帳號:guest(3.12.161.0)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):阮寶卿
作者(外文):Nguyen, Thi-Bao-Khanh
論文名稱(中文):利用CRISPR/Cas13d系統在中國倉鼠卵巢細胞中調控醣基化基因
論文名稱(外文):Establishment of CRISPR/Cas13d system in CHO cell for regulating gene expression involved in glycosylation
指導教授(中文):胡育誠
指導教授(外文):Hu, Yu-Chen
口試委員(中文):黃振煌
林進裕
施潔如
郭志宏
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032425
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:56
中文關鍵詞:中國倉鼠卵巢細胞CRISPR/Cas13dCas13醣基化FUT8β-4GalT1
外文關鍵詞:CHO cellcell engineeringCRISPR/Cas13dFUT8β-4GalT1
相關次數:
  • 推薦推薦:0
  • 點閱點閱:282
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
中國倉鼠卵巢細胞(CHO細胞)在生產蛋白質藥物扮演著關重要的角色。 CHO細胞具有類似人類轉譯後修飾的能力。而轉譯後修飾中的最重要的過程之一為醣基化,其中將聚醣添加到蛋白質結構中,使得修飾的蛋白質可以充分發揮作用。在該過程中存在多種醣基化酵素。我們利用調控醣基化酵素的表現量,調控聚醣基分布,從而產生具有功能性能的蛋白質藥物。因此,將能有效改善醣基化蛋白的質量,進而符合生物相似性藥物所需之特徵。最近,CRISPR / Cas13d系統已被報導能有效調控mRNA表現量,此外也相較其他工具,有較低的脫靶效應。利用CRISPR / Cas13d系統控制CHO細胞醣基化途徑的醣基化酵素表達,以產生符合生物相似性藥物的醣基分布。在這項研究中,我們構建了CRISPR / Cas13d調控FUT8基因之載體,並驗證CRISPR / Cas13d能在CHO細胞中有效降低FUT8基因表現量。研究結果顯示,在穩定表現CRISPR / Cas13d的CHO細胞中, fut8 mRNA能有效的降低表現。此外,也驗證能在CHO細胞中大量表達β-1,4半乳糖基轉移酶(β-4GalT1)以產生更多的半乳糖聚醣用於生物相似性藥物生產。最後我們驗證了CRISPR / Cas13d系統能應用於調控醣基化的可行性。
Chinese hamster ovary cells (CHO cells) play a crucial role in the commercial production of therapeutic protein drugs. CHO cells possess the capability of human-like post-translational modification. One of the most important processes involved in the post-translational modification is the glycosylation process in which the glycans are added to the protein structure so that the modified protein can fully function. There are a variety of glycosylation enzymes present in this process. We hypothesized that through controlling the expression level of the glycoenzymes, it would be able to manipulate the glycan profile, thus generate protein drugs that have enhanced performances. Therefore, the protein quality would be improved or followed bio-similarity. Recently, CRISPR/Cas13d system emerged and has become an evolution for transcriptome engineering that can efficiently inhibit the target translation of eukaryotic cells with a low frequency of the off-target effects. Utilizing CRISPR/Cas13d system to control glycosylation enzyme expression which involved in the glycosylation pathway of CHO cell was proposed to generate a glycan profile that following the biosimilarity. In this study, we constructed the vectors required for CRISPR/Cas13d-mediated inhibition of fucosyltransferase 8 (FUT8) and explored the activity of CRISPR/Cas13d in knockdown glycoenzyme. Our data showed that fut8 expression was down-regulated under the manipulation of CRISPR/Cas13d system in stable pools. Besides, β-1,4 galactosyltransferase (β4GalT1) was overexpressed in order to generate more galactose glycan for biosimilarity. Consequently, fed-batch production was further performed to study the glycan distribution as well as cell growth characteristic and protein productivity after gene regulation.
ABSTRACT 3
LIST OF FIGURE 5
LIST OF TABLE 5
Chapter 1. Literature Review 6
1.1. Introduction to Chinese hamster ovary cell (CHO cell) 6
1.2. Cellular engineering of CHO cells 8
1.3. CHO cell glycosylation 9
1.3.1. Overview of glycosylation in CHO cell 9
1.3.2. Regulation of glycosylation in CHO cell 11
1.4. CRISPR system overview 12
1.4.1. Overview of CRISPR 12
1.4.2. Type II CRISPR/Cas system and CRISPRi system 13
1.4.3. Type VI CRISPR/Cas system 13
1.4.4. CRISPR/Cas13d system 14
RESEARCH OBJECTIVE 24
Chapter 2. Experimental Method 26
2.1. Plasmid construction 26
2.1.1. Construction of pEF1a-Cas13dPZ expression plasmid 26
2.1.2. Construction of pIS-Cas13dPZ 26
2.1.3. Construction of gRNA expression cassette 27
2.1.4. Construction of β-4GalT1 overexpression plasmids 27
2.2. CHO cell culture 28
2.3. CHO cell transfection 28
2.4. Cell selection and re-adaptation 29
2.5. Serum-free fed-batch culture 29
2.6. Real-time quantitative polymerase chain reaction (qPCR) 30
Chapter 3. Experimental results 31
3.1. Suppression efficiency of CRISPRi system for fut8 endogenous gene in IgG expressed CHO-DG44 cell 31
3.2. Validation of CRISPR/Cas13d system in exogenous gene knockdown in CHO-DG44 cell 32
3.3. Utilization of CRISPR/Cas13d system in FUT8 endogenous gene transient suppression 33
3.4. Stable suppression of FUT8 by CRISPR/Cas13d system 34
3.5. Serum-free fed batch culture of engineered CHO-DG44 cells 35
3.6. Overexpression of β-4GalT1 exogenous gene in IgG expressed DG-44 cell 36
Chapter 4. Dicussion 47
Chapter 5. Future work 52
REFERRENCE 53
1. Walsh G. Biopharmaceutical benchmarks 2014. Nat Biotechnol. 2014 Oct;32(10):992-1000.
2. Fischer S, Handrick R, Otte K. The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol Adv. 2015 Dec;33(8):1878-96.
3. Kim JY, Kim YG, Lee GM. CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biot. 2012;93(3):917-30.
4. Zhu J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv. 2012;30(5):1158-70.
5. Hefzi H, Ang KS, Hanscho M. A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism. Cell Syst. 2016 Nov 23;3(5):434-443.
6. Ronda C, Pedersen LE, Hansen HG. Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool. Biotechnol Bioeng. 2014 Aug;111(8):1604-16.
7. Lee JS, Kallehauge TB, Pedersen LE, Kildegaard HF. Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Sci Rep. 2015 Feb 25;5:8572.
8. Shen CC, Sung LY, Lin SY, Lin MW, Hu YC. Enhancing Protein Production Yield from Chinese Hamster Ovary Cells by CRISPR Interference. ACS Synth Biol. 2017 Aug 18;6(8):1509-1519.
9. Mahan, Alison Emilia. Regulation and Programming of Antibody Effector Function through IgG Glycosylation. Doctoral dissertation, Harvard University. 2014.
10. Parekh R, Roitt I, Isenberg D, Dwek R, Rademacher T. Age-related galactosylation of the N-linked oligosaccharides of human serum IgG. J Exp Med. 1988 May 1. 167(5):1731–1736
11. Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, Rademacher TW, Mizuochi T, Taniguchi T, Matsuta K. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 1985 Aug 1-7. 316(6027):452–457
12. Mizuochi T, Taniguchi T, Shimizu A, Kobata A. Structural and numerical variations of the carbohydrate moiety of immunoglobulin G. J Immunol 1982 Nov. 129(5):2016–2020
13. Shikata K, Yasuda T, Takeuchi F, Konishi T, Nakata M, Mizuochi T. Structural changes in the oligosaccharide moiety of human IgG with aging. Glycoconj J 1998 Jul. 15(7):683–689
14. Zauner G, Selman MH, Bondt A, Rombouts Y, Blank D, Deelder AM, Wuhrer M. Glycoproteomic analysis of antibodies. Mol Cell Proteom 2013. 12(4):856–865.
15. Wuhrer M, Stam JC, van de Geijn FE, Koeleman CA, Verrips CT, Dolhain RJ, Hokke CH, Deelder AM. Glycosylation profiling of immunoglobulin G (IgG) subclasses from human serum. Proteomics 2007. 7(22):4070–4081.
16. Niwa R, Satoh M. The Current Status and Prospects of Antibody Engineering for Therapeutic Use: Focus on Glycoengineering Technology. J Pharm Sci 2014. 104(3):930-41.
17. T Sun, C Li, L Han, H Jiang, Y Xie, B Zhang, X Qian, H Lu, J Zhu. Functional knockout of FUT8 in Chinese hamster ovary cells using CRISPR. Engineering in Life Sciences. 2015
18. H Imai-Nishiya et al. Double knockdown of α1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. BMC Biotechnol 2007.
19. Amado M, Almeida R, Schwientek T, Clausen H. Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions. Biochim Biophys Acta. 1999 Dec 6;1473(1):35-53.
20. Narimatsu, H. Carbohydrates and glycoconjugates / Biophysical methods. Curr. Opin. Struct. Biol. 2006; 16, 567–575.
21. Chiang AW, Li S, Spahn PN, Richelle A, Kuo CC, Samoudi M, Lewis NE. Modulating carbohydrate–protein interactions through glycoengineering of monoclonal antibodies to impact cancer physiology. Curr Opin Struct Biol. 2016 Oct. 40:104-111.
22. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identifcation of the gene product. J Bacteriol. 1987 Dec;169(12):5429-33.
23. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007 Mar 23;315(5819):1709-12.
24. Atmos J. Diagram of the possible mechanism for CRISPR. Photo: Wikipedia. 2009 Sept 15.
25. IGM, Universite Paris-Sud. CRISPRdb. Last updated 2014 Aug 05. http://crispr.u-psud.fr/crispr/CRISPRdatabase.php
26. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ. An updated evolutionary classifcation of CRISPR-Cas systems. Nat Rev Microbiol. 2015 Nov;13(11):722-36.
27. Mir A, Edraki A, Lee J, Sontheimer EJ. Type II-C CRISPR-Cas9 Biology, Mechanism and Application. ACS Chem Biol. 2017 Dec 20.
28. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).
29. Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180–2196 (2013).
30. Bikard, D. et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR–Cas system. Nucleic Acids Res. 41, 7429–7437 (2013).
31. Ji, W. et al. Specific gene repression by CRISPRi system transferred through bacterial conjugation. ACS Synth. Biol. 3, 929–931 (2014).
32. Granados-Riveron JT, Aquino-Jarquin G. CRISPR-Cas13 Precision Transcriptome Engineering in Cancer. Cancer Res. 2018 Aug 1;78(15):4107-4113.
33. Wang F, Wang L, Zou X, Duan S, Li Z, Deng Z, Luo J, Lee SY, Chen S. Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnol Adv. 2019 Mar 27. pii: S0734-9750(19)30052-7.
34. Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell. 2018 Apr 19;173(3):665-676.e14.
35. Yan WX, Chong S, Zhang H, Makarova KS, Koonin EV, Cheng DR, Scott DA. Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Mol Cell. 2018 Apr 19;70(2):327-339.e5.
36. Lai T, Yang Y, Ng SK. Advances in Mammalian Cell Line Development Technologies for Recombinant Protein Production. Pharmaceuticals (Basel). 2013 Apr 26;6(5):579-603.
37. Quast I, Peschke B, Lünemann JD. Regulation of antibody effector functions through IgG Fc N-glycosylation. Cell Mol Life Sci. 2017 Mar;74(5):837-847.
38. Hossler P, Khattak SF, Li ZJ. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology. 2009 Sep;19(9):936-49.
39. Romanova N, Noll T. Engineered and Natural Promoters and Chromatin-Modifying Elements for Recombinant Protein Expression in CHO cells. Biotechnol J. 2018 Mar;13(3):e1700232.
40. Brown AJ, Sweeney B, Mainwaring DO, James DC. NF-kB, CRE, YY1 elements are key functional regulators of CMV promoter-driven transient gene expression in CHO cells. Biotechnol J. 2015 Jul;10(7):1019-28.
41. Brown AJ, Sweeney B, Mainwaring DO, James DC. Synthetic promoters for CHO cell engineering. Biotechnol Bioeng. 2014 Aug;111(8):1638-47
42. Zhang C, Konermann S, Brideau NJ, Lotfy P. Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d. Cell. 2018 Sep 20;175(1):212-223.e17.
43. Ramakrishnan B, Boeggeman E, Qasba PK. Beta-1,4-galactosyltransferase and lactose synthase: molecular mechanical devices. Biochem Biophys Res Commun. 2002 Mar 15;291(5):1113-8.
44. Byrne G, O'Rourke SM, Alexander DL. CRISPR/Cas9 gene editing for the creation of an MGAT1-deficient CHO cell line to control HIV-1 vaccine glycosylation. PLoS Biol. 2018 Aug 29;16(8):e2005817.
45. Amann T, Hansen AH, Kol S, Lee GM. CRISPR/Cas9-Multiplexed Editing of Chinese Hamster Ovary B4Gal-T1, 2, 3, and 4 Tailors N-Glycan Profiles of Therapeutics and Secreted Host Cell Proteins. Biotechnol J. 2018 Oct;13(10):e1800111.
46. Wang Q, Chung CY, Rosenberg JN, Yu G, Betenbaugh MJ. Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells. Methods Mol Biol. 2018;1850:237-257.
47. Yuriy Fedorov, Emily M. Anderson, Amanda Birmingham. Off-target effects by siRNA can induce toxic phenotype. RNA. 2006 Jul; 12(7): 1188–1196.
48. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 327 (5962): 167–70.
49. https://www.duplichecker.com/show-compare-results.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *