帳號:guest(18.226.200.38)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黎青霞
作者(外文):Le, Thi Thanh Ha
論文名稱(中文):一種可用做微型馬達並通過電偶作用驅動局部載荷釋放的自我供電電池藥物遞送系统
論文名稱(外文):A Self-Powered Battery-Driven Drug Delivery Device that Can Function as a Micromotor and Galvanically Actuate Localized Payload Release
指導教授(中文):宋信文
指導教授(外文):Sung, Hsing-Wen
口試委員(中文):宋信文
陳三元
蔡偉博
林宗宏
口試委員(外文):Sung, Hsing-Wen
Chen, San-Yuan
Tsai, Wei-Bor
Lin, Zong-Hong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107032422
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:32
中文關鍵詞:電池驅動微棒微電機原電池給藥自供電
外文關鍵詞:battery-drivenmicrorodmicromotorgalvanic celldrug deliveryself-powered
相關次數:
  • 推薦推薦:0
  • 點閱點閱:83
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
目前,大多數藥物輸送載體缺乏推動力,推動它們進入疾病部位進行有效載荷輸送。本文提出了一種電池驅動的核殼結構微米管給藥裝置,它由鋅(Zn)核和帶正電荷的聚(3,4-乙烯二氧噻吩) (PEDOT+) 的殼構成,其殼負載有陰離子模型藥物,這種核殼結構微米管在電解質溶液中由電偶作用形成“伽凡尼電池”。將這種鋅基伽凡尼電池浸入生理環境時,根據局部pH環境可自發發生兩組競爭的氧化還原反應。低pH下,H+ 還原產生氫氣占主導地位,產生的氫氣可推動Zn電池作為微型馬達產生運動;而在中性pH下,主要發生PEDOT+ 的還原,從而可以釋放負載的藥物。在小鼠中觀察表明,自供電的Zn電池可以在口服給藥後快速反應並在胃液中運動,顯著地提高了它們在粘液層中的滲透和保留以用於局部藥物釋放,類似於直接注射到皮下組織。組織實驗均未表現出任何顯著的炎症或細胞凋亡,這表明所開發的鋅-基電池具有作為安全的藥物遞送裝置的潛力。

Most drug delivery vehicles lack thrust that propels them to disease sites for payload delivery. Herein, a microrod comprising a zinc (Zn) core and a positively-charged poly(3,4-ethylenedioxythiophene) (PEDOT+) shell incorporating an anionic model drug, which form a “galvanic cell” in an electrolyte solution, is proposed as a battery-driven drug delivery device. Upon immersion of the proposed Zn-based batteries in a physiological environment, two sets of redox reactions that compete with each other in a manner determined by the local pH occur spontaneously. At low pH, the reduction of H+ to H2 bubbles, which are essential to propel the Zn batteries as micromotors, prevails, while at higher pH, the reduction of PEDOT+ to actuate galvanically payload release dominates. Observations in mice suggest that the self-powered Zn batteries may rapidly react and move in the gastric fluid after oral administration, considerably improving their penetration and retention in the mucus layer for localized drug release, similar to those directly injected into the subcutaneous tissue. None of the investigated tissues exhibited any significant inflammation or cell apoptosis, revealing that the developed Zn-based batteries have potential to serve as safe drug delivery devices.

ABSTRACT......................................................................................................................... i
TABLE OF CONTENT.................................................................................................... iii
LIST OF FIGURES............................................................................................................ vi
Chapter 1.......................................................................................................................... 1
Introduction .................................................................................................................... 1
1.1. Introduction of Smart Drug Delivery System (DDS)................................. 1
1.2. Stimuli for Drug Delivery..................................................................................... 1
1.3. Micro/Nanomotor- a New Class of DDSs..................................................... 2
1.4. Galvanic Battery...................................................................................................... 4
1.5. Drug Loading and Release Mechanism of Poly(3,4-ethylenedioxythiophene) (PEDOT).......................................................................... 4
1.6. Self-Powered Battery-Driven Drug Delivery Device................................. 5
Chapter 2........................................................................................................................... 9
Materials and Methods................................................................................................ 9
2.1. Materials.................................................................................................................... 9
2.2. Preparation of Zn/PEDOT+SRB− Microtubes............................................. 9
2.3. Characterization of Zn/PEDOT+SRB− Microtubes................................... 11
2.4. Mock Battery Assembly....................................................................................... 11
2.5. Electrochemical Measurements....................................................................... 12
2.6. Evolution of Gaseous H2..................................................................................... 12
2.7. Propulsion of Zn Microtubes............................................................................. 12
2.8. SRB− Stability.......................................................................................................... 13
2.9. SRB− Release Profiles.......................................................................................... 13
2.10. Animal Study......................................................................................................... 13
2.11. Penetration and Retention of the Zn Microtubes in the Gastric Mucus Layer and Their Localized Drug Releases.............................................................. 14
2.12. Potential in vivo toxicity of the Zn microtubes......................................... 15
2.13. Statistical analysis................................................................................................ 15
Chapter 3............................................................................................................................ 16
Results and Discussion.................................................................................................. 16
3.1. Characteristics of Zn Microtubes...................................................................... 16
3.2. Mock Battery............................................................................................................. 17
3.3. Electrochemical Analysis...................................................................................... 18
3.4. Evolution of gaseous H2....................................................................................... 20
3.5. SRB− Release Profiles............................................................................................ 21
3.6. Penetration and Retention of the Zn Microtubes in the Gastric Mucus Layer and Their Localized Drug Releases............................................................... 23
3.7. In Vivo toxicity.......................................................................................................... 25
Chapter 4............................................................................................................................ 27
Conclusion......................................................................................................................... 27
References......................................................................................................................... 28
(1) Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics 2016, 6, 1306–1323.
(2) Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991-1003.
(3) (a) Khutoryanskiy, V. V. Supramolecular materials: longer and safer gastric residence. Nat. Mater. 2015, 14, 963–964.
(b) Bhaskar, K. R.; Garik, P.; Turner, B. S.; Bradley, J. D.; Bansil, R.; Stanley, H. E.; LaMont, J. T. Viscous fingering of HCI through gastric mucin. Nature 1992, 360, 458–461.
(c) Kinnunen, H. M.; Mrsny, R. J. Improving the outcomes of biopharmaceutical delivery via the subcutaneous route by understanding the chemical, physical and physiological properties of the subcutaneous injection site. J. Control. Release 2014, 182, 22–32.
(4) Wang, J. Nanomachines: Fundamentals and Applications; WileyVCH: Weinheim, Germany, 2013.
(5) Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 2000, 12, 481–494.
(6) (a) Uppalapati, D.; Boyd, B. J.; Garg, S.; Travas-Sejdic, J.; Svirskis, D. Conducting polymers with defined micro- or nanostructures for drug delivery. Biomaterials 2016, 111, 149–162.
(b) Tandon, B.; Magaz, A.; Balint, R.; Blaker, J. J.; Cartmell, S. H. Electroactive biomaterials: vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration. Adv. Drug Deliv. Rev. 2018, 129, 148–168.
(7) Sekine, S.; Ido, Y.; Miyake, T.; Nagamine, K.; Nishizawa, M. Conducting polymer electrodes printed on hydrogel. J. Am. Chem. Soc. 2010, 132, 13174–13175.
(8) Guo, W.; Zhang, X.; Yu, X.; Wang, S.; Qiu, J.; Tang, W.; Li, L.; Liu, H.; Wang, Z. L. Self-powered electrical stimulation for enhancing neural differentiation of mesenchymal stem cells on graphene-poly(3,4-ethylenedioxythiophene) hybrid microfibers. ACS Nano 2016, 10, 5086–5095.
(9) Feig, V. R.; Tran, H.; Lee, M.; Bao, Z. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat. Commun. 2018, 9, 2740.
(10) Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112.
(11) Bowen, P. K.; Drelich, J.; Goldman, J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv. Mater. 2013, 25, 2577–2582.
(12) (a) Gao, W.; Uygun, A.; Wang, J. Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media. J. Am. Chem. Soc. 2011, 134, 897–900.
(b) Gao, W.; Dong, R.; Thamphiwatana, S.; Li, J.; Gao, W.; Zhang, L.; Wang, J. Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 2015, 9, 117–123.
(13) Shallcross, R. C.; D'Ambruoso, G. D.; Korth, B. D.; Hall, H. K.; Zheng, Z.; Pyun, J.; Armstrong, N. R. Poly (3,4-ethylenedioxythiophene) − semiconductor nanoparticle composite thin films tethered to indium tin oxide substrates via electropolymerization. J. Am. Chem. Soc. 2007, 129, 11310–11311.
(14) Vacca, A.; Mascia, M.; Rizzardini, S.; Corgiolu, S.; Palmas, S.; Demelas, M.; Bonfiglio, A.; Ricci, P. C. Preparation and characterisation of transparent and flexible PEDOT:PSS/PANI electrodes by ink-jet printing and electropolymerisation. RSC Adv. 2015, 5, 79600–79606.
(15) (a) Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007, 13, 688.
(b) Wan, W. L.; Lin, Y. J.; Chen, H. L.; Huang, C. C.; Shih, P. C.; Bow, Y. R.; Chia, W. T.; Sung, H. W. In situ nanoreactor for photosynthesizing H2 gas to mitigate oxidative stress in tissue inflammation. J. Am. Chem. Soc. 2017, 139, 12923–12926.
(16) Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Bard, A. J., Faulkner, L. R., Eds.; Wiley: New York, USA, 2001.
(17) (a) Brütting, W. Physics of Organic Semiconductors; Wiley-VCH: Weinheim, Germany, 2005.
(b) Handbook of Conducting Polymers, 3rd ed.; Skotheim, T. A., Reynolds, J., Eds.; CRC Press: Boca Raton, FL, 2006.
(18) Thomas, S.; Birbilis, N.; Venkatraman, M. S.; Cole, I. S. Corrosion of zinc as a function of pH. Corrosion 2012, 68, 015009.
(19) Zhang, X. G. Corrosion and Electrochemistry of Zinc; Plenum Press: New York, USA, 1996.
(20) (a) Karshalev, E.; Esteban-Fernández de Ávila, B.; Wang, J. Micromotors for “Chemistry-on-the-Fly”. J. Am. Chem. Soc. 2018, 140, 3810–3820.
(b) Wu, Y.; Si, T.; Gao, C.; Yang, M.; He, Q. Bubble-pair propelled colloidal kayaker. J. Am. Chem. Soc. 2018, 140, 11902–11905.
(c) Sánchez, S.; Soler, L.; Katuri, J. Chemically powered micro-and nanomotors. Angew. Chem., Int. Ed. 2015, 54, 1414–1444.
(d) Dey, K. K.; Sen, A. Chemically propelled molecules and machines. J. Am. Chem. Soc. 2017, 139, 7666–7676.
(21) (a) Kim, K.; Lee, J. W.; Shin, K. S. Polyethylenimine-capped Ag nanoparticle film as a platform for detecting charged dye molecules by surface-enhanced Raman scattering and metal-enhanced fluorescence. ACS Appl. Mater. Inter. 2012, 4, 5498–5504.
(b) Kasnavia, T.; Vu, D.; Sabatini, D. A. Fluorescent dye and media properties affecting sorption and tracer selection. Groundwater 1999, 37, 376–381.
(22) Tung, V. C.; Kim, J.; Cote, L. J.; Huang, J. Sticky interconnect for solution-processed tandem solar cells. J. Am. Chem. Soc. 2011, 133, 9262–9265.
(23) Lin, P. Y.; Chen, K. H.; Miao, Y. B.; Chen, H. L.; Lin, K. J.; Chen, C. T.; Yeh, C. N.; Chang, Y.; Sung, H. W. Phase‐changeable nanoemulsions for oral delivery of a therapeutic peptide: toward targeting the pancreas for antidiabetic treatments using lymphatic transport. Adv. Funct. Mater. 2019, 29, 1809015.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *