|
1. Wallace, J., et al., Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package. Biofabrication, 2014. 6(1): p. 015003. 2. Li, J. and D.J. Mooney, Designing hydrogels for controlled drug delivery. Nat Rev Mater, 2016. 1(12). 3. Memic, A., et al., Latest Advances in Cryo-GelMA Technology for Biomedical Applications. Advanced Therapeutics, 2019. 2(4): p. 1800114. 4. Bencherif, S.A., et al., Injectable Cryo-GelMA-based whole-cell cancer vaccines. Nat Commun, 2015. 6: p. 7556. 5. Cohen, J., IL-12 Deaths: Explanation and a Puzzle. 1995. 270(5238): p. 908-908. 6. Eppler, S.M., et al., A target-mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans. Clin Pharmacol Ther, 2002. 72(1): p. 20-32. 7. Tiwari, G., et al., Drug delivery systems: An updated review. Int J Pharm Investig, 2012. 2(1): p. 2-11. 8. Newland, B., et al., Tackling Cell Transplantation Anoikis: An Injectable, Shape Memory Cryo-GelMA Microcarrier Platform Material for Stem Cell and Neuronal Cell Growth. 2015. 11(38): p. 5047-5053. 9. Liu, W., et al., Magnetically controllable 3D microtissues based on magnetic microCryo-GelMAs. Lab Chip, 2014. 14(15): p. 2614-25. 10. Qi, C., et al., Pathology-targeted cell delivery via injectable micro-scaffold capsule mediated by endogenous TGase. Biomaterials, 2017. 126: p. 1-9. 11. Li, Y., et al., Primed 3D injectable microniches enabling low-dosage cell therapy for critical limb ischemia. 2014. 111(37): p. 13511-13516. 12. Shih, T.Y., et al., Injectable, Tough Alginate Cryo-GelMAs as Cancer Vaccines. Advanced Healthcare Materials, 2018. 7(10). 13. Caddeo, S., M. Boffito, and S. Sartori Tissue Engineering Approaches in the Design of Healthy and Pathological In Vitro Tissue Models. Frontiers in bioengineering and biotechnology, 2017. 5, 40 DOI: 10.3389/fbioe.2017.00040. 14. Zhao, X., et al., Injectable antibacterial conductive nanocomposite Cryo-GelMAs with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat Commun, 2018. 9(1): p. 2784. 15. Hixon, K.R., T. Lu, and S.A. Sell, A comprehensive review of Cryo-GelMAs and their roles in tissue engineering applications. Acta Biomaterialia, 2017. 62: p. 29-41. 16. Mastbergen, S.C., D.B. Saris, and F.P. Lafeber, Functional articular cartilage repair: here, near, or is the best approach not yet clear? Nat Rev Rheumatol, 2013. 9(5): p. 277-90. 17. Bencherif, S.A., et al., Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci U S A, 2012. 109(48): p. 19590-5. 18. Discher, D.E., P. Janmey, and Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science, 2005. 310(5751): p. 1139-43. 19. Kouwer, P.H., et al., Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature, 2013. 493(7434): p. 651-5. 20. Harbeck, N., et al., Breast cancer. Nature Reviews Disease Primers, 2019. 5(1): p. 66. 21. Ghiringhelli, F., et al., Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nature Medicine, 2009. 15(10): p. 1170-1178. 22. Ma, Y., et al., Contribution of IL-17–producing γδ T cells to the efficacy of anticancer chemotherapy. Journal of Experimental Medicine, 2011. 208(3): p. 491-503. 23. Obeid, M., et al., Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med, 2007. 13(1): p. 54-61. 24. Casares, N., et al., Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. Journal of Experimental Medicine, 2005. 202(12): p. 1691-1701. 25. Shiao, S.L., et al., TH2-Polarized CD4(+) T Cells and Macrophages Limit Efficacy of Radiotherapy. Cancer Immunol Res, 2015. 3(5): p. 518-25. 26. Liu, F.-C., et al., Epidemiology and survival outcome of breast cancer in a nationwide study. Oncotarget, 2017. 8(10): p. 16939-16950. 27. Desai, E.S., et al., Critical factors affecting cell encapsulation in superporous hydrogels. Biomed Mater, 2012. 7(2): p. 024108. 28. Kroemer, G., et al., Natural and therapy-induced immunosurveillance in breast cancer. Nature Medicine, 2015. 21(10): p. 1128-1138. 29. Waks, A.G. and E.P. Winer, Breast Cancer Treatment: A Review. JAMA, 2019. 321(3): p. 288-300. 30. Early Breast Cancer Trialists' Collaborative, G., Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol, 2018. 19(1): p. 27-39. 31. Zimmer, A.S., et al., Update on PARP Inhibitors in Breast Cancer. Curr Treat Options Oncol, 2018. 19(5): p. 21. 32. Park, J.H., J.-H. Ahn, and S.-B. Kim, How shall we treat early triple-negative breast cancer (TNBC): from the current standard to upcoming immuno-molecular strategies. ESMO Open, 2018. 3: p. e000357. 33. Cortes, J., et al., Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. The Lancet, 2020. 396(10265): p. 1817-1828. 34. Kwa, M.J. and S. Adams, Checkpoint inhibitors in triple-negative breast cancer (TNBC): Where to go from here. 2018. 124(10): p. 2086-2103. 35. Apetoh, L., et al., Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Medicine, 2007. 13(9): p. 1050-1059. 36. Kapsenberg, M.L., Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol, 2003. 3(12): p. 984-93. 37. Kim, J. and D.J. Mooney, In Vivo Modulation of Dendritic Cells by Engineered Materials: Towards New Cancer Vaccines. Nano Today, 2011. 6(5): p. 466-477. 38. Le Gall, C.M., et al., Dendritic cells in cancer immunotherapy. Nature Materials, 2018. 17(6): p. 474-475. 39. Steinman, R.M. and J. Banchereau, Taking dendritic cells into medicine. Nature, 2007. 449(7161): p. 419-426. 40. Riley, R.S., et al., Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov, 2019. 18(3): p. 175-196. 41. Calabrese, V., R. Cighetti, and F. Peri, Molecular simplification of lipid A structure: TLR4-modulating cationic and anionic amphiphiles. Mol Immunol, 2015. 63(2): p. 153-61. 42. Mantovani, A., et al., The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol, 2004. 25(12): p. 677-86. 43. Liao, F.H., et al., Subnanometer Gold Clusters Adhere to Lipid A for Protection against Endotoxin-Induced Sepsis. Nano Lett, 2018. 18(5): p. 2864-2869. 44. Luo, Y.H., et al., Endotoxin Nanovesicles: Hydrophilic Gold Nanodots Control Supramolecular Lipopolysaccharide Assembly for Modulating Immunological Responses. Nano Lett, 2015. 15(10): p. 6446-53. 45. YANAGISAWA, R., et al., WT1-pulsed Dendritic Cell Vaccine Combined with Chemotherapy for Resected Pancreatic Cancer in a Phase I Study. 2018. 38(4): p. 2217-2225. 46. Galluzzi, L., et al., Immunogenic cell death in cancer and infectious disease. Nature Reviews Immunology, 2017. 17(2): p. 97-111. 47. Wang, C., et al., Ultrasound-responsive low-dose doxorubicin liposomes trigger mitochondrial DNA release and activate cGAS-STING-mediated antitumour immunity. Nature Communications, 2023. 14(1): p. 3877. 48. Bauer, C., et al., Dendritic cell-based vaccination combined with gemcitabine increases survival in a murine pancreatic carcinoma model. 2007. 56(9): p. 1275-1282. 49. Timmer, F.E.F., et al., Pancreatic Cancer and Immunotherapy: A Clinical Overview. Cancers (Basel), 2021. 13(16). 50. Han, J., et al., Metabolic glycan labeling immobilizes dendritic cell membrane and enhances antitumor efficacy of dendritic cell vaccine. Nature Communications, 2023. 14(1): p. 5049. 51. Isser, A., et al., Nanoparticle-based modulation of CD4+ T cell effector and helper functions enhances adoptive immunotherapy. Nature Communications, 2022. 13(1): p. 6086. 52. Vogel, K., et al., Bifidobacteria shape antimicrobial T-helper cell responses during infancy and adulthood. Nature Communications, 2023. 14(1): p. 5943. 53. Pradhan, P., et al., The effect of combined IL10 siRNA and CpG ODN as pathogen-mimicking microparticles on Th1/Th2 cytokine balance in dendritic cells and protective immunity against B cell lymphoma. Biomaterials, 2014. 35(21): p. 5491-5504. 54. Zaiss, D.M.W., et al., Cooperation of ILC2s and TH2 cells in the expulsion of intestinal helminth parasites. Nature Reviews Immunology, 2023. 55. Clatworthy, M.R., et al., Immune complexes stimulate CCR7-dependent dendritic cell migration to lymph nodes. Nature Medicine, 2014. 20(12): p. 1458-1463. 56. Liu, J., et al., Dendritic cell migration in inflammation and immunity. Cellular & Molecular Immunology, 2021. 18(11): p. 2461-2471. 57. Chen, G., et al., Chemotherapy-Induced Neoantigen Nanovaccines Enhance Checkpoint Blockade Cancer Immunotherapy. ACS Nano, 2023. 17(19): p. 18818-18831. 58. Chen, Q., et al., A bio-responsive, cargo-catchable gel for postsurgical tumor treatment via ICD-based immunotherapy. J Control Release, 2022. 346: p. 212-225. 59. Chen, Q., et al., Sequentially sustained release of anticarcinogens for postsurgical chemoimmunotherapy. J Control Release, 2022. 350: p. 803-814. 60. Zhang, Q., et al., ROS-triggered nanoinducer based on dermatan sulfate enhances immunogenic cell death in melanoma. J Control Release, 2022. 348: p. 22-33. 61. Wang-Bishop, L., et al., STING-activating nanoparticles normalize the vascular-immune interface to potentiate cancer immunotherapy. 2023. 8(83): p. eadd1153. 62. Wang, J., et al., A synthetic metastatic niche reveals antitumor neutrophils drive breast cancer metastatic dormancy in the lungs. Nature Communications, 2023. 14(1): p. 4790. 63. Zhang, X., et al., Inhibition of growth and lung metastasis of breast cancer by tumor-homing triple-bioresponsive nanotherapeutics. Journal of Controlled Release, 2020. 328: p. 454-469. 64. Peng, Q., et al., PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nature Communications, 2020. 11(1): p. 4835. 65. Lucas, E.D., et al., PD-L1 Reverse Signaling in Dermal Dendritic Cells Promotes Dendritic Cell Migration Required for Skin Immunity. Cell Reports, 2020. 33(2): p. 108258. 66. O'Brien, F.J., Biomaterials & scaffolds for tissue engineering. Materials Today, 2011. 14(3): p. 88-95. 67. Nikolova, M.P. and M.S. Chavali, Recent advances in biomaterials for 3D scaffolds: A review. Bioactive materials, 2019. 4: p. 271-292. 68. Olivares, A.L. and D. Lacroix, Computational Methods in the Modeling of Scaffolds for Tissue Engineering, in Computational Modeling in Tissue Engineering, L. Geris, Editor. 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 107-126. 69. Mallick, K.K. and S.C. Cox, Biomaterial scaffolds for tissue engineering. 2013. 5(1): p. 341-360. 70. Savina, I.N., M. Zoughaib, and A.A. Yergeshov, Design and Assessment of Biodegradable Macroporous Cryo-GelMAs as Advanced Tissue Engineering and Drug Carrying Materials. Gels, 2021. 7(3). 71. Rezaeeyazdi, M., et al., Injectable Hyaluronic Acid-co-Gelatin Cryo-GelMAs for Tissue-Engineering Applications. Materials, 2018. 11(8). 72. Ying, G.L., et al., Aqueous Two-Phase Emulsion Bioink-Enabled 3D Bioprinting of Porous Hydrogels. Advanced Materials, 2018. 30(50). 73. Amt, Standard Terminology for Additive Manufacturing-Coordinate Systems and Test Methodologies. 2013. 74. Petrovic, V., et al., Additive layered manufacturing: sectors of industrial application shown through case studies. International Journal of Production Research, 2011. 49(4): p. 1061-1079. 75. Kuriluk, L. Pricing and Costs of Laser Cutting Machines. 2017. 76. Henkel, J., et al., Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective. Bone Research, 2013. 1(1): p. 216-248. 77. Bobbert, F.S.L. and A.A. Zadpoor, Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone. Journal of Materials Chemistry B, 2017. 5(31): p. 6175-6192. 78. Chen, Y.-T., et al., Development of hybrid scaffolds with biodegradable polymer composites and bioactive hydrogels for bone tissue engineering. Biomaterials Advances, 2023. 153: p. 213562. 79. Chen, J.Y., et al., Study of Physical and Degradation Properties of 3D-Printed Biodegradable, Photocurable Copolymers, PGSA-co-POLYETHYLENE DIACRYLATE and PGSA-co-POLYCAPROLACTONE DIACRYLATE. Polymers, 2018. 10(11). 80. Pustlauk, W., et al., Jellyfish collagen and alginate: Combined marine materials for superior chondrogenesis of hMSC. Materials Science and Engineering: C, 2016. 64: p. 190-198. 81. Kim, H.D., et al., Biomimetically Reinforced Polyvinyl Alcohol-Based Hybrid Scaffolds for Cartilage Tissue Engineering. 2017. 9(12): p. 655. 82. Maskery, I., et al., Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Additive Manufacturing, 2017. 16: p. 24-29. 83. Visser, J., et al., Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat Commun, 2015. 6: p. 6933. 84. Germain, L., et al., 3D-printed biodegradable gyroid scaffolds for tissue engineering applications. Materials & Design, 2018. 151: p. 113-122. 85. Beck, E.C., et al., Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel. Acta Biomater, 2016. 38: p. 94-105. 86. and, V.C.M. and X.E. Guo, Mechano-Electrochemical Properties Of Articular Cartilage: Their Inhomogeneities and Anisotropies. 2002. 4(1): p. 175-209. 87. Asbai-Ghoudan, R., S. Ruiz de Galarreta, and N. Rodriguez-Florez, Analytical model for the prediction of permeability of triply periodic minimal surfaces. Journal of the Mechanical Behavior of Biomedical Materials, 2021. 124: p. 104804. 88. Lu, Z.R. and P. Qiao, Drug Delivery in Cancer Therapy, Quo Vadis? Mol Pharm, 2018. 15(9): p. 3603-3616.
|