帳號:guest(3.15.3.41)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):阮森輝
作者(外文):Nguyen, Lam Duc Huy
論文名稱(中文):開發用於癌症治療和組織再生的 GelMA Cryogel
論文名稱(外文):Developing GelMA Cryogel for Application in Cancer Treatment and Tissue Regeneration
指導教授(中文):王潔
陳韻晶
指導教授(外文):Wang, Jane
Chen, Yun-Ching
口試委員(中文):林淑宜
嚴玉婷
張建文
口試委員(外文):Lin, Shu-Yi
Yen, Yu-Ting
Chang, Chien-Wen
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032423
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:109
中文關鍵詞:Cryogel樹突狀細胞螺旋結構癌症疫苗乳腺腫瘤
外文關鍵詞:CryogelAnti-PD1Dendritic cellLPS3D-PrintingGyroid
相關次數:
  • 推薦推薦:0
  • 點閱點閱:30
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Cryo-GelMA 是一類水凝膠,最近在藥物傳輸和細胞治療領域引起了人們的廣泛興趣,因為它具有高度互連的多孔結構和高含水量,提供與組織的物理相似性和良好的封裝親水性藥物的能力。 在第一項工作中,Cryo-GelMA 應用於聯合化療(阿黴素)、免疫療法(負載 AuND-LPS 的骨髓源性樹突狀細胞 (BMDC) 和抗 PD1 阻斷)以預防術後腫瘤復發。 該研究最初著重於以金奈米點(AuND-LPS)修飾脂多醣(LPS)以增強其免疫刺激特性。 這種修飾對骨髓源性樹突細胞 (BMDC) 的 Th1 極化產生正面影響,同時減少 Th2 極化。 AuND-LPS 也透過上調 CCR7 受體來改善 BMDC 歸巢至引流淋巴結。 阿黴素與 AuND-LPS 組合顯示出協同效應,上調 cGAS-STING 路徑並增強樹突狀細胞成熟。 此後,在體內原位乳腺腫瘤模型中,生物材料疫苗結節將阿黴素和負載 AuND-LPS 的 BMDC 封裝在 Cryo-GelMA 基質中,有效減緩了原發腫瘤的生長並抑制了遠端轉移。 基於樹突狀細胞的疫苗增加了發炎細胞因子的表達,活化了抗腫瘤免疫細胞,並與抗PD1阻斷療法相容,協同增強了針對腫瘤生長的免疫力。
在第二項研究中,探索了一種在不改變其固有特性的情況下增強 Cryo-GelMA 機械強度的方法。 將 Cryo-GelMA 整合到 3D 列印的陀螺儀結構中,形成了混合支架。 混合支架保留了傳統 Cryo-GelMA 的有利特性,例如高孔隙率、互連性和形狀恢復,表現出剛度的協同增強。 混合支架的壓縮模量超過了傳統 Cryo-GelMA 或其單獨框架。 這種新穎的方法提供了一種提高 Cryo-GelMA 類材料機械強度的方法。 華頓商學院的果凍間質幹細胞 (WJMSC) 表現出與混合支架的相容性,表現出高細胞附著、均勻分佈和增殖。 螺旋體結構利用混合支架內這種結構固有的高滲透性,促進細胞滲透。
Cryo-GelMA, a class of hydrogel, has recently attracted much interest in drug delivery and cell therapy as it possesses a highly interconnected porous structure with high water content providing physical similarity to tissues and good capability to encapsulate hydrophilic drugs. In the first work, the Cryo-GelMA was applied in co-delivering chemotherapy (Doxorubicin), immunotherapy (AuND-LPS-loaded bone-marrow-derived dendritic cells (BMDCs) and anti-PD1 blockade) for preventing post-surgery tumor recurrence. The study initially focused on modifying Lipopolysaccharide (LPS) with Au nanodots (AuND-LPS) to enhance its immunostimulatory properties. This modification positively influenced the Th1 polarization of bone marrow-derived dendritic cells (BMDCs) while reducing Th2 polarization. AuND-LPS also improved BMDC homing to draining lymph nodes by upregulating the CCR7 receptor. Combining doxorubicin with AuND-LPS demonstrated a synergistic effect, upregulating the cGAS-STING pathway and enhancing dendritic cell maturation. After that, in an in vivo orthotopic breast tumor model, biomaterial vaccine nodules, encapsulating doxorubicin and AuND-LPS-loaded BMDCs in a Cryo-GelMA matrix, effectively slowed primary tumor growth and suppressed distal metastasis. The dendritic cell-based vaccine increased inflammatory cytokine expression, activated anti-tumor immune cells, and showed compatibility with anti-PD1 blockade therapy, synergistically enhancing immunity against tumor growth.
In the second study, a methodology was explored to enhance the mechanical strength of Cryo-GelMA without altering its intrinsic properties. The integration of Cryo-GelMA into a 3D printed gyroid structure resulted in the formation of hybrid scaffolds. Preserving the advantageous features of conventional Cryo-GelMAs, such as high porosity, interconnectivity, and shape recovery, the hybrid scaffolds exhibited synergistic enhancement in stiffness. The compressive modulus of the hybrid scaffolds surpassed that of conventional Cryo-GelMA or its individual frameworks. This novel approach offers a means to improve the mechanical strength of Cryo-GelMA-like materials. Wharton's Jelly Mesenchymal Stem Cells (WJMSCs) exhibited compatibility with the hybrid scaffolds, demonstrating high cell attachment, even distribution, and proliferation. The gyroid architecture facilitated cell penetration, leveraging the high permeability inherent in this structure within the hybrid scaffolds.
Table of Contents
Abstract 3
Table of Contents 5
List of Tables 10
List of Figures 11
List of Supplementary Figure 17
List of acronyms 18
1. Introduction and Research Background 19
1.1 Cryo-GelMA versus Conventional Hydrogel 19
1.2 Application of Cryo-GelMA in Drug Delivery System 21
1.3 Application of Cryogels in Tissue Regeneration and Its Limitations 22
1.4 Motivation 25
2. GelMA Cryogel as a Delivery System for Co-delivering Chemotherapy and Dendritic Cell-based Therapy for Recurrent Breast Tumors 27
2.1 Introduction to Breast Cancer and Dendritic Cell-based Therapy 27
2.1.1 Breast Cancer and Limitations of Current Treatments 27
2.1.2 Dendritic Cells and Biomaterial Scaffold-Assisted Dendritic Cell-based Immunotherapy 30
2.1.3 Lippolysaccharide as an Immune Adjuvant 32
2.1.4 Combination of Chemotherapy and Immunotherapy for Cancer Treatment 35
2.2 Experiment Design and Methods 36
2.2.1 Cells and Material 36
2.2.2 Synthesis of GelMA and GelMA Cryogelation 37
2.2.3 Bone-Marrow-derived Dendritic Cell Culture and Treatment. 38
2.2.4 Preparation of AuNDs 38
2.2.5 In-vitro Release Profile of Doxorubicin from GelMA Cryogel: 39
2.2.6 Transmission Electron Microscopy: 39
2.2.7 Animals and Tumor Models: 39
2.2.8 Flow Cytometry: 39
2.2.9 Real-Time PCR: 40
2.2.10 IL-12 and IL-10 Enzyme-Linked Immunosorbent Assay. 41
2.2.11 In Vitro Study of STING Activation and DC maturation induced by Cancer Cell Medium and AuND-LPS 41
2.2.12 Transwell Assay for BMDCs migration. 42
2.3 Result and Discussion 42
2.3.1 Modulation of Cytokine and Chemokine Expression in Dendritic Cell by AuND-LPS 42
2.3.2 Delivery of BMDCs and AuND-LPS@DCs by Cryo-GelMA into Mice 46
2.3.3 Combination of Doxorubicin and AuND-LPS Up Regulate The cGAS-STING Pathway 49
2.3.4 Cryo-GelMA-derived Vaccine Inhibiting Tumor Recurrence In Vivo 52
2.3.5 Modulating The Cytokines Level and Immune Cells of Post-surgery Tumor and Lymph Node by Cryo-GelMA loading Doxorubicin and AuND-LPS-treated BMDCs 54
2.3.6 Dox+AuND-LPS@DCs Synergy with Immune Checkpoint PD-1 Therapy to treat breast tumor post-surgery 58
3. Reinforcement of Cryo-GelMA by 3D-printing framework. 61
3.1 Introduction to Application of Cryo-GelMAs and 3D Printing in Tissue Regeneration 61
3.1.1 Biomaterial Scaffold-Assisted Tissue Engineering: 61
3.1.2 Introduction to DLP-AM 63
3.2 Experiment Design and Methods 65
3.2.1 Synthesis of POLYCAPROLACTONE DIACRYLATE 65
3.2.2 Synthesis of POLYETHYLENE DIACRYLATE 66
3.2.3 Chemical Characterization of GelMA and POLYCAPROLACTONE DIACRYLATE: 66
3.2.4 Design of Gyroid Scaffolds: 67
3.2.5 Fabrication of Three Dimensional-Printed Frameworks: 67
3.2.6 Fabricating Hybrid Composite Scaffold 68
3.2.7 Porosity 68
3.2.8 Measurement of Recovery Ability 69
3.2.9 Compression Test: 70
3.2.10 Cell Culture on Scaffolds 70
3.2.11 Preparation of Sample for Scanning Electron Microscope (SEM): 71
3.2.12 Resazurin Reduction Assay 71
3.2.13 Determination of Theoretical Permeability 72
3.2.14 Statistical Analysis 73
3.3 Result and Discussion 75
3.3.1 Creating and Characterizing the Printed Gyroid Structure 75
3.3.2 Characterization of Composite Scaffold 77
3.3.3 Physical Properties of Hybrid Scaffolds 80
3.3.4 Mechanical Property of 3D-Printed and Hybrid Scaffold: 81
3.3.5 Controlling the Mechanical Strength of Composite Scaffold Through the Structure of Three-Dimensional Framework. 83
3.3.6 WJMSC Proliferation on Hybrid Scaffold and Cryo-GelMA 87
3.3.7 WJMSC Penetration in Hybrid Scaffold and Cryo-GelMA 90
4. Conclusion 93
5. Future Works 95
6. Referrences 97
7. Supplementary Figure 107

1. Wallace, J., et al., Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package. Biofabrication, 2014. 6(1): p. 015003.
2. Li, J. and D.J. Mooney, Designing hydrogels for controlled drug delivery. Nat Rev Mater, 2016. 1(12).
3. Memic, A., et al., Latest Advances in Cryo-GelMA Technology for Biomedical Applications. Advanced Therapeutics, 2019. 2(4): p. 1800114.
4. Bencherif, S.A., et al., Injectable Cryo-GelMA-based whole-cell cancer vaccines. Nat Commun, 2015. 6: p. 7556.
5. Cohen, J., IL-12 Deaths: Explanation and a Puzzle. 1995. 270(5238): p. 908-908.
6. Eppler, S.M., et al., A target-mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans. Clin Pharmacol Ther, 2002. 72(1): p. 20-32.
7. Tiwari, G., et al., Drug delivery systems: An updated review. Int J Pharm Investig, 2012. 2(1): p. 2-11.
8. Newland, B., et al., Tackling Cell Transplantation Anoikis: An Injectable, Shape Memory Cryo-GelMA Microcarrier Platform Material for Stem Cell and Neuronal Cell Growth. 2015. 11(38): p. 5047-5053.
9. Liu, W., et al., Magnetically controllable 3D microtissues based on magnetic microCryo-GelMAs. Lab Chip, 2014. 14(15): p. 2614-25.
10. Qi, C., et al., Pathology-targeted cell delivery via injectable micro-scaffold capsule mediated by endogenous TGase. Biomaterials, 2017. 126: p. 1-9.
11. Li, Y., et al., Primed 3D injectable microniches enabling low-dosage cell therapy for critical limb ischemia. 2014. 111(37): p. 13511-13516.
12. Shih, T.Y., et al., Injectable, Tough Alginate Cryo-GelMAs as Cancer Vaccines. Advanced Healthcare Materials, 2018. 7(10).
13. Caddeo, S., M. Boffito, and S. Sartori Tissue Engineering Approaches in the Design of Healthy and Pathological In Vitro Tissue Models. Frontiers in bioengineering and biotechnology, 2017. 5, 40 DOI: 10.3389/fbioe.2017.00040.
14. Zhao, X., et al., Injectable antibacterial conductive nanocomposite Cryo-GelMAs with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat Commun, 2018. 9(1): p. 2784.
15. Hixon, K.R., T. Lu, and S.A. Sell, A comprehensive review of Cryo-GelMAs and their roles in tissue engineering applications. Acta Biomaterialia, 2017. 62: p. 29-41.
16. Mastbergen, S.C., D.B. Saris, and F.P. Lafeber, Functional articular cartilage repair: here, near, or is the best approach not yet clear? Nat Rev Rheumatol, 2013. 9(5): p. 277-90.
17. Bencherif, S.A., et al., Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci U S A, 2012. 109(48): p. 19590-5.
18. Discher, D.E., P. Janmey, and Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science, 2005. 310(5751): p. 1139-43.
19. Kouwer, P.H., et al., Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature, 2013. 493(7434): p. 651-5.
20. Harbeck, N., et al., Breast cancer. Nature Reviews Disease Primers, 2019. 5(1): p. 66.
21. Ghiringhelli, F., et al., Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nature Medicine, 2009. 15(10): p. 1170-1178.
22. Ma, Y., et al., Contribution of IL-17–producing γδ T cells to the efficacy of anticancer chemotherapy. Journal of Experimental Medicine, 2011. 208(3): p. 491-503.
23. Obeid, M., et al., Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med, 2007. 13(1): p. 54-61.
24. Casares, N., et al., Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. Journal of Experimental Medicine, 2005. 202(12): p. 1691-1701.
25. Shiao, S.L., et al., TH2-Polarized CD4(+) T Cells and Macrophages Limit Efficacy of Radiotherapy. Cancer Immunol Res, 2015. 3(5): p. 518-25.
26. Liu, F.-C., et al., Epidemiology and survival outcome of breast cancer in a nationwide study. Oncotarget, 2017. 8(10): p. 16939-16950.
27. Desai, E.S., et al., Critical factors affecting cell encapsulation in superporous hydrogels. Biomed Mater, 2012. 7(2): p. 024108.
28. Kroemer, G., et al., Natural and therapy-induced immunosurveillance in breast cancer. Nature Medicine, 2015. 21(10): p. 1128-1138.
29. Waks, A.G. and E.P. Winer, Breast Cancer Treatment: A Review. JAMA, 2019. 321(3): p. 288-300.
30. Early Breast Cancer Trialists' Collaborative, G., Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol, 2018. 19(1): p. 27-39.
31. Zimmer, A.S., et al., Update on PARP Inhibitors in Breast Cancer. Curr Treat Options Oncol, 2018. 19(5): p. 21.
32. Park, J.H., J.-H. Ahn, and S.-B. Kim, How shall we treat early triple-negative breast cancer (TNBC): from the current standard to upcoming immuno-molecular strategies. ESMO Open, 2018. 3: p. e000357.
33. Cortes, J., et al., Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. The Lancet, 2020. 396(10265): p. 1817-1828.
34. Kwa, M.J. and S. Adams, Checkpoint inhibitors in triple-negative breast cancer (TNBC): Where to go from here. 2018. 124(10): p. 2086-2103.
35. Apetoh, L., et al., Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Medicine, 2007. 13(9): p. 1050-1059.
36. Kapsenberg, M.L., Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol, 2003. 3(12): p. 984-93.
37. Kim, J. and D.J. Mooney, In Vivo Modulation of Dendritic Cells by Engineered Materials: Towards New Cancer Vaccines. Nano Today, 2011. 6(5): p. 466-477.
38. Le Gall, C.M., et al., Dendritic cells in cancer immunotherapy. Nature Materials, 2018. 17(6): p. 474-475.
39. Steinman, R.M. and J. Banchereau, Taking dendritic cells into medicine. Nature, 2007. 449(7161): p. 419-426.
40. Riley, R.S., et al., Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov, 2019. 18(3): p. 175-196.
41. Calabrese, V., R. Cighetti, and F. Peri, Molecular simplification of lipid A structure: TLR4-modulating cationic and anionic amphiphiles. Mol Immunol, 2015. 63(2): p. 153-61.
42. Mantovani, A., et al., The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol, 2004. 25(12): p. 677-86.
43. Liao, F.H., et al., Subnanometer Gold Clusters Adhere to Lipid A for Protection against Endotoxin-Induced Sepsis. Nano Lett, 2018. 18(5): p. 2864-2869.
44. Luo, Y.H., et al., Endotoxin Nanovesicles: Hydrophilic Gold Nanodots Control Supramolecular Lipopolysaccharide Assembly for Modulating Immunological Responses. Nano Lett, 2015. 15(10): p. 6446-53.
45. YANAGISAWA, R., et al., WT1-pulsed Dendritic Cell Vaccine Combined with Chemotherapy for Resected Pancreatic Cancer in a Phase I Study. 2018. 38(4): p. 2217-2225.
46. Galluzzi, L., et al., Immunogenic cell death in cancer and infectious disease. Nature Reviews Immunology, 2017. 17(2): p. 97-111.
47. Wang, C., et al., Ultrasound-responsive low-dose doxorubicin liposomes trigger mitochondrial DNA release and activate cGAS-STING-mediated antitumour immunity. Nature Communications, 2023. 14(1): p. 3877.
48. Bauer, C., et al., Dendritic cell-based vaccination combined with gemcitabine increases survival in a murine pancreatic carcinoma model. 2007. 56(9): p. 1275-1282.
49. Timmer, F.E.F., et al., Pancreatic Cancer and Immunotherapy: A Clinical Overview. Cancers (Basel), 2021. 13(16).
50. Han, J., et al., Metabolic glycan labeling immobilizes dendritic cell membrane and enhances antitumor efficacy of dendritic cell vaccine. Nature Communications, 2023. 14(1): p. 5049.
51. Isser, A., et al., Nanoparticle-based modulation of CD4+ T cell effector and helper functions enhances adoptive immunotherapy. Nature Communications, 2022. 13(1): p. 6086.
52. Vogel, K., et al., Bifidobacteria shape antimicrobial T-helper cell responses during infancy and adulthood. Nature Communications, 2023. 14(1): p. 5943.
53. Pradhan, P., et al., The effect of combined IL10 siRNA and CpG ODN as pathogen-mimicking microparticles on Th1/Th2 cytokine balance in dendritic cells and protective immunity against B cell lymphoma. Biomaterials, 2014. 35(21): p. 5491-5504.
54. Zaiss, D.M.W., et al., Cooperation of ILC2s and TH2 cells in the expulsion of intestinal helminth parasites. Nature Reviews Immunology, 2023.
55. Clatworthy, M.R., et al., Immune complexes stimulate CCR7-dependent dendritic cell migration to lymph nodes. Nature Medicine, 2014. 20(12): p. 1458-1463.
56. Liu, J., et al., Dendritic cell migration in inflammation and immunity. Cellular & Molecular Immunology, 2021. 18(11): p. 2461-2471.
57. Chen, G., et al., Chemotherapy-Induced Neoantigen Nanovaccines Enhance Checkpoint Blockade Cancer Immunotherapy. ACS Nano, 2023. 17(19): p. 18818-18831.
58. Chen, Q., et al., A bio-responsive, cargo-catchable gel for postsurgical tumor treatment via ICD-based immunotherapy. J Control Release, 2022. 346: p. 212-225.
59. Chen, Q., et al., Sequentially sustained release of anticarcinogens for postsurgical chemoimmunotherapy. J Control Release, 2022. 350: p. 803-814.
60. Zhang, Q., et al., ROS-triggered nanoinducer based on dermatan sulfate enhances immunogenic cell death in melanoma. J Control Release, 2022. 348: p. 22-33.
61. Wang-Bishop, L., et al., STING-activating nanoparticles normalize the vascular-immune interface to potentiate cancer immunotherapy. 2023. 8(83): p. eadd1153.
62. Wang, J., et al., A synthetic metastatic niche reveals antitumor neutrophils drive breast cancer metastatic dormancy in the lungs. Nature Communications, 2023. 14(1): p. 4790.
63. Zhang, X., et al., Inhibition of growth and lung metastasis of breast cancer by tumor-homing triple-bioresponsive nanotherapeutics. Journal of Controlled Release, 2020. 328: p. 454-469.
64. Peng, Q., et al., PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nature Communications, 2020. 11(1): p. 4835.
65. Lucas, E.D., et al., PD-L1 Reverse Signaling in Dermal Dendritic Cells Promotes Dendritic Cell Migration Required for Skin Immunity. Cell Reports, 2020. 33(2): p. 108258.
66. O'Brien, F.J., Biomaterials & scaffolds for tissue engineering. Materials Today, 2011. 14(3): p. 88-95.
67. Nikolova, M.P. and M.S. Chavali, Recent advances in biomaterials for 3D scaffolds: A review. Bioactive materials, 2019. 4: p. 271-292.
68. Olivares, A.L. and D. Lacroix, Computational Methods in the Modeling of Scaffolds for Tissue Engineering, in Computational Modeling in Tissue Engineering, L. Geris, Editor. 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 107-126.
69. Mallick, K.K. and S.C. Cox, Biomaterial scaffolds for tissue engineering. 2013. 5(1): p. 341-360.
70. Savina, I.N., M. Zoughaib, and A.A. Yergeshov, Design and Assessment of Biodegradable Macroporous Cryo-GelMAs as Advanced Tissue Engineering and Drug Carrying Materials. Gels, 2021. 7(3).
71. Rezaeeyazdi, M., et al., Injectable Hyaluronic Acid-co-Gelatin Cryo-GelMAs for Tissue-Engineering Applications. Materials, 2018. 11(8).
72. Ying, G.L., et al., Aqueous Two-Phase Emulsion Bioink-Enabled 3D Bioprinting of Porous Hydrogels. Advanced Materials, 2018. 30(50).
73. Amt, Standard Terminology for Additive Manufacturing-Coordinate Systems and Test Methodologies. 2013.
74. Petrovic, V., et al., Additive layered manufacturing: sectors of industrial application shown through case studies. International Journal of Production Research, 2011. 49(4): p. 1061-1079.
75. Kuriluk, L. Pricing and Costs of Laser Cutting Machines. 2017.
76. Henkel, J., et al., Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective. Bone Research, 2013. 1(1): p. 216-248.
77. Bobbert, F.S.L. and A.A. Zadpoor, Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone. Journal of Materials Chemistry B, 2017. 5(31): p. 6175-6192.
78. Chen, Y.-T., et al., Development of hybrid scaffolds with biodegradable polymer composites and bioactive hydrogels for bone tissue engineering. Biomaterials Advances, 2023. 153: p. 213562.
79. Chen, J.Y., et al., Study of Physical and Degradation Properties of 3D-Printed Biodegradable, Photocurable Copolymers, PGSA-co-POLYETHYLENE DIACRYLATE and PGSA-co-POLYCAPROLACTONE DIACRYLATE. Polymers, 2018. 10(11).
80. Pustlauk, W., et al., Jellyfish collagen and alginate: Combined marine materials for superior chondrogenesis of hMSC. Materials Science and Engineering: C, 2016. 64: p. 190-198.
81. Kim, H.D., et al., Biomimetically Reinforced Polyvinyl Alcohol-Based Hybrid Scaffolds for Cartilage Tissue Engineering. 2017. 9(12): p. 655.
82. Maskery, I., et al., Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Additive Manufacturing, 2017. 16: p. 24-29.
83. Visser, J., et al., Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat Commun, 2015. 6: p. 6933.
84. Germain, L., et al., 3D-printed biodegradable gyroid scaffolds for tissue engineering applications. Materials & Design, 2018. 151: p. 113-122.
85. Beck, E.C., et al., Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel. Acta Biomater, 2016. 38: p. 94-105.
86. and, V.C.M. and X.E. Guo, Mechano-Electrochemical Properties Of Articular Cartilage: Their Inhomogeneities and Anisotropies. 2002. 4(1): p. 175-209.
87. Asbai-Ghoudan, R., S. Ruiz de Galarreta, and N. Rodriguez-Florez, Analytical model for the prediction of permeability of triply periodic minimal surfaces. Journal of the Mechanical Behavior of Biomedical Materials, 2021. 124: p. 104804.
88. Lu, Z.R. and P. Qiao, Drug Delivery in Cancer Therapy, Quo Vadis? Mol Pharm, 2018. 15(9): p. 3603-3616.
(此全文20250123後開放外部瀏覽)
Full-text
Abstract
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *