帳號:guest(18.224.69.84)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):阮燈忠
作者(外文):Nguyen, Dang-Trung
論文名稱(中文):以嵌段共聚物P3HT-b-PS來實現聚合物-量子點複合材料之高性能太陽能電池
論文名稱(外文):Polymer-Quantum Dot Composite Hybrid Solar Cells using block copolymer P3HT-b-PS for High Performance
指導教授(中文):陳壽安
指導教授(外文):Chen, Show-An
口試委員(中文):夏揚
葉柏男
口試委員(外文):Sharma, Sunil
Yeh, Po-Nan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032426
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:72
中文關鍵詞:聚合物-量子點複合材料之高性能太陽能電池
外文關鍵詞:hybrid quantum dot solar cellBlock-copolymerPbS quantum dotbi-continuous charge channel
相關次數:
  • 推薦推薦:0
  • 點閱點閱:453
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
藉由濕式製程混和聚3-己基噻吩(P3HT)與PbS量子點(QD)所製成的混合型太陽能電池(HSC)由於其材料成本低且製程簡單因此非常具有發展潛力。但是,P3HT與具有油酸(OA)配體的PbS QD不兼容,這會導致嚴重的相分離,從而導致所需的雙連續網絡表面形態的效果較差,從而導致電荷收集效率低下。在這篇論文中首次提出了以聚苯乙烯與P3HT的嵌段共聚物改善聚合物與油酸之間的互溶性,從而朝著所需的雙連續網絡形態發展,這是通過在我們先前的報告中使用耗散動態模擬來完成的,因此元件效率從3.66% 提升4.18%。 雙連續電荷通道是整體異質接面太陽能電池中的理想形態,在先前的報告中對於P3HT / QD和低能隙聚合物/ QD系統均未明確觀察到。 不僅如此,P3HT和P3HT-b-PS的混合物可減少非導電聚苯乙烯的含量並保留雙連續電荷通道。 由於在有效層中形成了高質量的雙連續電荷傳輸通道,重量比為0.7:0.3:20的P3HT:P3HT-b-PS:PbS QD系統的功率轉換效率(PCE)達到了4.91%,比P3HT(3.66%)的功率轉換效率高1.25%,。此外,當PEDOT:PSS作為電洞傳輸層(HTL)摻雜有四丁基碘化銨(TBAI)時,其PCE可以進一步提高到5.37%。據我們所知,我們元件的性能(4.91%和5.37%)是目前所發表過的最新P3HT/QD系統中最好的(4.32%)。
Hybrid Solar Cell (HSC) based on solution-processed blends of poly(3-hexylthiophene) (P3HT) with PbS quantum dot (QD) is a potential candidate toward practical use for its low material cost and simple fabrication process. However, P3HT is highly incompatible with oleic acid (OA)-capped PbS QD that leads to strong phase separation giving poor quality in desired bi-continuous networks morphology and thus leading to inefficient charge collection. Here, a block copolymer of Polystyrene with P3HT is proposed for the first times to improve the miscibility between polymers and Oleic acid, therefore improving toward the desired bi-continuous network morphology, which are performed by using dissipative dynamic simulations in our previous report and thus device performance improved from 3.66% to 4.18%. Bi-continuous charge channel is an ideal morphology in bulk heterojunction solar cell, which has not been clearly observed in previous reports for both P3HT/QD and low band gap polymer/QD system. Not only that, the blend of P3HT and P3HT-b-PS to reduce the content of non-conducting polystyrene and retain a bi-continuous charge channel. Thus, the power conversion efficiency (PCE) of P3HT:P3HT-b-PS:PbS QD system with weight ratio of 0.7 : 0.3 : 20 is 4.91%, which is better than that of P3HT (3.66%) by 1.25% due to the formation of high quality of bi-continuous charge transport channels in the active layer. In addition, PCE can be further promoted to 5.37% when PEDOT:PSS as the hole transport layer (HTL) is doped with tetrabutylammonium iodide (TBAI). To the best of our knowledge, these performance (4.91% and 5.37%) are the best among the reported state-of-the-art P3HT/QD system (4.32%).
Chapter 1: Introduction 1
1-1 The development of solar cell 1
1-2 Solar radiation 3
1-3 Solar cell 6
1-3-1 The principle of solar cell 6
1-3-2 Characteristics of Solar Cells 9
1-4 Polymer solar cell 11
1-4-1 Conjugated polymer 11
1-4-2 The electronic state theory of conjugated polymers 12
1-4-3 Organic solar cell structure evolution 14
1-5 Quantum dot solar cell 18
1-5-2 Multiple exciton generation 20
1-5-3 Quantum dot solar cell structure evolution 22
1-5-4 Polymer/quantum dot hybrid solar cell 24
Chapter 2: Literature review 26
2-1 In Situ Passivation for Efficient PbS Quantum Dot Solar Cells 26
2-2 Polymer/quantum dot hybrid solar cell 28
2-3 Literature analysis 38
Chapter 3: Method 40
3-1 Chemicals 40
3-2 General measurement and characterization 41
3-3 Synthesis 42
3-3-1 Preparation of Poly(3-hexylthiophene) with bromo group at one terminal 42
3-3-2 Preparation of Polystyrene with end group of pinacol boronic ester 43
3-3-3 Preparation of Block Copolymer P3HT-b-PS 43
3-3-4 Synthesis of PbS QD 44
3-4 Device fabrication and measurement 45
Chapter 4: Results and discussion 47
4-1 Physical and optical properties of block copolymer and quantum dot 47
4-1-1 Molecular weight of polymers 47
4-1-2 Fourier-transform infrared spectroscopy (FTIR) 48
4-1-3 Ultraviolet-visible (UV-Vis) of polymers 49
4-2 The influence of the mixing ratio of P3HT and PbS quantum dots on the device 50
4-3 The influence of thermal annealing on performance of quantum dots hybrid solar cell. 53
4-4 The influence of block copolymer P3HT-b-PS on morphology of active layer. 55
4-5 The influence of blend ratio of P3HT and P3HT-b-PS on morphology of active layer. 60
4-6 The improved performance of device by doping TBAI into PEDOT:PSS 63
4-7 Conclusion 66
Chapter 5: References 68


[1] D. M. Chapin, C. S. Fuller, and G. L. Pearson, J. Appl. Phys., 1954, 25, 676–677.
[2] National Renewable Energy Laboratory, 2020. www.nrel.gov/pv/cell-efficiency.html.
[3] J. A. Herron, J. Kim, A. A. Upadhye, G. W. Huber, and C. T. Maravelias, Energy Environ. Sci., 2015, 8, 126–157.
[4] Introduction to Solar Radiation, http://www.newport.com/Introduction-to-Solar-Radiation/411919/1033/content.aspx.
[5] M. Knupfer, Appl. Phys. A, 2003, 77, 623–626.
[6] K. L. Shaklee and R. E. Nahory, Phys. Rev. Lett., 1970, 24, 942–945.
[7] P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, Adv. Mater., 2008, 20, 3516–3520.
[8] A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, E. Harth, A. Gügel, and K. Müllen, Phys. Rev. B, 1999, 59, 15346.
[9] M. Theander, A. Yartsev, D. Zigmantas, V. Sundström, W. Mammo, M. R. Andersson, and O. Inganäs, Phys. Rev. B, 2000, 61, 12957.
[10] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science (80-. )., 1992, 258, 1474–1476.
[11] S.-H. Liao, Y.-L. Li, T.-H. Jen, Y.-S. Cheng, and S.-A. Chen, J. Am. Chem. Soc., 2012, 134, 14271–14274.
[12] X. Yang and J. Loos, Macromolecules, 2007, 40, 1353–1362.
[13] H. Hoppe and N. S. Sariciftci, J. Mater. Chem., 2006, 16, 45–61.
[14] G. Li, V. Shrotriya, Y. Yao, and Y. Yang, J. Appl. Phys., 2005, 98, 43704.
[15] D. Chirvase, J. Parisi, J. C. Hummelen, and V. Dyakonov, Nanotechnology, 2004, 15, 1317.
[16] V. D. Mihailetchi, L. J. A. Koster, and P. W. M. Blom, Appl. Phys. Lett., 2004, 85, 970–972.
[17] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv. Funct. Mater., 2001, 11, 374–380.
[18] W.-J. Ke, G.-H. Lin, C.-P. Hsu, C.-M. Chen, Y.-S. Cheng, T.-H. Jen, and S.-A. Chen, J. Mater. Chem., 2011, 21, 13483–13489.
[19] C. Deibel and V. Dyakonov, Reports Prog. Phys., 2010, 73, 96401.
[20] W. J. Feast, Polyacetylene: Chemistry, physics, and material science. James C. W. Chien, 1984., 18. John Wiley & Sons, Ltd, 1986.
[21] H. Hoppe and N. S. Sariciftci, in Photoresponsive Polymers II, Springer, 2007, 1–86.
[22] C. W. Tang, Appl. Phys. Lett., 1986, 48, 183–185.
[23] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science (80-. )., 1995, 270, 1789–1791.
[24] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater., 2005, 15, 1617–1622.
[25] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific, 2011, 80–84.
[26] A. J. Moulé and K. Meerholz, Adv. Mater., 2008, 20, 240–245.
[27] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Nat. Mater., 2007, 6, 497–500.
[28] J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, and H. Yan, Nat. Energy, 2016, 1, 1–7.
[29] Z. Zhou, W. Liu, G. Zhou, M. Zhang, D. Qian, J. Zhang, S. Chen, S. Xu, C. Yang, F. Gao, H. Zhu, F. Liu, and X. Zhu, Adv. Mater., 2020, 32, 1906324.
[30] HANK HOGAN, 2011. https://www.photonics.com/Article.aspx?AID=45916.
[31] W. Shockley and H. J. Queisser, J. Appl. Phys., 1961, 32, 510–519.
[32] R. D. Schaller, M. Sykora, J. M. Pietryga, and V. I. Klimov, Nano Lett., 2006, 6, 424–429.
[33] C. Piliego, L. Protesescu, S. Z. Bisri, M. V Kovalenko, and M. A. Loi, Energy Environ. Sci., 2013, 6, 3054–3059.
[34] M. Choi, S. Kim, H. Lim, J. Choi, D. M. Sim, S. Yim, B. T. Ahn, J. Y. Kim, and Y. S. Jung, Adv. Mater., 2016, 28, 1780–1787.
[35] O. Voznyy, D. Zhitomirsky, P. Stadler, Z. Ning, S. Hoogland, and E. H. Sargent, ACS Nano, 2012, 6, 8448–8455.
[36] A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, and M. Gratzel, ACS Nano, 2010, 4, 3374–3380.
[37] R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, Nano Lett., 2005, 5, 865–871.
[38] F. W. Wise, Acc. Chem. Res., 2000, 33, 773–780.
[39] D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, and L.-W. Wang, Science (80-. )., 2014, 344, 1380–1384.
[40] Y. Wang, K. Lu, L. Han, Z. Liu, G. Shi, H. Fang, S. Chen, T. Wu, F. Yang, M. Gu, S. Zhou, X. Ling, X. Tang, J. Zheng, M. A. Loi, and W. Ma, Adv. Mater., 2018, 30, 1–8.
[41] J. Seo, M. J. Cho, D. Lee, A. N. Cartwright, and P. N. Prasad, Adv. Mater., 2011, 23, 3984–3988.
[42] Z. Liu, Y. Sun, J. Yuan, H. Wei, X. Huang, L. Han, W. Wang, H. Wang, and W. Ma, Adv. Mater., 2013, 25, 5772–5778.
[43] M. Nam, J. Park, K. Lee, S.-W. Kim, H. Ko, I. K. Han, and D.-H. Ko, J. Mater. Chem. A, 2015, 3, 10585–10591.
[44] S. Yao, Z. Chen, F. Li, B. Xu, J. Song, L. Yan, G. Jin, S. Wen, C. Wang, B. Yang, and W. Tian, ACS Appl. Mater. Interfaces, 2015, 7, 7146–7152.
[45] M. C. Iovu, E. E. Sheina, R. R. Gil, and R. D. McCullough, Macromolecules, 2005, 38, 8649–8656.
[46] J. Liu and R. D. McCullough, Macromolecules, 2002, 35, 9882–9889.
[47] I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, ACS Nano, 2009, 3, 3023–3030.
[48] V. Bertasius, R. Mastria, A. Rizzo, G. Gigli, C. Giansante, and V. Gulbinas, J. Phys. Chem. C, 2016, 120, 14356–14364.
[49] M.-Y. Lin, C.-Y. Lee, S.-C. Shiu, I.-J. Wang, J.-Y. Sun, W.-H. Wu, Y.-H. Lin, J.-S. Huang, and C.-F. Lin, Org. Electron., 2010, 11, 1828–1834.
[50] H. Wang, S. Yang, Y. Wang, J. Xu, Y. Huang, W. Li, B. He, S. Muhammad, Y. Jiang, Y. Tang, and B. Zou, Org. Electron., 2017, 42, 309–315.
[51] Y. Cao, A. Stavrinadis, T. Lasanta, D. So, and G. Konstantatos, Nat. Energy, 2016, 1, 16035.
[52] P. Komarov, P. Baburkin, V. Ivanov, S.-A. Chen, and A. Khokhlov, Mol. Syst. Des. Eng., 2019, 4, 390–395.
[53] D. W. van Krevelen and K. te Nijenhuis, in Properties of Polymer, 4th ed., Elsevier, 2009, 189–226.
[54] Z. Yu, Y. Xia, D. Du, and J. Ouyang, ACS Appl. Mater. Interfaces, 2016, 8, 11629–11638.
[55] Y. Xia and J. Ouyang, J. Mater. Chem., 2011, 21, 4927–4936.
[56] D. Wang, J. K. Baral, H. Zhao, B. A. Gonfa, V.-V. Truong, M. A. El Khakani, R. Izquierdo, and D. Ma, Adv. Funct. Mater., 2011, 21, 4010–4018.
[57] C. Giansante, R. Mastria, G. Lerario, L. Moretti, I. Kriegel, F. Scotognella, G. Lanzani, S. Carallo, M. Esposito, M. Biasiucci, A. Rizzo, and G. Gigli, Adv. Funct. Mater., 2015, 25, 111–119.

(此全文20250826後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *