帳號:guest(3.133.109.121)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):詹馬林
作者(外文):Frias, Jan Marvin
論文名稱(中文):丙烷-丙烯分離中蒸汽減壓蒸餾的浮壓控制
論文名稱(外文):Floating Pressure Control of Vapor Recompression Distillation in Propane-Propylene Separation
指導教授(中文):汪上曉
指導教授(外文):Wong, Shan-Hill
口試委員(中文):劉佳霖
王聖潔
口試委員(外文):Liu, Jia-Lin
Wang, San-Jang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032424
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:54
中文關鍵詞:浮動壓力控制蒸氣减壓節約能源
外文關鍵詞:Floating Pressure ControlVapor RecompressionEnergy Saving
相關次數:
  • 推薦推薦:0
  • 點閱點閱:886
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
從丙烷中分離丙烯是一種高能耗的蒸餾過程。蒸氣壓縮通常用於分離丙烯和丙烷。蒸氣壓縮的大多數研究都是在給定壓力下進行的。眾所周知,壓力越低,揮發度差就越大,分離所需的能量就越少。在傳統的塔中,蒸餾的能量可以通過在盡可能低的壓力下操作來最小化。該極限通常由冷凝器中的最大冷卻能力決定,而冷凝器的最大冷卻能力又由冷卻水的溫度決定,這種做法被稱為浮動壓力控制。在蒸氣減壓塔中,冷凝器和再沸器由熱交換器代替。輔助冷凝器和再沸器可能存在也可能不存在。運行限制取決於壓縮機的防喘振控制。此外,有必要確保在再沸器中用作蒸汽的壓縮蒸汽基本上不被過冷以避免熱交換器的振動。
在這項研究中,使用ASPEN Plus動力學研究了帶有輔助冷凝器的蒸汽減壓丙烷-丙烯塔的浮壓控制實施方案。提出了一種包括基本庫存控制,質量控制以及壓力控制的控制方案。為了將操作保持在壓縮機喘振曲線的安全範圍內,調節了壓縮蒸汽作為熱媒到達底部並通過輔助冷凝器的分流。結果表明,當塔壓力降低1 kg / cm2時,塔可以在頂部和底部的產品純度要求下運行。
據我們所知,這是首次在文獻中討論瞭如何為蒸氣再壓縮蒸餾實施浮動壓力控制。
The separation of propylene from propane is an energy-intensive distillation process. Vapor recompression is commonly used for the separation of propylene and propane. Most studies of vapor recompression were carried out at a given pressure. It is well known that the lower the pressure, the higher the volatility difference and less energy is required to perform the separation. In a traditional column, energy of the distillation can be minimized by operating at the lowest pressure possible. The limit is usually determined by the maximum cooling capacity in the condenser, which is in turn determined by the temperature of the cooling water. Such a practice is known as floating pressure control. In a vapor-recompression column, the condenser and reboiler were replaced by a heat exchanger. Auxiliary condenser and reboiler may or may not be present. The operating constraint is determined by the anti-surge control of the compressor. Furthermore, it is necessary to ensure that the compressed vapor which acts as steam in the reboiler is not substantially subcooled to avoid the vibration of the heat exchanger.
In this study, the implementation of floating pressure control for a vapor-recompression propane-propylene column with an auxiliary condenser is studied using ASPEN Plus dynamics. A control scheme that includes basic inventory control, quality control as well as pressure control was proposed. To keep the operation within safe region of the compressor surge curve, the split of the compressed vapor going to the bottom as heating medium and passing through the auxiliary condenser is adjusted. It is shown that the column can be operated under product purity requirements of top and bottom when column pressure is reduced by 1 kg/cm2.
To our knowledge, this is the first time how floating pressure control can be implemented for a vapor-recompression distillation is discussed in the literature.
Abstract i
Table of Contents iii
List of Figures iv
List of Tables v

1. Introduction 1
1.1 Research background 1
1.2 Research motivation and scope 4
1.3 Thesis organization 4

2. Review of Related Literatures 5
2.1 Propylene-propane Separation 5
2.2 Vapor recompression 8
2.3 Floating pressure control 10
2.4 Optimal control of propylene-propane separation 14

3. Steady State and Dynamic Simulation 17
3.1 Process flow diagram 17
3.2 Thermodynamic model 19
3.3 Control valve sizing………………...……….............................................................21
3.4 Base control scheme…….....…..……………............................................................23
3.4.1 Simulation flow sheet......................................................................................23
3.4.2 Controller tuning………………………………………….............................25
3.5 Pressure control..........................................................................................................27
3.5.1 Importance of multi-step pressure reduction 30

4. Process Optimization and Control 32
4.1 Optimal operation at fixed pressure 33
4.2 Implementation of optimum HV01 opening pressure reduction……………………38
4.3 Optimal operating pressure 41
4.3.1 Maintaining acceptable product purity 41
4.3.2 Cooling capacity limits pressure reduction 43
4.4 Anti-surge control 44

5. Conclusion 49
6. References 51
1. Carr, C. National Academies of Sciences, Engineering, and Medicine. (2016). The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop. National Academies Press.
2. Akah, A., & Al-Ghrami, M. (2015). Maximizing propylene production via FCC technology. Applied Petrochemical Research, 5(4), 377-392.
3. Luyben, W. L. (2013). Practical Distillation Control. John Wiley & Sons.
4. Jogwar, S. S., & Daoutidis, P. (2009, June). Vapor recompression distillation: Multi-scale dynamics and control. In 2009 American Control Conference (pp. 647-652). IEEE.
5. Dehghani, H., Fanaei Shykholeslami, M. A., & Nadi, S. (2011, November). Dynamic Simulation and Control of Vapor Recompression Column. In The 7th International Chemical Engineering Congress & Exhibition.
6. Ciannella, S., Damasceno, A. S., Nunes, Í. C., de Farias Neto, G. W., Ramos, W. B., & Brito, R. P. (2018). Using hot-vapor bypass for pressure control in distillation columns. Chinese Journal of Chemical Engineering, 26(1), 144-151.
7. Mauhar, S. M., Barjaktarovic, B. G., & Sovilj, M. N. (2004). Optimization of propylene–propane distillation process. Chemical Papers, 58(6), 386-390.
8. Umo, A. M., & Bassey, E. N. (2017). Simulation and performance analysis of propylene-propane splitter in petroleum refinery case study. International Journal of Chemical Engineering and Applications, 8(1), 1.
9. Annakou, O. & Mizsey P. (1995). Rigorous investigation of heat pump assisted distillation. Heat Recovery Systems & CHP, 15(3), 241-247.
10. Choudhari, A., & Divey, J. (2012). Distillation optimization by vapor recompression. Chemical Engineering, 119(3), 43-47.
11. Kister, H. Z., Mathias, P. M., Steinmeyer, D. E., Penney, W. R., Crocker, B. B., & Fair, J. R. (2008). Equipment for Distillation, Gas Absorption, Phase Dispersion, and Phase Separation. McGraw-Hill.
12. Cui, C., & Sun, J. (2019). Rigorous design and simultaneous optimization of extractive distillation systems considering the effect of column pressures. Chemical Engineering and Processing-Process Intensification, 139, 68-77.
13. Sloley, A. W. (2001). Effectively control column pressure. Chemical engineering progress, 97(1), 38-48.
14. Ferre, J. A., Castells, F., & Flores, J. (1985). Optimization of a distillation column with a direct vapor recompression heat pump. Industrial & Engineering Chemistry Process Design and Development, 24(1), 128-132.
15. Zhu, Z., Yu, M., Zhang, W., Liu, Y., Cui, P., Yang, J., ... & Gao, J. (2019). Exploration of the effects of pressure on the controllability of extractive distillation for separating pressure-sensitive azeotropes. Separation and Purification Technology, 115681.
16. Hoffman, H., Lupfer, D., Kane, L., Jensen, B., & Liptak, B. (2006). 8.19 Distillation: Basic Controls.
17. Mauricio-Iglesias, M., Bisgaard, T., Kristensen, H., Gernaey, K. V., Abildskov, J., & Huusom, J. K. (2014). Pressure control in distillation columns: a model-based analysis. Industrial & Engineering Chemistry Research, 53(38), 14776-14787.
18. Christopher, C. C. E., Dutta, A., Farooq, S., & Karimi, I. A. (2017). Process synthesis and optimization of propylene/propane separation using vapor recompression and self-heat recuperation. Industrial & Engineering Chemistry Research, 56(49), 14557-14564.
19. Zhang, M., Zheng, X., Huang, Q., & Sun, Z. (2019). A Novel One-Dimensional–Three-Dimensional Coupled Method to Predict Surge Boundary of Centrifugal Compressors. Journal of Engineering for Gas Turbines and Power, 141(7).
20. Munari, E., Morini, M., Pinelli, M., Brun, K., Simons, S., Kurz, R., & Moore, J. (2019). An Advanced Surge Dynamic Model for Simulating Emergency Shutdown Events and Comparing Different Antisurge Strategies. Journal of Engineering for Gas Turbines and Power, 141(7).
21. Huang, Q., Zhang, M., & Zheng, X. (2019). Compressor surge based on a 1D-3D coupled method–Part 2: Surge investigation. Aerospace Science and Technology, 90, 289-298.
22. Zhang, M., & Zheng, X. (2018). Criteria for the matching of inlet and outlet distortions in centrifugal compressors. Applied Thermal Engineering, 131, 933-946.
23. Jiang, W., Khan, J., & Dougal, R. A. (2006). Dynamic centrifugal compressor model for system simulation. Journal of power sources, 158(2), 1333-1343.
24. Dominic, S., & Maier, U. (2014). Dynamic modeling and simulation of compressor trains for an air separation unit. IFAC Proceedings Volumes, 47(3), 432-437.
25. Cunha, F. C., de Souza Jr, M. B., Barreto Jr, A. G., & Souza, D. F. D. S. (2009). Dynamic simulation of a compressor located in a natural gas processing unit using EMSO simulator. In Computer Aided Chemical Engineering (Vol. 27, pp. 603-608). Elsevier.
26. Stanley, R. A., & Bohannan, W. R. (1977). Dynamic simulation of centrifugal compressor systems. In Proceedings of the 6th Turbomachinery Symposium. Texas A&M University. Gas Turbine Laboratories.
27. Xue, X., Wang, T., Shao, Y., Yang, B., & Gu, C. (2019). Experimental and Numerical Analysis of Different Unsteady Modes in a Centrifugal Compressor With Variable Vaned Diffuser. Journal of Fluids Engineering, 141(10).
28. Kender, R., Wunderlich, B., Thomas, I., Peschel, A., Rehfeldt, S., & Klein, H. (2019). Pressure-driven dynamic simulation of start up and shutdown procedures of distillation columns in air separation units. Chemical Engineering Research and Design, 147, 98-112.
29. Zhang, Q., Shi, P., Zeng, A., Ma, Y., & Yuan, X. (2020). Dynamic control analysis of intensified extractive distillation process with vapor recompression. Separation and Purification Technology, 233, 116016.
30. Documentation, A. Aspen Physical Property System. Physical Property Methods and Models, 11.
31. Cristian, P., & Ahn, C. M. (2016, June). Characterization and control of the distillation column with heat pump. In 2016 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI) (pp. 1-8). IEEE.
32. Stewart Jr, W. B. (1981). Simulation and Evaluation of Distillation Control Systems Which Control Pressure With Reboiler Heat.
33. Viel, F., Busvelle, E., & Gauthier, J. P. (1997). A stable control structure for binary distillation columns. International Journal of Control, 67(4), 475-506.
34. Waheed, M. A., Oni, A. O., Adejuyigbe, S. B., Adewumi, B. A., & Fadare, D. A. (2014). Performance enhancement of vapor recompression heat pump. Applied energy, 114, 69-79.
35. Muhrer, C. A. (1992). Control of vapor recompression distillation columns. In Practical Distillation Control (pp. 468-491). Springer, New York, NY.
36. Olujić, Ž., Sun, L., De Rijke, A., & Jansens, P. J. (2006). Conceptual design of an internally heat integrated propylene-propane splitter. Energy, 31(15), 3083-3096.
37. Xingca, Y., Fang, G., & Mingjian, C. (2013). The Application Analysis of Overhead Vapor Recompression Heat Pump Flow for Propylene Fractional Distillation. Guangdong Chemical Industry, 16.
38. O'connell, H. E., Kirkpatrick, H. L., & Crawford, K. O. (1988). U.S. Patent No. 4,753,667. Washington, DC: U.S. Patent and Trademark Office.
39. Harwardt, A., & Marquardt, W. (2012). Heat‐integrated distillation columns: vapor recompression or internal heat integration?. AIChE journal, 58(12), 3740-3750.
40. Canales, E. R., & Marquez, F. E. (1992). Operation and experimental results on a vapor recompression pilot plant distillation column. Industrial & engineering chemistry research, 31(11), 2547-2555.
41. Sherred, J. A., & Fair, J. R. (1959). High Purity Propylene—A New Problem. Industrial & Engineering Chemistry, 51(3), 249-252.
42. Smy, K. G., & Hay, J. M. (1963). An economic study of propane propylene splitter operation. The Canadian Journal of Chemical Engineering, 41(1), 39-42.
43. Fontana, M., Fernandes, L. M., & Souza, T. A. (2019). DESIGN AND EVALUATION OF A SYSTEM TO OBTAIN POLYMER GRADE PROPYLENE BY MEANS OF VAPOR RECOMPRESSION DISTILLATION. Brazilian Journal of Petroleum and Gas, 13(4).
44. Felbab, N., Patel, B., El‐Halwagi, M. M., Hildebrandt, D., & Glasser, D. (2013). Vapor recompression for efficient distillation. 1. A new synthesis perspective on standard configurations. AIChE Journal, 59(8), 2977-2992.
45. Mendoza, D. F., Palacio, L. M., Graciano, J. E., Riascos, C. A., Vianna Jr, A. S., & Le Roux, G. C. (2013). Real-time optimization of an industrial-scale vapor recompression distillation process. Model validation and analysis. Industrial & Engineering Chemistry Research, 52(16), 5735-5746.
46. Buckley, P. S., Luyben, W. L., & Shunta, J. P. (1985). Design of distillation column control systems. Instrument Society of America.
47. Shinskey, F. G. (1984). Distillation Control, 2nd ed.; McGraw-Hill: New York.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *