帳號:guest(3.129.218.118)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳琮宜
作者(外文):Chen, Tsung-Yi
論文名稱(中文):以新穎氧化物作為鋰離子儲能負極材料之應用與機制探討
論文名稱(外文):Mechanism Investigation of Novel Oxide Anode Materials for Lithium-ion Storage Applications
指導教授(中文):陳翰儀
指導教授(外文):Chen, Han-Yi
口試委員(中文):葉均蔚
陳馨怡
胡芝瑋
廖彥發
口試委員(外文):Yeh, Jien-Wei
Chen, Hsin-Yi
Hu, Chih-Wei
Liao, Yen-Fa
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:107031906
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:129
中文關鍵詞:鋰離子電池負極材料臨場量測高熵氧化物多金屬氧酸鹽
外文關鍵詞:lithium-ion batteryanode materialin-situ measurmenthigh entropy oxidepolyoxometalates
相關次數:
  • 推薦推薦:0
  • 點閱點閱:227
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鋰離子電池是廣泛應用於日常生活的可充電電池設備,具有體積小、能量密度高、無記憶效應等優點,在筆記型電腦、手機、電動車等產品中常見使用。鋰離子電池的負極材料主要有石墨和矽兩類。石墨具有高穩定性和低成本等優勢,但其理論電容量相對較低 (372 mA h g−1)。矽則具有高理論電容量 (4000 mA h g−1),但在充放電過程中會出現體積變化大的問題,導致循環穩定性差。負極材料的研究重點在於提高能量密度、循環穩定性和充放電速率。本研究以新穎氧化物作為鋰離子電池負極材料,進行合成和材料鑑定,並通過電化學性能測試評估其性能。並對新材料的儲能機制進行研究,以了解其在充放電過程中的鋰化/脫鋰機制以及材料結構的變化情況。透過這些研究,希望能夠開發出具有高能量密度、良好循環穩定性和快速充放電速率的新型負極材料,以提升鋰離子電池的性能和應用範圍。
本論文中第一部份首次合成含鎳之多釩酸鹽Na6[NiV14O40]作為負極材料於高能量密度儲鋰應用。Na6[NiV14O40]以適合低成本大規模生產的簡單溶液法製備,其半電池電容量高達700 mA h g−1,在循環400次後仍未衰退,顯示其出色的循環穩定性。本研究使用臨場X光吸收光譜、X光繞射、穿透式X光顯微鏡和密度泛函理論計算研究其電荷儲存機制,其中V5+在鋰化過程中被還原為V2+,證實Na6[NiV14O40]為一種嵌入型負極材料。此外,Na6[NiV14O40]在循環過程中保持其非晶結構,故體積膨脹/收縮程度相當微小,因此具有良好的循環穩定性。Na6[NiV14O40]//LiFePO4鋰離子全電池具有高達300 W h kg−1之能量密度,而Na6[NiV14O40]//膨脹中間相碳球 (expanded mesocarbon microbeads) 鋰離子電容在175.7與7774.2 W kg−1之功率密度下可分別提供218.5和47.9 W h kg−1之能量密度。
第二部分根據過去的研究指出(Mg, Co, Ni, Cu, Zn)O高熵氧化物作為鋰離子電池之負極材料具有優異的循環穩定性,並歸因於高熵穩定效應與非活性Mg之貢獻。本研究合成具有不同Mg含量之(Mg, Co, Ni, Cu, Zn)O,並以循環伏安法和恆電流充放電測量分析不同非活性元素含量對其電化學性質之影響。接著進一步以臨場同步輻射穿透式X光顯微鏡觀察其鋰化/脫鋰過程中材料形態的變化。希望透過研究非活性Mg的作用,有助於開發用於鋰離子電池之高熵氧化物電極。
第三部分中為拓展不同結構高熵氧化物作為鋰離子電池負極材料之研究,本研究採用簡單的固態燒結方法合成新穎的單相尖晶石結構高熵氧化物 (Ni0.2Co0.2Mn0.2Fe0.2Ti0.2)3O4 (NCMFT)。NCMFT在100 mA g−1的電流密度下具有約 560 mA h g−1之電容量,並在100次循環後仍保有100%電容量。利用臨場X光吸收近邊結構和非臨場X光光電子能譜分析,了解NCMFT負極在鋰化和脫鋰過程中之氧化還原反應,證實其中部分陽離子屬於置換型機制,而Ti則屬嵌入型反應。此外,以臨場X光繞射和非臨場穿透式電子顯微鏡用於分析置換反應過程中的結構變化,並以臨場穿透式X光顯微鏡觀察NCMFT負極的體積變化行為。藉由上述分析方法,對NCMFT負極的儲能機制進行全面的研究,以了解高熵氧化物在儲能應用之機制。
Lithium-ion batteries are widely used rechargeable battery devices in everyday life, known for their small size, high energy density, and lack of memory effect. They are commonly used in products such as laptops, smartphones, and electric vehicles. Graphite and silicon are commonly used anode materials in lithium-ion batteries. Graphite offers advantages such as high stability and low cost, but its theoretical capacity is relatively low (372 mA h g−1). On the other hand, silicon has a high theoretical capacity (4000 mA h g−1), but it suffers from significant volume changes during charging and discharging, leading to poor cycling stability. Research on anode materials focuses on improving energy density, cycling stability, and charge/discharge rate. This study employed novel oxides as anode materials for lithium-ion batteries. The synthesis and material characterization were conducted, followed by electrochemical performance testing to evaluate their capabilities. The energy storage mechanism of the new materials was also investigated to understand the lithiation/delithiation process and the structural changes during charge and discharge. These investigations aim to develop new anode materials with high energy density, good cycling stability, and fast charge/discharge rates, thereby enhancing the performance and application range of lithium-ion batteries.
In the first part, this study synthesized a nickel-containing heteropolyvanadate, Na6[NiV14O40], as an anode material for lithium storage, offering high energy density. Na6[NiV14O40] was prepared using a solution method suitable for low-cost, large-scale production. The prepared half-cell exhibited a high capacity of 700 mA h g−1 and demonstrated excellent cycle stability, maintaining its capacity without fading after 400 cycles. The charge storage mechanism was investigated using in situ X-ray absorption spectroscopy, X-ray diffraction, transmission X-ray microscopy, and density functional theory calculations. These analyses revealed that V5+ was reduced to V2+ during lithiation, confirming that Na6[NiV14O40] functions as an intercalation-type anode material. Additionally, Na6[NiV14O40] maintained its amorphous structure, with negligible volume expansion or contraction observed during cycling. In full-cell tests, Na6[NiV14O40]//LiFePO4 lithium-ion batteries exhibited a high energy density of 300 W h kg−1. When applied to lithium-ion capacitors, Na6[NiV14O40]//expanded mesocarbon microbeads demonstrated energy densities of 218.5 and 47.9 W h kg−1 at power densities of 175.7and 7774.2 W h kg−1, respectively.
The second part of the study builds upon previous studies indicating that (Mg, Co, Ni, Cu, Zn)O high-entropy oxide exhibits excellent cycling stability as anode material for lithium-ion batteries, attributed to the high-entropy stabilization effect and the inactive Mg. This stability is attributed to the combined effects of high-entropy stabilization and the inactive Mg contribution. In this study, (Mg, Co, Ni, Cu, Zn)O with varying Mg contents was synthesized, and the influence of inactive element ratios on their electrochemical properties was analyzed using cyclic voltammetry and galvanostatic charge-discharge measurements. Furthermore, the morphological changes of the materials during the lithiation/delithiation process were observed using an operando synchrotron transmission X-ray microscope. Investigating the role of inactive Mg is expected to contribute to the development of high-entropy oxide electrodes for lithium-ion batteries.
In the third part, we investigate high-entropy oxides with diverse structures as anode materials for lithium-ion batteries. This study employed a simple solid-state sintering method to synthesize a novel high-entropy oxide, (Ni0.2Co0.2Mn0.2Fe0.2Ti0.2)3O4 (NCMFT), with a single-phase spinel structure. NCMFT demonstrated a capacitance of approximately 560 mA h g−1 at a current density of 100 mA g−1, along with exceptional capacity retention of 100% after 100 cycles. Through operando X-ray absorption near-edge structure and ex-situ X-ray photoelectron spectroscopy analysis, the redox reaction of NCMFT anode during lithiation/delithiation was comprehended, confirming its involvement in the conversion mechanism. Operando X-ray diffraction and ex-situ transmission electron microscopy were used to analyze the structural changes during the displacement reaction. In addition, the volume change behavior of the NCMFT negative electrode was observed using a field transmission X-ray microscope. By conducting the aforementioned analyses, the energy storage mechanism of the NCMFT anode was systematically investigated, thereby providing fundamental analytical methods for comprehending the energy storage applications of high-entropy oxides.
摘要 I
Abstract III
致謝 VI
目錄 VIII
圖目錄 XII
表目錄 XIX
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
第2章 文獻回顧與原理簡介 3
2.1 鋰離子電池介紹 3
2.2 鋰離子電容介紹 3
2.3 鋰離子電池負極材料 5
2.4 多金屬氧酸鹽 7
2.5 高熵氧化物 12
第3章 實驗方法 23
3.1 實驗架構 23
3.2 實驗藥品 26
3.3 材料合成 27
3.3.1 Na6[NiV14O40] 27
3.3.2 (Mg, Co, Ni, Cu, Zn)O 28
3.3.3 (Ni, Co, Mn, Fe, Ti)3O4 29
3.4 電池組裝 30
3.4.1 電極製備 30
3.4.2 freestanding電極製備 30
3.4.3 鈕扣型電池組裝 30
3.4.4 開洞鈕扣型電池組裝 32
3.4.5 軟包型電池組裝 32
3.4.6 全電池組裝 33
3.5 材料特性分析方法 34
3.5.1 X光繞射分析 34
3.5.2 熱重分析 34
3.5.3 傅立葉轉換紅外光譜儀 34
3.5.4 感應耦合電漿放射光譜儀 34
3.5.5 場發射掃描式電子顯微鏡 35
3.5.6 穿透式電子顯微鏡 35
3.5.7 X光吸收光譜 36
3.6 電化學性質量測方法 36
3.6.1 循環伏安法 36
3.6.2 恆電流充放電測試 37
3.6.3 恆電位間歇滴定技術 37
3.6.4 全電池測試 38
3.6.5 電化學阻抗頻譜分析 38
3.7 模擬計算分析方法 38
3.8 電池臨場/非臨場量測及分析方法 39
3.8.1 非臨場X光光電子能譜分析 39
3.8.2 非臨場掃描式電子顯微鏡 39
3.8.3 非臨場穿透式電子顯微鏡 39
3.8.4 臨場X光吸收光譜 39
3.8.5 臨場X光繞射分析 40
3.8.6 臨場穿透式X光顯微鏡 40
第4章 結果與討論 41
4.1 含鎳之多金屬釩酸鹽做為鋰離子儲能元件負極之應用與機制探討 42
4.1.1 Na6[NiV14O40]之材料分析鑑定 42
4.1.2 Na6[NiV14O40]之電化學性質表現 45
4.1.3 Na6[NiV14O40]之儲能機制探討 48
4.1.4 Na6[NiV14O40]之全電池測試 59
4.1.5 Na6[NiV14O40]研究總結 62
4.2 以臨場穿透式X光顯微鏡探討高熵氧化物 (Mg, Co, Ni, Cu, Zn)O 負極中非活性元素含量之影響 63
4.2.1 不同非活性元素比例(Mg, Co, Ni, Cu, Zn)O之材料分析鑑定 63
4.2.2 不同非活性元素比例(Mg, Co, Ni, Cu, Zn)O之電化學性質表現 66
4.2.3 不同非活性元素比例(Mg, Co, Ni, Cu, Zn)O之臨場TXM分析 71
4.2.4 不同非活性元素比例(Mg, Co, Ni, Cu, Zn)O之研究總結 75
4.3 尖晶石高熵氧化物(Ni, Co, Mn, Fe, Ti)3O4 作為鋰離子電池負極材料之性質與機制探討 76
4.3.1 NCMFT之材料分析鑑定 76
4.3.2 NCMFT之電化學性質量測與分析 85
4.3.3 NCMFT之鋰化/脫鋰價態分析探討 89
4.3.4 NCMFT之鋰化/脫鋰結構分析探討 95
4.3.5 NCMFT之鋰化/脫鋰體積變化分析 98
4.3.6 NCMFT之研究總結 101

第5章 未來展望 103
研究發表 104
參考資料 106

1. J.B. Goodenough, K.-S. Park, The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167-1176.
2. B. Dunn, H. Kamath, J.-M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928-935.
3. S.R. Sivakkumar, A.S. Milev, A.G. Pandolfo, Effect of Ball-Milling on the Rate and Cycle-Life Performance of Graphite as Negative Electrodes in Lithium-Ion Capacitors. Electrochimica Acta 2011, 56, 9700-9706.
4. G. Anand, A.P. Wynn, C.M. Handley, C.L. Freeman, Phase Stability and Distortion in High-Entropy Oxides. Acta Materialia 2018, 146, 119-125.
5. A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kübel, T. Brezesinski, S.S. Bhattacharya, H. Hahn, B. Breitung, High Entropy Oxides for Reversible Energy Storage. Nature Communications 2018, 9, 3400.
6. K. Roy, A. Banerjee, S. Ogale, Search for New Anode Materials for High Performance Li-Ion Batteries. ACS Applied Materials & Interfaces 2022, 14, 20326-20348.
7. J.-L. Brédas, J.M. Buriak, F. Caruso, K.-S. Choi, B.A. Korgel, M.R. Palacín, K. Persson, E. Reichmanis, F. Schüth, R. Seshadri, M.D. Ward, An Electrifying Choice for the 2019 Chemistry Nobel Prize: Goodenough, Whittingham, and Yoshino. Chemistry of Materials 2019, 31, 8577-8581.
8. J. Xie, Y.-C. Lu, A Retrospective on Lithium-Ion Batteries. Nature Communications 2020, 11, 2499.
9. P.V. Kamat, Lithium-Ion Batteries and Beyond: Celebrating the 2019 Nobel Prize in Chemistry – a Virtual Issue. ACS Energy Letters 2019, 4, 2757-2759.
10. W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu, Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects. Advanced Science 2017, 4, 1600539.
11. X. Wang, L. Liu, Z. Niu, Carbon-Based Materials for Lithium-Ion Capacitors. Materials Chemistry Frontiers 2019, 3, 1265-1279.
12. V. Aravindan, J. Gnanaraj, Y.-S. Lee, S. Madhavi, Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors. Chemical Reviews 2014, 114, 11619-11635.
13. M. Soltani, S.H. Beheshti, A Comprehensive Review of Lithium Ion Capacitor: Development, Modelling, Thermal Management and Applications. Journal of Energy Storage 2021, 34, 102019.
14. M.R. Palacín, Recent Advances in Rechargeable Battery Materials: A Chemist’s Perspective. Chemical Society Reviews 2009, 38, 2565-2575.
15. X. Sun, P.V. Radovanovic, B. Cui, Advances in Spinel Li4Ti5O12 Anode Materials for Lithium-Ion Batteries. New Journal of Chemistry 2015, 39, 38-63.
16. H. Yang, J.-G. Duh, Aqueous Sol-Gel Synthesized Anatase TiO2 Nanoplates with High-Rate Capabilities for Lithium-Ion and Sodium-Ion Batteries. RSC Advances 2016, 6, 37160-37166.
17. F. Sun, J. Gao, Y. Zhu, X. Pi, L. Wang, X. Liu, Y. Qin, A High Performance Lithium Ion Capacitor Achieved by the Integration of a Sn-C Anode and a Biomass-Derived Microporous Activated Carbon Cathode. Scientific Reports 2017, 7, 40990.
18. J.B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries†. Chemistry of Materials 2010, 22, 587-603.
19. J.B. Goodenough, K.S. Park, The Li-Ion Rechargeable Battery: A Perspective. J Am Chem Soc 2013, 135, 1167-76.
20. X. Feng, H. Zou, H. Xiang, X. Guo, T. Zhou, Y. Wu, W. Xu, P. Yan, C. Wang, J.-G. Zhang, Y. Yu, Ultrathin Li4Ti5O12 Nanosheets as Anode Materials for Lithium and Sodium Storage. ACS Applied Materials & Interfaces 2016, 8, 16718-16726.
21. G. Gao, H.B. Wu, X.W. Lou, Citrate-Assisted Growth of Nico2o4 Nanosheets on Reduced Graphene Oxide for Highly Reversible Lithium Storage. Advanced Energy Materials 2014, 4, 1400422-n/a.
22. Y. Changzhou, W.H. Bin, X. Yi, L.X. Wen, Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications. Angewandte Chemie International Edition 2014, 53, 1488-1504.
23. M.S. Song, Y.J. Cho, D.Y. Yoon, S. Nahm, S.H. Oh, K. Woo, J.M. Ko, W.I. Cho, Solvothermal Synthesis of ZnMn2O4 as an Anode Material in Lithium Ion Battery. Electrochimica Acta 2014, 137, 266-272.
24. L. Liu, F. Xie, J. Lyu, T. Zhao, T. Li, B.G. Choi, Tin-Based Anode Materials with Well-Designed Architectures for Next-Generation Lithium-Ion Batteries. Journal of Power Sources 2016, 321, 11-35.
25. X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Silicon Based Lithium-Ion Battery Anodes: A Chronicle Perspective Review. Nano Energy 2017, 31, 113-143.
26. M. Zhang, T. Zhang, Y. Ma, Y. Chen, Latest Development of Nanostructured Si/C Materials for Lithium Anode Studies and Applications. Energy Storage Materials 2016, 4, 1-14.
27. J. Xie, Y. Zhang, Y. Han, C. Li, High-Capacity Molecular Scale Conversion Anode Enabled by Hybridizing Cluster-Type Framework of High Loading with Amino-Functionalized Graphene. ACS Nano 2016, 10, 5304-13.
28. M.R. Horn, A. Singh, S. Alomari, S. Goberna-Ferrón, R. Benages-Vilau, N. Chodankar, N. Motta, K. Ostrikov, J. MacLeod, P. Sonar, P. Gomez-Romero, D. Dubal, Polyoxometalates (Poms): From Electroactive Clusters to Energy Materials. Energy & Environmental Science 2021, 14, 1652-1700.
29. D.-Y. Du, L.-K. Yan, Z.-M. Su, S.-L. Li, Y.-Q. Lan, E.-B. Wang, Chiral Polyoxometalate-Based Materials: From Design Syntheses to Functional Applications. Coordination Chemistry Reviews 2013, 257, 702-717.
30. D.E. Katsoulis, A Survey of Applications of Polyoxometalates. Chemical Reviews 1998, 98, 359-388.
31. L. Yang, J. Lei, J.-M. Fan, R.-M. Yuan, M.-S. Zheng, J.-J. Chen, Q.-F. Dong, The Intrinsic Charge Carrier Behaviors and Applications of Polyoxometalate Clusters Based Materials. Advanced Materials 2021, g633, 2005019.
32. S.-C. Huang, C.-C. Lin, C.-W. Hu, Y.-F. Liao, T.-Y. Chen, H.-Y. Chen, Vanadium-Based Polyoxometalate as Electron/Ion Sponge for Lithium-Ion Storage. Journal of Power Sources 2019, 435, 226702.
33. C.-C. Lin, C.-T. Hsu, W. Liu, S.-C. Huang, M.-H. Lin, U. Kortz, A.S. Mougharbel, T.-Y. Chen, C.-W. Hu, J.-F. Lee, C.-C. Wang, Y.-F. Liao, L.-J. Li, L. Li, S. Peng, U. Stimming, H.-Y. Chen, In Operando X-Ray Studies of High-Performance Lithium-Ion Storage in Keplerate-Type Polyoxometalate Anodes. ACS Applied Materials & Interfaces 2020, 12, 40296-40309.
34. S. Hartung, N. Bucher, H.-Y. Chen, R. Al-Oweini, S. Sreejith, P. Borah, Z. Yanli, U. Kortz, U. Stimming, H.E. Hoster, M. Srinivasan, Vanadium-Based Polyoxometalate as New Material for Sodium-Ion Battery Anodes. Journal of Power Sources 2015, 288, 270-277.
35. C.-C. Lin, W.-H. Lin, S.-C. Huang, C.-W. Hu, T.-Y. Chen, C.-T. Hsu, H. Yang, A. Haider, Z. Lin, U. Kortz, U. Stimming, H.-Y. Chen, Mechanism of Sodium Ion Storage in Na7[H2PV14O42] Anode for Sodium-Ion Batteries. Advanced Materials Interfaces 2018, 5, 1800491.
36. J. Xie, Y. Zhang, Y. Han, C. Li, High-Capacity Molecular Scale Conversion Anode Enabled by Hybridizing Cluster-Type Framework of High Loading with Amino-Functionalized Graphene. ACS Nano 2016, 10, 5304-5313.
37. X.Y. Yang, X.-Y. Yang, T. Wei, J.-S. Li, N. Sheng, P.-P. Zhu, J.-Q. Sha, T. Wang, Y.-Q. Lan, Polyoxometalate-Incorporated Metallapillararene/Metallacalixarene Metal-Organic Frameworks as Anode Materials for Lithium Ion Batteries. Inorganic chemistry 2017, 56, 8311-8318.
38. J.-Q. Sha, X.-Y. Yang, Y. Chen, P.-P. Zhu, Y.-F. Song, J. Jiang, Fabrication and Electrochemical Performance of Polyoxometalate-Based Three-Dimensional Metal Organic Frameworks Containing Carbene Nanocages. ACS Applied Materials & Interfaces 2018, 10, 16660-16665.
39. Y. Ji, J. Hu, L. Huang, W. Chen, C. Streb, Y.-F. Song, Covalent Attachment of Anderson-Type Polyoxometalates to Single-Walled Carbon Nanotubes Gives Enhanced Performance Electrodes for Lithium Ion Batteries. Chemistry – A European Journal 2015, 21, 6469-6474.
40. T. Wei, M. Zhang, P. Wu, Y.-J. Tang, S.-L. Li, F.-C. Shen, X.-L. Wang, X.-P. Zhou, Y.-Q. Lan, Pom-Based Metal-Organic Framework/Reduced Graphene Oxide Nanocomposites with Hybrid Behavior of Battery-Supercapacitor for Superior Lithium Storage. Nano Energy 2017, 34, 205-214.
41. X. Zhao, G. Niu, H. Yang, J. Ma, M. Sun, M. Xu, W. Xiong, T. Yang, L. Chen, C. Wang, Mil-88a@Polyoxometalate Microrods as an Advanced Anode for High-Performance Lithium Ion Batteries. CrystEngComm 2020, 22, 3588-3597.
42. X. Jia, J. Wang, H. Hu, Y.-F. Song, Three-Dimensional Carbon Framework Anchored Polyoxometalate as a High-Performance Anode for Lithium-Ion Batteries. Chemistry – A European Journal 2020, 26, 5257-5263.
43. M. Mahajan, G. Singla, S. Ogale, Polypyrrole-Encapsulated Polyoxomolybdate Decorated Mxene as a Functional 2d/3d Nanohybrid for a Robust and High Performance Li-Ion Battery. ACS Applied Energy Materials 2021, 4, 4541-4550.
44. Q. Li, M. Xu, T. Wang, H. Wang, J. Sun, J. Sha, Nanohybridization of Cos2/Mos2 Heterostructure with Polyoxometalate on Functionalized Reduced Graphene Oxide for High-Performance Libs. Chemistry – A European Journal 2022, 28, e202200207.
45. H. Ilbeygi, I.Y. Kim, M.G. Kim, W. Cha, P.S.M. Kumar, D.-H. Park, A. Vinu, Highly Crystalline Mesoporous Phosphotungstic Acid: A High-Performance Electrode Material for Energy-Storage Applications. Angewandte Chemie International Edition 2019, 58, 10849-10854.
46. L. Pengcheng, Z. Kongjun, X. Yuan, B. Kan, W. Jing, T. Guo‘an, G. Yanfeng, L. Hongjie, L. Li, L. Jinsong, Hierarchical Porous Intercalation‐Type V2O3 as High‐Performance Anode Materials for Li‐Ion Batteries. Chemistry – A European Journal 2017, 23, 7538-7544.
47. B. Yan, X. Li, X. Fu, L. Zhang, Z. Bai, X. Yang, An Elaborate Insight of Lithiation Behavior of V2O5 Anode. Nano Energy 2020, 78, 105233.
48. L. Huiqiao, L. Xizheng, Z. Tianyou, L. De, Z. Haoshen, Li3VO4: A Promising Insertion Anode Material for Lithium‐Ion Batteries. Advanced Energy Materials 2013, 3, 428-432.
49. E. Ni, S. Uematsu, Z. Quan, N. Sonoyama, Improved Electrochemical Property of Nanoparticle Polyoxovanadate K7NiV13O38 as Cathode Material for Lithium Battery. Journal of Nanoparticle Research 2013, 15, 1732.
50. X. Liu, Y. Zhao, Y. Dong, Q. Kuang, Q. Fan, Z. Jing, S. Hou, A Promising Sol-Gel Method to Synthesize NaVO3 as Anode Material for Lithium Ion Batteries. Journal of Solid State Electrochemistry 2016, 20, 1803-1812.
51. S. Uematsu, Z. Quan, Y. Suganuma, N. Sonoyama, Reversible Lithium Charge–Discharge Property of Bi-Capped Keggin-Type Polyoxovanadates. Journal of Power Sources 2012, 217, 13-20.
52. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and Properties of High-Entropy Alloys. Progress in Materials Science 2014, 61, 1-93.
53. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials 2004, 6, 299-303.
54. J.-W. Yeh, Recent Progress in High-Entropy Alloys. Annales de Chimie Science des Matériaux 2006, 31, 633-648.
55. J. Sure, D. Sri Maha Vishnu, C. Schwandt, Electrochemical Conversion of Oxide Spinels into High-Entropy Alloy. Journal of Alloys and Compounds 2019, 776, 133-141.
56. D.B. Miracle, O.N. Senkov, Hea. Acta Materialia 2017, 122, 448-511.
57. J. Gild, M. Samiee, J.L. Braun, T. Harrington, H. Vega, P.E. Hopkins, K. Vecchio, J. Luo, High-Entropy Fluorite Oxides. Journal of the European Ceramic Society 2018, 38, 3578-3584.
58. K. Chen, X. Pei, L. Tang, H. Cheng, Z. Li, C. Li, X. Zhang, L. An, A Five-Component Entropy-Stabilized Fluorite Oxide. Journal of the European Ceramic Society 2018, 38, 4161-4164.
59. A. Sarkar, C. Loho, L. Velasco, T. Thomas, S.S. Bhattacharya, H. Hahn, R. Djenadic, Multicomponent Equiatomic Rare Earth Oxides with a Narrow Band Gap and Associated Praseodymium Multivalency. Dalton Trans 2017, 46, 12167-12176.
60. S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, J. Luo, A New Class of High-Entropy Perovskite Oxides. Scripta Materialia 2018, 142, 116-120.
61. A. Sarkar, R. Djenadic, D. Wang, C. Hein, R. Kautenburger, O. Clemens, H. Hahn, Rare Earth and Transition Metal Based Entropy Stabilised Perovskite Type Oxides. Journal of the European Ceramic Society 2018, 38, 2318-2327.
62. J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, M. Martin, Synthesis and Microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 High Entropy Oxide Characterized by Spinel Structure. Materials Letters 2018, 216, 32-36.
63. C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.P. Maria, Entropy-Stabilized Oxides. Nat Commun 2015, 6, 8485.
64. E. Castle, T. Csanadi, S. Grasso, J. Dusza, M. Reece, Processing and Properties of High-Entropy Ultra-High Temperature Carbides. Sci Rep 2018, 8, 8609.
65. J. Gild, J. Braun, K. Kaufmann, E. Marin, T. Harrington, P. Hopkins, K. Vecchio, J. Luo, A High-Entropy Silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. Journal of Materiomics 2019, 5, 337-343.
66. J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, J. Luo, High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics. Sci Rep 2016, 6, 37946.
67. T. Jin, X. Sang, R.R. Unocic, R.T. Kinch, X. Liu, J. Hu, H. Liu, S. Dai, Mechanochemical-Assisted Synthesis of High-Entropy Metal Nitride Via a Soft Urea Strategy. Adv Mater 2018, 30, e1707512.
68. R.Z. Zhang, F. Gucci, H. Zhu, K. Chen, M.J. Reece, Data-Driven Design of Ecofriendly Thermoelectric High-Entropy Sulfides. Inorg Chem 2018, 57, 13027-13033.
69. Y. Tan, C. Chen, S. Li, X. Han, J. Xue, T. Liu, X. Zhou, H. Zhang, Oxidation Behaviours of High-Entropy Transition Metal Carbides in 1200 °C Water Vapor. Journal of Alloys and Compounds 2020, 816.
70. L. Feng, W.G. Fahrenholtz, G.E. Hilmas, Low‐Temperature Sintering of Single‐Phase, High‐Entropy Carbide Ceramics. Journal of the American Ceramic Society 2019, 102, 7217-7224.
71. H. Chen, W. Lin, Z. Zhang, K. Jie, D.R. Mullins, X. Sang, S.-Z. Yang, C.J. Jafta, C.A. Bridges, X. Hu, R.R. Unocic, J. Fu, P. Zhang, S. Dai, Mechanochemical Synthesis of High Entropy Oxide Materials under Ambient Conditions: Dispersion of Catalysts Via Entropy Maximization. ACS Materials Letters 2019, 1, 83-88.
72. P.B. Meisenheimer, T.J. Kratofil, J.T. Heron, Giant Enhancement of Exchange Coupling in Entropy-Stabilized Oxide Heterostructures. Sci Rep 2017, 7, 13344.
73. Y. Sharma, B.L. Musico, X. Gao, C. Hua, A.F. May, A. Herklotz, A. Rastogi, D. Mandrus, J. Yan, H.N. Lee, M.F. Chisholm, V. Keppens, T.Z. Ward, Single-Crystal High Entropy Perovskite Oxide Epitaxial Films. Physical Review Materials 2018, 2.
74. A. Kirnbauer, C. Spadt, C.M. Koller, S. Kolozsvári, P.H. Mayrhofer, High-Entropy Oxide Thin Films Based on Al–Cr–Nb–Ta–Ti. Vacuum 2019, 168.
75. Z.-M. Yang, K. Zhang, N. Qiu, H.-B. Zhang, Y. Wang, J. Chen, Effects of Helium Implantation on Mechanical Properties of (Al0.31Cr0.20Fe0.14Ni0.35)O High Entropy Oxide Films. Chinese Physics B 2019, 28.
76. M. Biesuz, S. Fu, J. Dong, A. Jiang, D. Ke, Q. Xu, D. Zhu, M. Bortolotti, M.J. Reece, C. Hu, S. Grasso, High Entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3−X Perovskite Synthesis by Reactive Spark Plasma Sintering. Journal of Asian Ceramic Societies 2019, 7, 127-132.
77. R. Witte, A. Sarkar, R. Kruk, B. Eggert, R.A. Brand, H. Wende, H. Hahn, High-Entropy Oxides: An Emerging Prospect for Magnetic Rare-Earth Transition Metal Perovskites. Physical Review Materials 2019, 3.
78. W. Hong, F. Chen, Q. Shen, Y.H. Han, W.G. Fahrenholtz, L. Zhang, Microstructural Evolution and Mechanical Properties of (Mg,Co,Ni,Cu,Zn)O High‐Entropy Ceramics. Journal of the American Ceramic Society 2018.
79. M. Lim, Z. Rak, J.L. Braun, C.M. Rost, G.N. Kotsonis, P.E. Hopkins, J.P. Maria, D.W. Brenner, Influence of Mass and Charge Disorder on the Phonon Thermal Conductivity of Entropy Stabilized Oxides Determined by Molecular Dynamics Simulations. Journal of Applied Physics 2019, 125.
80. N. Qiu, H. Chen, Z. Yang, S. Sun, Y. Wang, Y. Cui, A High Entropy Oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2o) with Superior Lithium Storage Performance. Journal of Alloys and Compounds 2019, 777, 767-774.
81. A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kubel, T. Brezesinski, S.S. Bhattacharya, H. Hahn, B. Breitung, High Entropy Oxides for Reversible Energy Storage. Nat Commun 2018, 9, 3400.
82. X. Wang, J.M. Schoenung, Entropic Phase Transformation in Nanocrystalline High Entropy Oxides Au - Dupuy, Alexander D. Materials Research Letters 2019, 7, 60-67.
83. C. Zhao, F. Ding, Y. Lu, L. Chen, Y.S. Hu, High-Entropy Layered Oxide Cathodes for Sodium-Ion Batteries. Angew Chem Int Ed Engl 2019.
84. D. Bérardan, S. Franger, A.K. Meena, N. Dragoe, Room Temperature Lithium Superionic Conductivity in High Entropy Oxides. Journal of Materials Chemistry A 2016, 4, 9536-9541.
85. N. Osenciat, D. Bérardan, D. Dragoe, B. Léridon, S. Holé, A.K. Meena, S. Franger, N. Dragoe, Charge Compensation Mechanisms in Li‐Substituted High‐Entropy Oxides and Influence on Li Superionic Conductivity. Journal of the American Ceramic Society 2019, 102, 6156-6162.
86. H. Chen, N. Qiu, B. Wu, Z. Yang, S. Sun, Y. Wang, Tunable Pseudocapacitive Contribution by Dimension Control in Nanocrystalline-Constructed (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O Solid Solutions to Achieve Superior Lithium-Storage Properties. RSC Advances 2019, 9, 28908-28915.
87. A. Amiri, R. Shahbazian-Yassar, Recent Progress of High-Entropy Materials for Energy Storage and Conversion. Journal of Materials Chemistry A 2021, 9, 782-823.
88. M. Fu, X. Ma, K. Zhao, X. Li, D. Su, High-Entropy Materials for Energy-Related Applications. iScience 2021, 24, 102177.
89. Y. Ma, Y. Ma, Q. Wang, S. Schweidler, M. Botros, T. Fu, H. Hahn, T. Brezesinski, B. Breitung, High-Entropy Energy Materials: Challenges and New Opportunities. Energy & Environmental Science 2021, 14, 2883-2905.
90. X. Wang, X. Li, H. Fan, M. Miao, Y. Zhang, W. Guo, Y. Fu, Advances of Entropy-Stabilized Homologous Compounds for Electrochemical Energy Storage. Journal of Energy Chemistry 2022, 67, 276-289.
91. S. Fang, D. Bresser, S. Passerini, Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium- and Sodium-Ion Batteries. Advanced Energy Materials 2020, 10, 1902485.
92. X. Liu, X. Li, Y. Li, H. Zhang, Q. Jia, S. Zhang, W. Lei, High-Entropy Oxide: A Future Anode Contender for Lithium-Ion Battery. EcoMat 2022, 4, e12261.
93. B. Breitung, Q. Wang, A. Schiele, Đ. Tripković, A. Sarkar, L. Velasco, D. Wang, S.S. Bhattacharya, H. Hahn, T. Brezesinski, Gassing Behavior of High-Entropy Oxide Anode and Oxyfluoride Cathode Probed Using Differential Electrochemical Mass Spectrometry. Batteries & Supercaps 2020, 3, 361-369.
94. M. Kheradmandfard, H. Minouei, N. Tsvetkov, A.K. Vayghan, S.F. Kashani-Bozorg, G. Kim, S.I. Hong, D.-E. Kim, Ultrafast Green Microwave-Assisted Synthesis of High-Entropy Oxide Nanoparticles for Li-Ion Battery Applications. Materials Chemistry and Physics 2021, 262, 124265.
95. J. Wei, K. Rong, X. Li, Y. Wang, Z.-A. Qiao, Y. Fang, S. Dong, Deep Eutectic Solvent Assisted Facile Synthesis of Low-Dimensional Hierarchical Porous High-Entropy Oxides. Nano Research 2022, 15, 2756-2763.
96. J. Su, Z. Cao, Z. Jiang, G. Chen, Y. Zhu, L. Wang, G. Li, High Entropy Oxide Nanofiber by Electrospun Method and Its Application for Lithium Battery Anode Material. International Journal of Applied Ceramic Technology 2022, 19, 2004-2015.
97. C. Triolo, W. Xu, B. Petrovičovà, N. Pinna, S. Santangelo, Evaluation of Entropy-Stabilized (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O Oxides Produced Via Solvothermal Method or Electrospinning as Anodes in Lithium-Ion Batteries. Advanced Functional Materials 2022, 32, 2202892.
98. E. Lökçü, Ç. Toparli, M. Anik, Electrochemical Performance of (Mgconizn)1–Xlixo High-Entropy Oxides in Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2020, 12, 23860-23866.
99. X. Liu, Y. Xing, K. Xu, H. Zhang, M. Gong, Q. Jia, S. Zhang, W. Lei, Kinetically Accelerated Lithium Storage in High-Entropy (Limgconicuzn)O Enabled by Oxygen Vacancies. Small 2022, 18, 2200524.
100. T.X. Nguyen, J. Patra, J.-K. Chang, J.-M. Ting, High Entropy Spinel Oxide Nanoparticles for Superior Lithiation–Delithiation Performance. Journal of Materials Chemistry A 2020, 8, 18963-18973.
101. H. Chen, N. Qiu, B. Wu, Z. Yang, S. Sun, Y. Wang, A New Spinel High-Entropy Oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with Fast Reaction Kinetics and Excellent Stability as an Anode Material for Lithium Ion Batteries. RSC Advances 2020, 10, 9736-9744.
102. D. Wang, S. Jiang, C. Duan, J. Mao, Y. Dong, K. Dong, Z. Wang, S. Luo, Y. Liu, X. Qi, Spinel-Structured High Entropy Oxide (FeCoNiCrMn)3O4 as Anode Towards Superior Lithium Storage Performance. Journal of Alloys and Compounds 2020, 844, 156158.
103. J. Zhao, X. Yang, Y. Huang, F. Du, Y. Zeng, Entropy Stabilization Effect and Oxygen Vacancies Enabling Spinel Oxide Highly Reversible Lithium-Ion Storage. ACS Applied Materials & Interfaces 2021, 13, 58674-58681.
104. B. Xiao, G. Wu, T. Wang, Z. Wei, Y. Sui, B. Shen, J. Qi, F. Wei, J. Zheng, High-Entropy Oxides as Advanced Anode Materials for Long-Life Lithium-Ion Batteries. Nano Energy 2022, 95, 106962.
105. H.-Z. Xiang, H.-X. Xie, Y.-X. Chen, H. Zhang, A. Mao, C.-H. Zheng, Porous Spinel-Type (Al0.2CoCrFeMnNi)0.58O4-Δ High-Entropy Oxide as a Novel High-Performance Anode Material for Lithium-Ion Batteries. Journal of Materials Science 2021, 56, 8127-8142.
106. X. Yang, H. Wang, Y. Song, K. Liu, T. Huang, X. Wang, C. Zhang, J. Li, Low-Temperature Synthesis of a Porous High-Entropy Transition-Metal Oxide as an Anode for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2022, 14, 26873-26881.
107. B. Xiao, G. Wu, T. Wang, Z. Wei, Y. Sui, B. Shen, J. Qi, F. Wei, Q. Meng, Y. Ren, X. Xue, J. Zheng, J. Mao, K. Dai, High Entropy Oxides (FeNiCrMnX)3O4 (X=Zn, Mg) as Anode Materials for Lithium Ion Batteries. Ceramics International 2021, 47, 33972-33977.
108. T.X. Nguyen, C.-C. Tsai, J. Patra, O. Clemens, J.-K. Chang, J.-M. Ting, Co-Free High Entropy Spinel Oxide Anode with Controlled Morphology and Crystallinity for Outstanding Charge/Discharge Performance in Lithium-Ion Batteries. Chemical Engineering Journal 2022, 430, 132658.
109. Y. Zheng, X. Wu, X. Lan, R. Hu. A Spinel (FeNiCrMnMgAl)3O4 High Entropy Oxide as a Cycling Stable Anode Material for Li-Ion Batteries Processes [Online], 2022.
110. Q. Dong, M. Hong, J. Gao, T. Li, M. Cui, S. Li, H. Qiao, A.H. Brozena, Y. Yao, X. Wang, G. Chen, J. Luo, L. Hu, Rapid Synthesis of High-Entropy Oxide Microparticles. Small 2022, 18, 2104761.
111. C. Duan, K. Tian, X. Li, D. Wang, H. Sun, R. Zheng, Z. Wang, Y. Liu, New Spinel High-Entropy Oxides (FeCoNiCrMnXLi)3O4 (X = Cu, Mg, Zn) as the Anode Material for Lithium-Ion Batteries. Ceramics International 2021, 47, 32025-32032.
112. K.-H. Tian, C.-Q. Duan, Q. Ma, X.-L. Li, Z.-Y. Wang, H.-Y. Sun, S.-H. Luo, D. Wang, Y.-G. Liu, High-Entropy Chemistry Stabilizing Spinel Oxide (CoNiZnXMnLi)3O4 (X = Fe, Cr) for High-Performance Anode of Li-Ion Batteries. Rare Metals 2022, 41, 1265-1275.
113. B. Petrovičovà, W. Xu, M.G. Musolino, F. Pantò, S. Patanè, N. Pinna, S. Santangelo, C. Triolo. High-Entropy Spinel Oxides Produced Via Sol-Gel and Electrospinning and Their Evaluation as Anodes in Li-Ion Batteries Applied Sciences [Online], 2022.
114. T.-Y. Yi, C.-W. Dai, J.-A. Wang, C.-C.M. Ma, C.-C. Hu, Electrochemical Activation and Capacitance Enhancement of Expanded Mesocarbon Microbeads for High-Voltage, Symmetric Supercapacitors. Electrochimica Acta 2020, 359, 136941.
115. J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles. The Journal of Physical Chemistry C 2007, 111, 14925-14931.
116. G. Kresse, J. Furthmüller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science 1996, 6, 15-50.
117. P.E. Blöchl, Projector Augmented-Wave Method. Physical Review B 1994, 50, 17953-17979.
118. G. Kresse, D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B 1999, 59, 1758-1775.
119. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. Physical Review Letters 1996, 77, 3865-3868.
120. J. Liu, Z. Chen, S. Chen, B. Zhang, J. Wang, H. Wang, B. Tian, M. Chen, X. Fan, Y. Huang, T.C. Sum, J. Lin, Z.X. Shen, “Electron/Ion Sponge”-Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries. ACS Nano 2017, 11, 6911-6920.
121. W. Tang, E. Sanville, G. Henkelman, A Grid-Based Bader Analysis Algorithm without Lattice Bias. Journal of Physics: Condensed Matter 2009, 21, 084204.
122. E. Sanville, S.D. Kenny, R. Smith, G. Henkelman, Improved Grid-Based Algorithm for Bader Charge Allocation. Journal of computational chemistry 2007, 28, 899-908.
123. G. Henkelman, A. Arnaldsson, H. Jónsson, A Fast and Robust Algorithm for Bader Decomposition of Charge Density. Computational Materials Science 2006, 36, 354-360.
124. M. Yu, D.R. Trinkle, Accurate and Efficient Algorithm for Bader Charge Integration. The Journal of Chemical Physics 2011, 134, 064111.
125. S. Uematsu, Z. Quan, Y. Suganuma, N. Sonoyama, Reversible Lithium Charge–Discharge Property of Bi-Capped Keggin-Type Polyoxovanadates. Journal of Power Sources 2012, 217, 13-20.
126. J. Kasperkiewicz, J.A. Kovacich, D. Lichtman, Xps Studies of Vanadium and Vanadium Oxides. Journal of Electron Spectroscopy and Related Phenomena 1983, 32, 123-132.
127. W.E. Slink, P.B. DeGroot, Vanadium-Titanium Oxide Catalysts for Oxidation of Butene to Acetic Acid. Journal of Catalysis 1981, 68, 423-432.
128. R.J. Colton, A.M. Guzman, J.W. Rabalais, Electrochromism in Some Thin‐Film Transition‐Metal Oxides Characterized by X‐Ray Electron Spectroscopy. Journal of Applied Physics 1978, 49, 409-416.
129. M.J. Molaei, A. Ataie, S. Raygan, S.J. Picken, The Effect of Different Carbon Reducing Agents in Synthesizing Barium Ferrite/Magnetite Nanocomposites. Materials Chemistry and Physics 2018, 219, 155-161.
130. D. Aurbach, B. Markovsky, I. Weissman, E. Levi, Y. Ein-Eli, On the Correlation between Surface Chemistry and Performance of Graphite Negative Electrodes for Li Ion Batteries. Electrochimica Acta 1999, 45, 67-86.
131. T. Yuan, Z. Tan, C. Ma, J. Yang, Z.-F. Ma, S. Zheng, Challenges of Spinel Li4ti5o12 for Lithium-Ion Battery Industrial Applications. Advanced Energy Materials 2017, 7, 1601625.
132. H. Usui, Y. Domi, T.H. Nguyen, S.-i. Izaki, K. Nishikawa, T. Tanaka, H. Sakaguchi, Effects of Phase Change and Cu Doping on the Li Storage Properties of Rutile TiO2. Electrochemistry 2022, 90, 037002-037002.
133. H. Usui, Y. Domi, S. Ohnishi, N. Takamori, S.-i. Izaki, N. Morimoto, K. Yamanaka, K. Kobayashi, H. Sakaguchi, Spindle Single-Crystalline Rutile Tio2 with Excellent Cyclability for Low-Cost Li-Storage Materials. ACS Materials Letters 2021, 3, 372-378.
134. F. Han, W.C. Li, C. Lei, B. He, K. Oshida, A.H. Lu, Selective Formation of Carbon‐Coated, Metastable Amorphous Znsno3 Nanocubes Containing Mesopores for Use as High‐Capacity Lithium‐Ion Battery. Small 2014, 10, 2637-2644.
135. J. Zhu, D. Deng, Amorphous Bimetallic Co3Sn2 Nanoalloys Are Better Than Crystalline Counterparts for Sodium Storage. J. Phys. Chem. C 2015, 119, 21323-21328.
136. M. Chandra, T.S. Khan, R. Shukla, S. Ahamad, A. Gupta, S. Basu, M.A. Haider, R.S. Dhaka, Diffusion Coefficient and Electrochemical Performance of Navo3 Anode in Li/Na Batteries. Electrochimica Acta 2020, 331, 135293.
137. P.S. Veluri, A. Shaligram, S. Mitra, Porous Α-Fe2o3 Nanostructures and Their Lithium Storage Properties As full Cell Configuration against Lifepo4. Journal of Power Sources 2015, 293, 213-220.
138. P. Yu, B.N. Popov, J.A. Ritter, R.E. White, Determination of the Lithium Ion Diffusion Coefficient in Graphite. Journal of The Electrochemical Society 1999, 146, 8-14.
139. S. Bach, J.P. Pereira-Ramos, N. Baffier, Electrochemical Properties of Sol–Gel Li4/3Ti5/3O4. Journal of Power Sources 1999, 81-82, 273-276.
140. N. Li, Z. Chen, W. Ren, F. Li, H.-M. Cheng, Flexible Graphene-Based Lithium Ion Batteries with Ultrafast Charge and Discharge Rates. Proceedings of the National Academy of Sciences 2012, 109, 17360-17365.
141. P. Xiong, L. Peng, D. Chen, Y. Zhao, X. Wang, G. Yu, Two-Dimensional Nanosheets Based Li-Ion Full Batteries with High Rate Capability and Flexibility. Nano Energy 2015, 12, 816-823.
142. B. Zou, Q. Hu, D. Qu, R. Yu, Y. Zhou, Z. Tang, C. Chen, A High Energy Density Full Lithium-Ion Cell Based on Specially Matched Coulombic Efficiency. Journal of Materials Chemistry A 2016, 4, 4117-4124.
143. X. Liu, H.-G. Jung, S.-O. Kim, H.-S. Choi, S. Lee, J.H. Moon, J.K. Lee, Silicon/Copper Dome-Patterned Electrodes for High-Performance Hybrid Supercapacitors. Scientific Reports 2013, 3, 3183.
144. F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, Y. Chen, A High-Performance Supercapacitor-Battery Hybrid Energy Storage Device Based on Graphene-Enhanced Electrode Materials with Ultrahigh Energy Density. Energy & Environmental Science 2013, 6, 1623-1632.
145. X. Wang, P.S. Lee, Titanium Doped Niobium Oxide for Stable Pseudocapacitive Lithium Ion Storage and Its Application in 3 V Non-Aqueous Supercapacitors. Journal of Materials Chemistry A 2015, 3, 21706-21712.
146. L. Kong, C. Zhang, J. Wang, W. Qiao, L. Ling, D. Long, Free-Standing T-Nb2O5/Graphene Composite Papers with Ultrahigh Gravimetric/Volumetric Capacitance for Li-Ion Intercalation Pseudocapacitor. ACS Nano 2015, 9, 11200-11208.
147. K. Leng, F. Zhang, L. Zhang, T. Zhang, Y. Wu, Y. Lu, Y. Huang, Y. Chen, Graphene-Based Li-Ion Hybrid Supercapacitors with Ultrahigh Performance. Nano Research 2013, 6, 581-592.
148. W.-H. Qu, F. Han, A.-H. Lu, C. Xing, M. Qiao, W.-C. Li, Combination of a Sno2–C Hybrid Anode and a Tubular Mesoporous Carbon Cathode in a High Energy Density Non-Aqueous Lithium Ion Capacitor: Preparation and Characterisation. Journal of Materials Chemistry A 2014, 2, 6549-6557.
149. H.S. Choi, J.H. Im, T. Kim, J.H. Park, C.R. Park, Advanced Energy Storage Device: A Hybrid Batcap System Consisting of Battery–Supercapacitor Hybrid Electrodes Based on Li4Ti5O12–Activated-Carbon Hybrid Nanotubes. Journal of Materials Chemistry 2012, 22, 16986-16993.
150. H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon, Y. Lee, K.C. Roh, K. Kang, A Novel High-Energy Hybrid Supercapacitor with an Anatase TiO2–Reduced Graphene Oxide Anode and an Activated Carbon Cathode. Advanced Energy Materials 2013, 3, 1500-1506.
151. Z. Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen, B. Dunn, Y. Lu, High-Performance Supercapacitors Based on Intertwined Cnt/V2O5 Nanowire Nanocomposites. Advanced Materials 2011, 23, 791-795.
152. J. Xie, L. Tong, L. Su, Y. Xu, L. Wang, Y. Wang, Core-Shell Yolk-Shell Si@C@Void@C Nanohybrids as Advanced Lithium Ion Battery Anodes with Good Electronic Conductivity and Corrosion Resistance. Journal of Power Sources 2017, 342, 529-536.
153. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-Ion Battery Materials: Present and Future. Materials Today 2015, 18, 252-264.
154. T.-Y. Chen, S.-Y. Wang, C.-H. Kuo, S.-C. Huang, M.-H. Lin, C.-H. Li, H.-Y.T. Chen, C.-C. Wang, Y.-F. Liao, C.-C. Lin, Y.-M. Chang, J.-W. Yeh, S.-J. Lin, T.-Y. Chen, H.-Y. Chen, In Operando Synchrotron X-Ray Studies of a Novel Spinel (Ni0.2Co0.2Mn0.2Fe0.2Ti0.2)3O4 High-Entropy Oxide for Energy Storage Applications. Journal of Materials Chemistry A 2020, 8, 21756-21770.
155. M. He, L. Yuan, X. Hu, W. Zhang, J. Shu, Y. Huang, A SnO2@Carbon Nanocluster Anode Material with Superior Cyclability and Rate Capability for Lithium-Ion Batteries. Nanoscale 2013, 5, 3298-3305.
156. P. Behrens, Xanes, Exafs and Related Techniques. In Characterization I: -/-, Karge, H. G.; Weitkamp, J., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2004; pp 427-466.
157. R.P. D. C. Koningsberger, X-Ray Absorption: Principles, Applications, Techniques of Exafs, Sexafs and Xanes. 1988.
158. J.E. Penner‐Hahn, X-Ray Absorption Spectroscopy. In Els, Penner‐Hahn, J. E., Ed. 2005.
159. A.S. Albuquerque, J.D. Ardisson, W.A.A. Macedo, M.C.M. Alves, Nanosized Powders of Nizn Ferrite: Synthesis, Structure, and Magnetism. Journal of Applied Physics 2000, 87, 4352-4357.
160. U. Wongpratat, S. Maensiri, E. Swatsitang, Exafs Study of Cations Distribution Dependence of Magnetic Properties in Co1−XZnxFe2O4 Nanoparticles Prepared by Hydrothermal Method. Microelectronic Engineering 2015, 146, 68-75.
161. D. Makovec, A. Kodre, I. Arčon, M. Drofenik, Structure of Manganese Zinc Ferrite Spinel Nanoparticles Prepared with Co-Precipitation in Reversed Microemulsions. Journal of Nanoparticle Research 2009, 11, 1145-1158.
162. C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.-P. Maria, Entropy-Stabilized Oxides. Nature Communications 2015, 6, 8485.
163. J. Deng, X. Yu, X. Qin, D. Zhou, L. Zhang, H. Duan, F. Kang, B. Li, G. Wang, Co–B Nanoflakes as Multifunctional Bridges in ZnCo2O4 Micro-/Nanospheres for Superior Lithium Storage with Boosted Kinetics and Stability. Advanced Energy Materials 2019, 9, 1803612.
164. L. Ji, Z. Tan, T.R. Kuykendall, S. Aloni, S. Xun, E. Lin, V. Battaglia, Y. Zhang, Fe3o4 Nanoparticle-Integrated Graphene Sheets for High-Performance Half and Full Lithium Ion Cells. Physical Chemistry Chemical Physics 2011, 13, 7170-7177.
165. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries. Nature 2000, 407, 496-499.
166. B. Wang, G. Wang, Z. Lv, H. Wang, In Situ Synthesis of Hierarchical CoFe2O4 Nanoclusters/Graphene Aerogels and Their High Performance for Lithium-Ion Batteries. Physical Chemistry Chemical Physics 2015, 17, 27109-27117.
167. M.-W. Xu, Y.-B. Niu, S.-J. Bao, C.M. Li, An Architectural Development for Energy Conversion Materials: Morphology-Conserved Transformation Synthesis of Manganese Oxides and Their Application in Lithium Ion Batteries. Journal of Materials Chemistry A 2014, 2, 3749-3755.
168. S. Li, A. Li, R. Zhang, Y. He, Y. Zhai, L. Xu, Hierarchical Porous Metal Ferrite Ball-in-Ball Hollow Spheres: General Synthesis, Formation Mechanism, and High Performance as Anode Materials for Li-Ion Batteries. Nano Research 2014, 7, 1116-1127.
169. Y. Fan, H. Shao, J. Wang, L. Liu, J. Zhang, C. Cao, Synthesis of Foam-Like Freestanding Co3O4 Nanosheets with Enhanced Electrochemical Activities. Chemical Communications 2011, 47, 3469-3471.
170. H. Wang, L.-F. Cui, Y. Yang, H. Sanchez Casalongue, J.T. Robinson, Y. Liang, Y. Cui, H. Dai, Mn3O4−Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. Journal of the American Chemical Society 2010, 132, 13978-13980.
171. Z.-S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.-M. Cheng, Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano 2010, 4, 3187-3194.
172. S. Permien, S. Indris, A.-L. Hansen, M. Scheuermann, D. Zahn, U. Schürmann, G. Neubüser, L. Kienle, E. Yegudin, W. Bensch, Elucidation of the Conversion Reaction of CoMnFeO4 Nanoparticles in Lithium Ion Battery Anode Via Operando Studies. ACS Applied Materials & Interfaces 2016, 8, 15320-15332.
173. H. Kim, J.-W. Lee, D. Byun, W. Choi, Coaxial-Nanostructured MnFe2O4 Nanoparticles on Polydopamine-Coated Mwcnt for Anode Materials in Rechargeable Batteries. Nanoscale 2018, 10, 18949-18960.
174. S. Permien, A.-L. Hansen, J. van Dinter, S. Indris, G. Neubüser, L. Kienle, S. Doyle, S. Mangold, W. Bensch, Unveiling the Reaction Mechanism During Li Uptake and Release of Nanosized “NiFeMnO4”: Operando X-Ray Absorption, X-Ray Diffraction, and Pair Distribution Function Investigations. ACS Omega 2019, 4, 2398-2409.
175. Y. Zou, Z. Li, Y. Liu, J. Duan, B. Long, Coaxial Structure of NiFe2O4/Cnts Composites as Anodes for Enhanced Lithium Ion Batteries. Journal of Alloys and Compounds 2020, 820, 153085.
176. A. Lakshmi-Narayana, M. Dhananjaya, N. Guru-Prakash, A. Mauger, C.M. Julien, O.M. Hussain, Li2TiO3 Ni Foam Composite as High-Performance Electrode for Energy Storage and Conversion. Heliyon 2019, 5.
177. K. Cao, T. Jin, L. Yang, L. Jiao, Recent Progress in Conversion Reaction Metal Oxide Anodes for Li-Ion Batteries. Materials Chemistry Frontiers 2017, 1, 2213-2242.
178. J. Gao, M.A. Lowe, H.D. Abruña, Spongelike Nanosized Mn3o4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries. Chemistry of Materials 2011, 23, 3223-3227.
179. J.-Z. Wang, C. Zhong, D. Wexler, N.H. Idris, Z.-X. Wang, L.-Q. Chen, H.-K. Liu, Graphene-Encapsulated Fe3O4 Nanoparticles with 3d Laminated Structure as Superior Anode in Lithium Ion Batteries. Chemistry – A European Journal 2011, 17, 661-667.
180. L. Zhou, D. Zhao, X.W. Lou, Double-Shelled CoMn2O4 Hollow Microcubes as High-Capacity Anodes for Lithium-Ion Batteries. Advanced Materials 2012, 24, 745-748.
181. J. Li, S. Xiong, X. Li, Y. Qian, A Facile Route to Synthesize Multiporous Mnco2o4 and Comn2o4 Spinel Quasi-Hollow Spheres with Improved Lithium Storage Properties. Nanoscale 2013, 5, 2045-2054.
182. G. Gao, H.B. Wu, X.W. Lou, Citrate-Assisted Growth of NiCo2O4 Nanosheets on Reduced Graphene Oxide for Highly Reversible Lithium Storage. Advanced Energy Materials 2014, 4, 1400422.
183. G. Jian, Y. Xu, L.-C. Lai, C. Wang, M.R. Zachariah, Mn3O4 Hollow Spheres for Lithium-Ion Batteries with High Rate and Capacity. Journal of Materials Chemistry A 2014, 2, 4627-4632.
184. S. Liu, J. Xie, Q. Su, G. Du, S. Zhang, G. Cao, T. Zhu, X. Zhao, Understanding Li-Storage Mechanism and Performance of MnFe2O4 by in Situ Tem Observation on Its Electrochemical Process in Nano Lithium Battery. Nano Energy 2014, 8, 84-94.
185. L. Luo, J. Wu, J. Xu, V.P. Dravid, Atomic Resolution Study of Reversible Conversion Reaction in Metal Oxide Electrodes for Lithium-Ion Battery. ACS Nano 2014, 8, 11560-11566.
186. S.G. Mohamed, C.-J. Chen, C.K. Chen, S.-F. Hu, R.-S. Liu, High-Performance Lithium-Ion Battery and Symmetric Supercapacitors Based on FeCo2O4 Nanoflakes Electrodes. ACS Applied Materials & Interfaces 2014, 6, 22701-22708.
187. Q. Su, J. Zhang, Y. Wu, G. Du, Revealing the Electrochemical Conversion Mechanism of Porous Co3O4 Nanoplates in Lithium Ion Battery by in Situ Transmission Electron Microscopy. Nano Energy 2014, 9, 264-272.
188. G. Yang, X. Xu, W. Yan, H. Yang, S. Ding, Single-Spinneret Electrospinning Fabrication of CoMn2O4 Hollow Nanofibers with Excellent Performance in Lithium-Ion Batteries. Electrochimica Acta 2014, 137, 462-469.
189. W. Kang, Y. Tang, W. Li, X. Yang, H. Xue, Q. Yang, C.-S. Lee, High Interfacial Storage Capability of Porous NiMn2O4/C Hierarchical Tremella-Like Nanostructures as the Lithium Ion Battery Anode. Nanoscale 2015, 7, 225-231.
190. Y. Wan, Z. Yang, G. Xiong, H. Luo, A General Strategy of Decorating 3d Carbon Nanofiber Aerogels Derived from Bacterial Cellulose with Nano-Fe3O4 for High-Performance Flexible and Binder-Free Lithium-Ion Battery Anodes. Journal of Materials Chemistry A 2015, 3, 15386-15393.
191. N. Wang, X. Ma, Y. Wang, J. Yang, Y. Qian, Porous MnFe2O4 Microrods as Advanced Anodes for Li-Ion Batteries with Long Cycle Lifespan. Journal of Materials Chemistry A 2015, 3, 9550-9555.
192. S. Abouali, M. Akbari Garakani, Z.-L. Xu, J.-K. Kim, NiCo2O4/Cnt Nanocomposites as Bi-Functional Electrodes for Li Ion Batteries and Supercapacitors. Carbon 2016, 102, 262-272.
193. L. Liu, H. Zhang, Y. Mu, J. Yang, Y. Wang, Porous Iron Cobaltate Nanoneedles Array on Nickel Foam as Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Performance. ACS Applied Materials & Interfaces 2016, 8, 1351-1359.
194. P. Permude, S. Mohapatra, S. Nair, D. Santhanagopalan, D.A. Rai, Ultrafast Pyro-Synthesis of Nife2o4 Nanoparticles within Full Carbon Network as High-Rate and Cycle-Stable Anode Material for Lithium Ion Battery. RSC Adv. 2016, 6.
195. L. Li, Y. Cheah, Y. Ko, P. Teh, G. Wee, C. Wong, S. Peng, M. Srinivasan, The Facile Synthesis of Hierarchical Porous Flower-Like NiCo2O4 with Superior Lithium Storage Properties. Journal of Materials Chemistry A 2013, 1, 10935-10941.
196. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving Surface Chemical States in Xps Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science 2010, 257, 887-898.
197. Q. Su, S. Wang, L. Yao, H. Li, G. Du, H. Ye, Y. Fang, Study on the Electrochemical Reaction Mechanism of ZnFe2O4 by in Situ Transmission Electron Microscopy. Scientific Reports 2016, 6, 28197.
198. A. Ponrouch, P.-L. Taberna, P. Simon, M.R. Palacín, On the Origin of the Extra Capacity at Low Potential in Materials for Li Batteries Reacting through Conversion Reaction. Electrochimica Acta 2012, 61, 13-18.
199. W. Li, M. Li, Y. Hu, J. Lu, A. Lushington, R. Li, T. Wu, T.-K. Sham, X. Sun, Synchrotron-Based X-Ray Absorption Fine Structures, X-Ray Diffraction, and X-Ray Microscopy Techniques Applied in the Study of Lithium Secondary Batteries. Small Methods 2018, 2, 1700341.
200. J.N. Weker, N. Liu, S. Misra, J.C. Andrews, Y. Cui, M.F. Toney, In Situ Nanotomography and Operando Transmission X-Ray Microscopy of Micron-Sized Ge Particles. Energy & Environmental Science 2014, 7, 2771-2777.
201. M. Ebner, F. Marone, M. Stampanoni, V. Wood, Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries. Science 2013, 342, 716-720.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *