung höchstgeordneter flüssigkristalliner Phasen durch Komplexbildung von Polyacrylsäure mit kationischen Tensiden. Angewandte Chemie 1994, 106 (18), 1927-1929.
59. Mezzenga, R.; Ruokolainen, J.; Canilho, N.; Kasëmi, E.; Schlüter, D. A.; Lee, W. B.; Fredrickson, G. H., Frustrated self-assembly of dendron and dendrimer-based supramolecular liquid crystals. Soft Matter 2009, 5 (1), 92-97.
60. Antonietti, M.; Göltner, C., Superstructures of functional colloids: chemistry on the nanometer scale. Angewandte Chemie International Edition in English 1997, 36 (9), 910-928.
61. Laughlin, R. G., The aqueous phase behavior of surfactants. Academic Pr: 1994; Vol. 6.
62. Jackson, C. L.; Chanzy, H. D.; Booy, F. P.; Drake, B. J.; Tomalia, D. A.; Bauer, B. J.; Amis, E. J., Visualization of dendrimer molecules by transmission electron microscopy (TEM): Staining methods and cryo-TEM of vitrified solutions. Macromolecules 1998, 31 (18), 6259-6265.
63. Soininen, A. J.; Kasëmi, E.; Schlüter, A. D.; Ikkala, O.; Ruokolainen, J.; Mezzenga, R., Self-assembly and induced circular dichroism in dendritic supramolecules with cholesteric pendant groups. Journal of the American Chemical Society 2010, 132 (31), 10882-10890.
64. Almgren, M.; Gimel, J.; Wang, K.; Karlsson, G.; Edwards, K.; Brown, W.; Mortensen, K., SDS micelles at high ionic strength. A light scattering, neutron scattering, fluorescence quenching, and CryoTEM investigation. Journal of colloid and interface science 1998, 202 (2), 222-231.
65. Bergström, M.; Pedersen, J. S., Structure of pure SDS and DTAB micelles in brine determined by small-angle neutron scattering (SANS). Physical Chemistry Chemical Physics 1999, 1 (18), 4437-4446.
66. Orwoll, R. A.; Flory, P. J., Equation-of-state parameters for normal alkanes. Correlation with chain length. Journal of the American Chemical Society 1967, 89 (26), 6814-6822.
67. Takahashi, R.; Sato, T.; Terao, K.; Yusa, S.-i., Intermolecular interactions and self-assembly in aqueous solution of a mixture of anionic–neutral and cationic–neutral block copolymers. Macromolecules 2015, 48 (19), 7222-7229.
68. Gummel, J.; Cousin, F.; Boué, F., Counterions release from electrostatic complexes of polyelectrolytes and proteins of opposite charge: a direct measurement. Journal of the American Chemical Society 2007, 129 (18), 5806-5807.
69. Wołowicz, A.; Staszak, K., Study of surface properties of aqueous solutions of sodium dodecyl sulfate in the presence of hydrochloric acid and heavy metal ions. Journal of Molecular Liquids 2020, 299, 112170.
70. Itri, R.; Amaral, L.; Mariani, P., Structure of the hexagonal phase of the sodium dodecyl sulfate and water system. Physical Review E 1996, 54 (5), 5211.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *