帳號:guest(18.119.253.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):力 捷
作者(外文):Gautam, Prakalp
論文名稱(中文):零、一、二、三維氧化鋅奈米結構實現高效率有機發光二極體
論文名稱(外文):0, 1, 2, and 3-Dimensional ZnO Nano Structures Enabling High-efficiency OLEDs
指導教授(中文):周卓煇
指導教授(外文):Jou, Jwo-Huei
口試委員(中文):魏茂國
蔡永誠
岑尚仁
陳建添
口試委員(外文):Wei, Mao-Kuo
Tsai, York
Chen, Sun-Zen
Chen, Chien-Tien
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:107031896
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:165
中文關鍵詞:纳米材料有機發光二極體氧化鋅綠有機發光二極體孔注入層零、一、二、三尺寸材料
外文關鍵詞:NanomaterialsOrganic light emitting diodes (OLEDs)Zinc oxide (ZnO)Green OLEDHole Injection Layer0,1,2, and 3D materials
相關次數:
  • 推薦推薦:0
  • 點閱點閱:31
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
有機發光二極體(OLED)在智能手機、智能手表、平板電腦和電視等傳統顯示技術上取得了優異表現,同時逐漸在固態照明行業中占據了相當大的份額;OLED由於在高對比度、超薄、易於適應、全彩色、平板顯示和固態照明等應用方面的優點,吸引了廣泛關注。如今,OLED幾乎壟斷了便攜式顯示市場,並以相當高的效率和操作穩定性積極爭奪大面積顯示屏的地位。
OLED由不同層組成,包括電洞注入層(HIL),其促進大部分載流子(電洞)進入發光層並有效阻止少數載流子(電子)進入電洞傳輸/注入層。氧化鋅(ZnO)由於具有高光學透明性、優異的熱穩定性、寬能隙、天然豐富以及具有經濟性等獨特性質,已成為HIL的有利候選材料。

在這項研究中,我們研究了將氧化鋅(ZnO)奈米材料,即0D奈米點、1D奈米線、2D奈米片和3D奈米花,作為HIL,以改善OLED的性能;這些ZnO奈米材料是使用水熱法合成的,並使用掃描電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、X光繞射儀(XRD)、紫外光電子能譜(UPS)、原子力顯微鏡(AFM)和紫外可見光譜等方法對其結構、形態和光學性質進行分析。

形態分析顯示,奈米點的平均尺寸為35 nm,奈米線為20 nm,奈米片為20-25 nm,奈米花則為150 nm;對ZnO奈米材料的光學分析,展示了每種奈米材料吸收和穿透性質的變化;0D的吸收波長為260 nm,1D為391 nm,2D為274 nm,而3D為265 nm;0D、1D、2D和3D奈米粒子的穿透率分別為93%、86%、88%和82%;吸收和穿透性質的差異,歸因於ZnO奈米材料的尺寸和形貌;所有合成的ZnO奈米材料的結晶度都很高,這表明研究中使用的水熱法可有效合成高質量的ZnO奈米材料;該研究還調查了處理時間和加熱溫度對合成的ZnO奈米材料性質的影響;結果顯示,延長處理時間和加熱溫度,導致了顆粒尺寸變大,結晶度降低。

在濕式製程的OLED元件中,將氧化鋅(ZnO)奈米材料摻雜於PEDOT:PSS(HIL)中,顯著提高了元件效率;改善程度取決於ZnO奈米顆粒尺寸和摻入PEDOT:PSS的比例;具體而言,我們發現掺雜0D氧化鋅奈米點顯著提高了效率,相較於未掺雜的PEDOT:PSS對照組,效率提升了24%;同樣地,掺雜1D奈米線、2D奈米片和3D奈米花,相較於未掺雜的元件,效率分別提升了64%、28%和20%。

因此,這項研究突顯了氧化鋅(ZnO)奈米顆粒作為HIL/HTL對於高效率OLED元件的潛力;使用不同尺寸的ZnO奈米材料,增強了層的注入和阻斷特性,且其易於合成和應用於旋轉塗佈,最終提升了元件性能;特別是1D的氧化鋅奈米線對元件性能有巨大影響;這些奈米顆粒可以應用於各種發光顏色(藍色、綠色、黃色、橙色或紅色)、世代類型(第1代、第2代或第3代)和製程(濕式或乾式);這項研究是使OLED技術更加高效和可持續的重要一步,從而為更美好的未來做出貢獻。
Organic light-emitting diodes (OLEDs) have outperformed the conventional display technologies in smartphones, smartwatches, tablets, and televisions, while gradually thriving to cover a sizable fraction of the solid-state lighting industry. OLEDs have attracted great attention due to their applications in high-contrast, innate thin, easily adaptable, full-color, flat-panel displays and solid-state lighting. Nowadays, OLEDs are almost unanimously leading the portable display market and strongly contest large-area displays with reasonably sound efficiency and operational stability.
OLEDs are composed of different layers, including the hole injection layer (HIL) that facilitates transporting the majority carrier (holes) into the emissive layer and effectively blocks minority carriers (electrons) to transport into the hole-transport/-injection layer. Zinc oxide (ZnO) has emerged as a promising candidate for HILs owing to its unique properties like high optical transparency, excellent thermal stability, wide bandgap, abundance in nature, and economical.
In this study, we investigated the incorporation of ZnO nanomaterials i.e., 0D nanoparticles, 1D nanowires, 2D nanosheets, and 3D nanoflowers as HILs for improved OLED performance. The ZnO nanomaterials were synthesized using the hydrothermal method, and their structural, morphological, and optical properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet photoelectron spectroscopy (UPS), atomic force microscopy (AFM), and UV-visible spectroscopy.
The morphology analysis showed that the nanoparticles had an average size of 35 nm, nanowires of 20 nm, nanosheets of 20-25 nm, and nanoflowers of 150 nm. The optical characterization of the ZnO nanomaterials revealed variations in the absorption and transmission properties of each nanomaterial. The absorption wavelength for 0D was determined to be 260 nm, 1D was 391 nm, 2D was 274 nm, and 3D had an absorption wavelength of 265 nm. The transmission for 0D, 1D, 2D, and 3D nanostructures was 93, 86, 88, and 82%, respectively. The differences in absorption and transmission properties were attributed to the size and morphology of the ZnO nanomaterials. The crystallinity of all the synthesized ZnO nanomaterials was high, indicating that the hydrothermal method used in the study was effective in synthesizing high-quality ZnO nanomaterials. The study also investigated the effects of processing time and heating temperature on the properties of the synthesized ZnO nanomaterials. The results showed that prolonged processing times and heating temperatures resulted in larger particle sizes and reduced crystallinity.
The inclusion of ZnO nanomaterials doped in PEDOT:PSS (HIL) significantly improved the efficiency of wet-processed OLED devices. The extent of improvement depends on the dimensionality and doping ratio (50,100,200μL) of the ZnO nanomaterials and PEDOT:PSS. Specifically, we found that the incorporation of doped 0D ZnO nanoparticles leads to a notable improvement in efficiency, resulting in a 24% enhancement compared to the undoped PEDOT:PSS counterpart. Similarly, the inclusion of doped 1D nanowires, 2D nanosheets, and 3D nanoflowers lead to an improvement of 64, 28 and 20%, respectively, compared to the undoped device.
Therefore, this study highlights the potential of ZnO nanostructures as HIL/HTLs for high-efficiency OLED devices. The use of various dimensional ZnO nanomaterials enhances the injection and blocking properties of the layer which are easy to synthesize and spin-coat during fabrication, ultimately leading to the enhancement in device performance. Especially, 1D ZnO nanowires that display a tremendous impact on the device performance might be because of the smallest diameter amongst the other materials. The nanoparticles can be utilized in a variety of emission colors (blue, green, yellow, orange, or red), generation types (generation 1, generation 2 or generation 3), and fabrication processes (wet or dry process). This research is a significant step towards making OLED technology even more efficient and sustainable, thus contributing to a better future.
Chinese Abstract……………………………………………………………………ii-iv
English Abstract……………………………………………………………..……..v-vii
Acknowledgement…………………………………………………………….…..viii-x
Contents………………………………………………...………………………..xi-xvii
Figure Captions………………………………………………………………..xviii-xxv
Table Captions……………………………………………………...………..xxvi-xxvii
Abbreviations…………………………………………………….…………..xxviii-xxx
Chapter 1. Introduction and Motivation………………………………………….1-6
Chapter 2. Fundamentals of Organic Light Emitting Diode (OLED)………….7-28
2.1. History and Development of OLED…………………………………………7-13
2.2. World Revenue of OLED…………………………………………...………13-16
2.2.1. Display…………………………………………………………………13
2.2.2. Lighting………………………………………………………………..14
2.3. OLED Device Structure and Working Mechanism…………………….…16-28
2.3.1. Fabrication Techniques……………………………………….……19-20
2.3.1.1. Dry Process………………………………………………….20
2.3.1.2. Wet Process………….………………………………………20
2.3.2. Functional Layers in OLED……………………………………..….21-25
2.3.2.1. Substrate…………………….……………………………….22
2.3.2.2. Electrodes……………………………………………………23
2.3.2.2.1. Anode………………………………………………23
2.3.2.2.2. Cathode…………………………………………….23
2.3.2.3. Carrier Transport Layer……………….………………….24-25
2.3.2.3.1. Hole-injection Layer (HIL)………………………..24
2.3.2.3.2. Hole-transport Layer (HTL)……………………….24
2.3.2.3.3. Electron-transport layer (ETL)……………………..24
2.3.2.3.4. Electron-injection Layer (EIL)……………………..25
2.3.2.4. Emissive Layer………………………………………………25
2.3.3. Key Parameters of OLED…………………………………………..26-28
2.3.3.1. Turn-on Voltage (Von)………………………………………..26
2.3.3.2. Operating Voltage………………………………………...….26
2.3.3.3. Power Efficacy (PE)………………………………………….26
2.3.3.4. Current Efficacy (CE)………………………………………..26
2.3.3.5. External Quantum Efficiency (EQE)…………………...……27
2.3.3.6. CIE Color Coordinates……………………………………….27
2.3.3.7. Luminance………….………………………………………..28
Chapter 3. Literature Review………………………...…………………………29-59
3.1. Nanostructures of Various Dimensions…………………………………….29-36
3.1.1. Zero Dimensional (0D) Nanostructures………………………………..32
3.1.2. One Dimensional (1D) Nanostructures………………………………...33
3.1.3. Two Dimensional (2D) Nanostructures………………………………..34
3.1.4. Three Dimensional (3D) Nanostructures………………………………35
3.2. Nanomaterials for OLEDs……………………………...…………………..36-46
3.2.1. Copper Oxide (CuO)…………………………………………………..36
3.2.2. Molybdenum Trioxide (MoO3)………………………………………..38
3.2.3. Tungsten Trioxide (WO3)………………………………………………40
3.2.4. Vanadium Oxide (V2O5)………………………………………………..42
3.2.5. Zinc Oxide (ZnO)………………………………………………………43
3.3. ZnO Nanostructures of Various Dimensions……………………………....46-55
3.3.1. 0-D ZnO Nanoparticles……………………………………………...…46
3.3.2. 1-D ZnO Nanowires……………………………………………………49
3.3.3. 2-D ZnO Nanosheets…………………………………………………...51
3.3.4. 3-D ZnO Nanoflowers…………………………………………………53
3.4. ZnO Nanostructures for OLEDs………………………………...…………55-59
3.4.1. Use in OLEDs………………………………………………………….55
3.4.2. Advantages and Limitations……………………………………………57
Chapter 4. Characterization and Experiments…………….…………………..60-65
4.1. OLED Materials…………………………………...………………………..60-61
4.1.1. Anode and Cathode Materials…………………………………………60
4.1.2. HIL and HTL Materials………………….…………………………….60
4.1.3. Emissive Materials……………………………………………………..61
4.1.3.1. Host Material………………………………………………...61
4.1.3.2. Emitter Material……………………………………………...61
4.1.4. EIL and ETL Materials……….………………………………………...61
4.2. Material Characterization………………………………………...………..62-64
4.2.1. Ultra-violet Visible (UV-vis) ………..…………………………….…...62
4.2.1.1. Absorbance………..…………………………………….…...62
4.2.1.2. Transmittance………..………………………………….…...62
4.2.2. Ultraviolet Photoelectron Spectroscopy (UPS) ………..……………...63
4.2.3. Scanning Electron Microscopy (SEM) ………..……………………....63
4.2.4. Transmission Electron Microscopy (TEM) ………..………...………...63
4.2.5. X-Ray Diffraction (XRD) ………..…………………………………....63
4.2.6. Atomic Force Microscopy (AFM) .…………………………………....64
4.3. Device Fabrication………………………………………………………..…64-65
4.3.1. Cleaning and UV Treatment.…………………………...……………....64
4.3.2. HIL coating.……………………………………..…………………......64
4.3.3. EML Coating.……………………………………………………….....64
4.3.4. Deposition of ETL, EIL and Cathode.………………………………….65
4.4. Device Testing.…………………………………….…………………………….65
Chapter 5. Result and Discussion………………………………………...……66-126
5.1. 0D- ZnO Nanoparticles Enabling High-efficiency OLEDs……………….66-79
5.1.1. Material Synthesis.………………………………………….………….68
5.1.2. Material Characteristics.……………………………………………….69
5.1.2.1. Scanning Electron Microscopy (SEM) .…………….……….69
5.1.2.2. Transmission Electron Microscopy (TEM) ………………….70
5.1.2.3. X-Ray Diffraction (XRD) ………………………………..….71
5.1.2.4. UV-Visible Spectrum……………………………………..….72
5.1.2.5. Ultraviolet Photoelectron Spectroscopy (UPS) ……………...73
5.1.2.6. Atomic Force Microscopy (AFM) ……………………….….74
5.1.3. Electroluminescent Properties………………………………………....76
5.2. 1D- ZnO Nanoparticles Enabling High-efficiency OLEDs…………...…..80-97
5.2.1. Material Synthesis……………………………………………...……....83
5.2.2. Material Characteristics……………………………………..………....85
5.2.2.1. Scanning Electron Microscopy (SEM) ……….……………..85
5.2.2.2. Transmission Electron Microscopy (TEM) …...……………..86
5.2.2.3. Energy-dispersive X-Ray (EDX) Spectroscopy……………..88
5.2.2.4. X-Ray Diffraction (XRD) …………………….……………..89
5.2.2.5. UV-Visible Spectrum…………………………….…………..90
5.2.2.6. Ultraviolet Photoelectron Spectroscopy (UPS) ….…………..91
5.2.2.7. Atomic Force Microscopy (AFM) …………………………..92
5.2.3. Electroluminescent Properties………………………………..………..93
5.3. 2D- ZnO Nanoparticles Enabling High-efficiency OLEDs……………...98-113
5.3.1. Material Synthesis………………………………………………….…101
5.3.2. Material Characteristics………………………...………………….…103
5.3.2.1. Scanning Electron Microscopy (SEM) .………………….…103
5.3.2.2. X-Ray Diffraction (XRD) .……………………...……….…105
5.3.2.3. UV-Visible Spectrum.…………………….……..……….…106
5.3.2.4. Ultraviolet Photoelectron Spectroscopy (UPS) .……………107
5.3.2.5. Atomic Force Microscopy (AFM) .………………..…….…108
5.3.3. Electroluminescent Properties.…………………………………….…109
5.4. 3D- ZnO Nanoparticles Enabling High-efficiency OLEDs………….….114-126
5.4.1. Material Synthesis………………………………………………….…117
5.4.2. Material Characteristics………………………………………….…...118
5.4.2.1. Scanning Electron Microscopy (SEM) ………….…….…...118
5.4.2.2. X-Ray Diffraction (XRD) ………………………….….…...119
5.4.2.3. UV-Visible Spectrum…………………………………..…...120
5.4.2.4. Ultraviolet Photoelectron Spectroscopy (UPS) …….….…...121
5.4.2.5. Atomic Force Microscopy (AFM) …………….……….…...122
5.4.3. Electroluminescent Properties……………….…………………….....123
Chapter 6. Conclusion……………………………………………………...…127-131
References….…………………………………………………….................…132-150
Appendix….……………………………………………………...................…151-163
Curriculum Vitae of Author………………………………….....................…164-168
1. Sudheendran Swayamprabha, S.; Kumar Dubey, D.; Ashok Kumar Yadav, R.; Ram Nagar, M.; Sharma, A.; Tung, F.-C.; Jou, J.-H.; Sudheendran Swayamprabha, S.; Dubey, D.K.; K Yadav, R.A.; et al. Approaches for Long Lifetime Organic Light Emitting Diodes. Advanced Science 2021, 8, doi:10.1002/ADVS.202002254.
2. Jou, J.-H. Introduction to OLED; Gau Lih Book 10, Ltd.: Taiwan, 2015; ISBN 978-986-378-031-1.
3. Shahnawaz; Siddiqui, I.; Nagar, M.R.; Choudhury, A.; Lin, J.T.; Blazevicius, D.; Krucaite, G.; Grigalevicius, S.; Jou, J.H. Highly Efficient Candlelight Organic Light-Emitting Diode with a Very Low Color Temperature. Molecules 2021, Vol. 26, Page 7558 2021, 26, 7558, doi:10.3390/MOLECULES26247558.
4. Korshunov, V.M.; Chmovzh, T.N.; Knyazeva, E.A.; Taydakov, I. V.; Mikhalchenko, L. V.; Varaksina, E.A.; Saifutyarov, R.S.; Avetissov, I.C.; Rakitin, O.A. A Novel Candle Light-Style OLED with a Record Low Colour Temperature. Chemical Communications 2019, 55, 13354–13357, doi:10.1039/C9CC04973H.
5. Jou, J.-H.; Kumar, S.; An, C.-C.; Singh, M.; Yu, H.-H.; Hsieh, C.-Y.; Lin, Y.-X.; Sung, C.-F.; Wang, C.-W. Enabling a Blue-Hazard Free General Lighting Based on Candle Light-Style OLED. Opt Express 2015, 23, A576, doi:10.1364/OE.23.00A576.
6. Jou, J.H.; Singh, M.; Su, Y.T.; Liu, S.H.; He, Z.K. Blue-Hazard-Free Candlelight OLED. J Vis Exp 2017, 2017, doi:10.3791/54644.
7. Jou, J.H.; Hsieh, C.Y.; Tseng, J.R.; Peng, S.H.; Jou, Y.C.; Hong, J.H.; Shen, S.M.; Tang, M.C.; Chen, P.C.; Lin, C.H. Candle Light-Style Organic Light-Emitting Diodes. Adv Funct Mater 2013, 23, 2750–2757, doi:10.1002/ADFM.201203209.
8. Murawski, C.; Leo, K.; Gather, M.C. Efficiency Roll-off in Organic Light-Emitting Diodes. Advanced Materials 2013, 25, 6801–6827, doi:10.1002/ADMA.201301603.
9. Liu, X.; Liu, W.; Dongyu, W.; Wei, X.; Wang, L.; Wang, H.; Miao, Y.; Xu, H.; Yu, J.; Xu, B. Deep-Blue Fluorescent Emitter Based on a 9,9-Dioctylfluorene Bridge with a Hybridized Local and Charge-Transfer Excited State for Organic Light-Emitting Devices with EQE Exceeding 8%. 2020, 14117–14124, doi:10.1039/d0tc02941f.
10. Wu, Z.; Ma, D. Recent Advances in White Organic Light-Emitting Diodes. Materials Science and Engineering: R: Reports 2016, 107, 1–42, doi:10.1016/J.MSER.2016.06.001.
11. Kim, J.H.; Kim, S.Y.; Jang, S.; Yi, S.; Cho, D.W.; Son, H.J.; Kang, S.O. Blue Phosphorescence with High Quantum Efficiency Engaging the Trifluoromethylsulfonyl Group to Iridium Phenylpyridine Complexes. Inorg Chem 2019, 58, 16112–16125, doi:10.1021/ACS.INORGCHEM.9B02672/SUPPL_FILE/IC9B02672_SI_001.PDF.
12. Singh, M.; Jou, J.H.; Sahoo, S.; Sujith, S.; He, Z.K.; Krucaite, G.; Grigalevicius, S.; Wang, C.W. High Light-Quality OLEDs with a Wet-Processed Single Emissive Layer. Scientific Reports 2018 8:1 2018, 8, 1–9, doi:10.1038/s41598-018-24125-4.
13. Homepage - Universal Display Corporation Available online: https://oled.com/ (accessed on 1 July 2022).
14. OLED & PLED Materials Available online: https://www.sigmaaldrich.com/TW/en/products/materials-science/electronic-materials/oled-and-pled-materials (accessed on 1 July 2022).
15. Organic Light Emitting Diode(OLED) - Shine Materials Technology Co.,Ltd Available online: https://www.shinematerials.com/goods1-cat1-lang1.html (accessed on 1 July 2022).
16. OLED Displays and Their Applications | Learning Corner for Beginners Available online: https://www.electronicsforu.com/resources/oled-displays-applications (accessed on 2 May 2022).
17. Sony OLED | OLED-Info Available online: https://www.oled-info.com/sony-oled (accessed on 2 May 2022).
18. Y. Zhu, L. Guo, Y. Lee, X. Xu, J. Xie, G. Zhang, Y.H. No Title. SID Symp. Dig. Tech. Pap 2019, 628–631.
19. Lueder, H.; Buhl, J.; Gerken, M. Effect of Localized Current Distributions in Periodically Nanostructured OLEDs on the Resonant Light Outcoupling. https://doi.org/10.1117/12.2606225 2022, 11995, 69–77, doi:10.1117/12.2606225.
20. Jou, J.-H.; Hsieh, C.-Y.; Tseng, J.-R.; Peng, S.-H.; Jou, Y.-C.; Hong, J.H.; Shen, S.-M.; Tang, M.-C.; Chen, P.-C.; Lin, C.-H. Candle Light‐style Organic Light‐emitting Diodes. Wiley Online Library 2013, 23, 2750–2757, doi:10.1002/adfm.201203209.
21. D. Free, S. Now, M.S. No Title. 2020, 2019.
22. The Korean Government May Give New Tax Benefits to Encourage Further OLED Investments | OLED-Info Available online: https://www.oled-info.com/korean-government-may-give-new-tax-benefits-encourage-further-oled-investments (accessed on 30 June 2022).
23. I. Roppolo, M. Sangermano, and A.C. Optical Properties of Polymer Nanocomposites, Functional and Physical Properties of Polymer Nanocomposites. In; John Wiley and Sons Ltd, 2016.
24. A. J. J. o. C. P. Bernanose No Title. 1955, 261–263.
25. Vouaux, A.B. and P.J.J. d. C.P. No Title. 1953, 261–263.
26. Pope, H.K. and M.J.N. No Title. 1960, 31–33.
27. Pope, H.K. and M.J.T. j. o. c. P. No Title. 1960, 300–301.
28. M. Pope, H.K. and P.J.T.J. o. C.P.M. No Title. 1963, 2042–2043.
29. Helfrich, W.; Schneider, W.G. Recombination Radiation in Anthracene Crystals. Phys Rev Lett 1965, 14, 229, doi:10.1103/PhysRevLett.14.229.
30. Tang, C.; letters, S.V.-A. physics; 1987, undefined Organic Electroluminescent Diodes. aip.scitation.org 1987, 51, 913, doi:10.1063/1.98799.
31. Jou, J.H.; Su, Y.T.; Liu, S.H.; He, Z.K.; Sahoo, S.; Yu, H.H.; Chen, S.Z.; Wang, C.W.; Lee, J.R. Wet-Process Feasible Candlelight OLED. J Mater Chem C Mater 2016, 4, 6070–6077, doi:10.1039/c6tc01968d.
32. Kim, M.; Kyu Jeon, S.; Hwang, S.-H.; Yeob Lee, J.; Kim, M.; Hwang, S.; Jeon, S.K.; Lee, J.Y. Stable Blue Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes with Three Times Longer Lifetime than Phosphorescent Organic Light-Emitting Diodes. Advanced Materials 2015, 27, 2515–2520, doi:10.1002/ADMA.201500267.
33. Kuei, C.-Y.; Tsai, W.-L.; Tong, B.; Jiao, M.; Lee, W.-K.; Chi, Y.; Wu, C.-C.; Liu, S.-H.; Lee, G.-H.; Chou, P.-T.; et al. Bis-Tridentate Ir(III) Complexes with Nearly Unitary RGB Phosphorescence and Organic Light-Emitting Diodes with External Quantum Efficiency Exceeding 31%. Advanced Materials 2016, 28, 2795–2800, doi:10.1002/ADMA.201505790.
34. Lee, J.; Chen, H.F.; Batagoda, T.; Coburn, C.; Djurovich, P.I.; Thompson, M.E.; Forrest, S.R. Deep Blue Phosphorescent Organic Light-Emitting Diodes with Very High Brightness and Efficiency. Nat Mater 2016, 15, 92–98, doi:10.1038/NMAT4446.
35. Xu, R.P.; Li, Y.Q.; Tang, J.X. Recent Advances in Flexible Organic Light-Emitting Diodes. J Mater Chem C Mater 2016, 4, 9116–9142, doi:10.1039/C6TC03230C.
36. Hamer, J.W.; Yamamoto, A.; Rajeswaran, G.; Slyke, S.A. Van 69.4: Invited Paper: Mass Production of Full-Color AMOLED Displays. SID Symposium Digest of Technical Papers 2005, 36, 1902–1907, doi:10.1889/1.2036392.
37. AUO Available online: https://www.auo.com/en-global/New_Archive/detail/News_Archive_Technology_190823 (accessed on 30 June 2022).
38. LG OLED TV 2016 Display Technology Shoot-Out Available online: https://www.displaymate.com/OLED_TV2016_ShootOut_1.htm (accessed on 30 June 2022).
39. Kosai, S.; Badin, A.B.; Qiu, Y.; Matsubae, K.; Suh, S.; Yamasue, E. Evaluation of Resource Use in the Household Lighting Sector in Malaysia Considering Land Disturbances through Mining Activities. Resour Conserv Recycl 2021, 166, 105343, doi:10.1016/J.RESCONREC.2020.105343.
40. Huang, Y.; Du, X.; Tao, S.; Yang, X.; Zheng, C. High Ef Fi Ciency Non-Doped Deep-Blue and Fl Uorescent / Phosphorescent White Organic Light-Emitting Diodes Based on an Anthracene Derivative. Synth Met 2015, 203, 49–53, doi:10.1016/j.synthmet.2014.10.019.
41. Panasonic Develops World’s Highest Efficiency White OLED for Lighting | Headquarters News | Panasonic Newsroom Global Available online: https://news.panasonic.com/global/press/data/2013/05/en130524-6/en130524-6.html (accessed on 30 June 2022).
42. Kato, K.; Iwasaki, T.; Tsujimura, T. Over 130 Lm/W All-Phosphorescent White OLEDs for next-Generation Lighting. Journal of Photopolymer Science and Technology 2015, 28, 335–340, doi:10.2494/PHOTOPOLYMER.28.335.
43. OLED Lighting Introduction and Market Status | OLED-Info Available online: https://www.oled-info.com/oled-lighting (accessed on 17 May 2022).
44. OLED Light Panels, Standard and Custom - OLEDWorks Available online: https://www.oledworks.com/oled-lighting-products/ (accessed on 26 July 2022).
45. 奈米有機光電元件實驗室 Nano Organic Photo Available online: http://www.mse.nthu.edu.tw/~jjou/ (accessed on 26 July 2022).
46. Quarterly Display Capex and Equipment Market Share Report - Display Supply Chain Consultants Available online: https://www.displaysupplychain.com/report/quarterly-display-capex-and-equipment-market-share-report (accessed on 1 May 2022).
47. • Worldwide - LED Lighting Market Size 2021 | Statista Available online: https://www.statista.com/statistics/753939/global-led-luminaire-market-size/ (accessed on 2 May 2022).
48. ElectroniCast Sees a Fast Growing OLED Lighting Market Starting in 2015 | OLED-Info Available online: https://www.oled-info.com/electronicast-sees-fast-growing-oled-lighting-market-starting-2015 (accessed on 2 May 2022).
49. Wang, Z.; Sukhanov, A.A.; Toffoletti, A.; Sadiq, F.; Zhao, J.; Barbon, A.; Voronkova, V.K.; Dick, B. Insights into the Efficient Intersystem Crossing of Bodipy-Anthracene Compact Dyads with Steady-State and Time-Resolved Optical/Magnetic Spectroscopies and Observation of the Delayed Fluorescence. Journal of Physical Chemistry C 2019, 123, 265–274, doi:10.1021/ACS.JPCC.8B10835/SUPPL_FILE/JP8B10835_SI_001.PDF.
50. Jin, T.; Uhlikova, N.; Xu, Z.; Zhu, Y.; Huang, Y.; Egap, E.; Lian, T. Competition of Dexter, Förster, and Charge Transfer Pathways for Quantum Dot Sensitized Triplet Generation. J Chem Phys 2020, 152, 214702, doi:10.1063/5.0009833.
51. Skourtis, S.S.; Liu, C.; Antoniou, P.; Virshup, A.M.; Beratan, D.N. Dexter Energy Transfer Pathways. Proc Natl Acad Sci U S A 2016, 113, 8115–8120, doi:10.1073/PNAS.1517189113.
52. Bai, S.; Zhang, P.; Antoniou, P.; Skourtis, S.S.; Beratan, D.N. Quantum Interferences among Dexter Energy Transfer Pathways. Faraday Discuss 2019, 216, 301–318, doi:10.1039/C9FD00007K.
53. Jang, S.; Newton, M.D.; Silbey, R.J. Multichromophoric Förster Resonance Energy Transfer. Phys Rev Lett 2004, 92, 218301, doi:10.1103/PHYSREVLETT.92.218301/FIGURES/2/MEDIUM.
54. Cho, Y.R.; Kim, H.S.; Yu, Y.J.; Suh, M.C. Highly Efficient Organic Light Emitting Diodes Formed by Solution Processed Red Emitters with Evaporated Blue Common Layer Structure. Scientific Reports 2015 5:1 2015, 5, 1–8, doi:10.1038/srep15903.
55. Hayer, A.; Anémian, R.; Eberle, T.; Heun, S.; Ludemann, A.; Schulte, N.; Buchholz, H. Concepts for Solution-Processable OLED Materials at Merck. http://dx.doi.org/10.1080/15980316.2011.563061 2011, 12, 57–59, doi:10.1080/15980316.2011.563061.
56. Ultra-Thin Flexible Glass for OLED Products Available online: https://www.vacuum-glass.net/news/IndustryNews/41.html (accessed on 26 July 2022).
57. ITO Glass Substrates | PV and OLED, 75 x 25 Mm | Ossila Available online: https://www.ossila.com/products/pv-and-oled-scale-up-substrates (accessed on 26 July 2022).
58. Thejo Kalyani, N.; Dhoble, S.J. Organic Light Emitting Diodes: Energy Saving Lighting Technology—A Review. Renewable and Sustainable Energy Reviews 2012, 16, 2696–2723, doi:10.1016/J.RSER.2012.02.021.
59. Hecht, D.S.; Hu, L.; Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Advanced Materials 2011, 23, 1482–1513, doi:10.1002/ADMA.201003188.
60. Tang, J.; Cao, Q.; Tulevski, G.; Jenkins, K.A.; Nela, L.; Farmer, D.B.; Han, S.J. Flexible CMOS Integrated Circuits Based on Carbon Nanotubes with Sub-10 Ns Stage Delays. Nat Electron 2018, 1, 191–196, doi:10.1038/S41928-018-0038-8.
61. Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.H.; Kim, P.; Choi, J.Y.; Hong, B.H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706–710, doi:10.1038/NATURE07719.
62. Han, T.H.; Lee, Y.; Choi, M.R.; Woo, S.H.; Bae, S.H.; Hong, B.H.; Ahn, J.H.; Lee, T.W. Extremely Efficient Flexible Organic Light-Emitting Diodes with Modified Graphene Anode. Nat Photonics 2012, 6, 105–110, doi:10.1038/NPHOTON.2011.318.
63. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. Il; et al. Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes. Nat Nanotechnol 2010, 5, 574–578, doi:10.1038/NNANO.2010.132.
64. Song, W.G.; Kwon, H.J.; Park, J.; Yeo, J.; Kim, M.; Park, S.; Yun, S.; Kyung, K.U.; Grigoropoulos, C.P.; Kim, S.; et al. High-Performance Flexible Multilayer MoS2 Transistors on Solution-Based Polyimide Substrates. Adv Funct Mater 2016, 26, 2426–2434, doi:10.1002/ADFM.201505019.
65. Europe PMC Available online: https://europepmc.org/article/med/23670954 (accessed on 30 June 2022).
66. Kim, Y.H.; Sachse, C.; MacHala, M.L.; May, C.; Müller-Meskamp, L.; Leo, K. Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. Adv Funct Mater 2011, 21, 1076–1081, doi:10.1002/ADFM.201002290.
67. Cai, Y.; Shen, J.; Ge, G.; Zhang, Y.; Jin, W.; Huang, W.; Shao, J.; Yang, J.; Dong, X. Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range. ACS Nano 2018, 12, 56–62, doi:10.1021/ACSNANO.7B06251/ASSET/IMAGES/LARGE/NN-2017-062513_0006.JPEG.
68. Xu, J.; Wang, S.; Wang, G.J.N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.; Feig, V.R.; To, J.W.F.; et al. Highly Stretchable Polymer Semiconductor Films through the Nanoconfinement Effect. Science 2017, 355, doi:10.1126/SCIENCE.AAH4496.
69. Oh, J.Y.; Rondeau-Gagné, S.; Chiu, Y.C.; Chortos, A.; Lissel, F.; Wang, G.J.N.; Schroeder, B.C.; Kurosawa, T.; Lopez, J.; Katsumata, T.; et al. Intrinsically Stretchable and Healable Semiconducting Polymer for Organic Transistors. Nature 2016, 539, 411–415, doi:10.1038/NATURE20102.
70. Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Transition Metal Carbides. ACS Nano 2012, 6, 1322–1331, doi:10.1021/NN204153H/ASSET/IMAGES/LARGE/NN-2011-04153H_0010.JPEG.
71. Xu, J.; Shim, J.; Park, J.H.; Lee, S. MXene Electrode for the Integration of WSe2 and MoS2 Field Effect Transistors. Adv Funct Mater 2016, 26, 5328–5334, doi:10.1002/ADFM.201600771.
72. Jhulki, S.; Moorthy, J.N. Small Molecular Hole-Transporting Materials (HTMs) in Organic Light-Emitting Diodes (OLEDs): Structural Diversity and Classification. J Mater Chem C Mater 2018, 6, 8280–8325, doi:10.1039/C8TC01300D.
73. Han, J.G.; Lee, S.J.; Lee, J.; Kim, J.S.; Lee, K.T.; Choi, N.S. Tunable and Robust Phosphite-Derived Surface Film to Protect Lithium-Rich Cathodes in Lithium-Ion Batteries. ACS Appl Mater Interfaces 2015, 7, 8319–8329, doi:10.1021/ACSAMI.5B01770/SUPPL_FILE/AM5B01770_SI_001.PDF.
74. Ding, J.; Dai, Z.; Tian, F.; Zhou, B.; Zhao, B.; Zhao, H.; Chen, Z.; Liu, Y.; Chen, R. Generation of Defect Clusters for 1O2 Production for Molecular Oxygen Activation in Photocatalysis. J Mater Chem A Mater 2017, 5, 23453–23459, doi:10.1039/C7TA08117K.
75. Baig, N.; Kammakakam, I.; Falath, W.; Kammakakam, I. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mater Adv 2021, 2, 1821–1871, doi:10.1039/D0MA00807A.
76. Singh, K.J.; Ahmed, T.; Gautam, P.; Sadhu, A.S.; Lien, D.H.; Chen, S.C.; Chueh, Y.L.; Kuo, H.C. Recent Advances in Two‐dimensional Quantum Dots and Their Applications. Nanomaterials 2021, 11, doi:10.3390/NANO11061549.
77. Guisbiers, G.; Mejía-Rosales, S.; Nanomaterials, F.D.-J. of; 2012, undefined Nanomaterial Properties: Size and Shape Dependencies. hindawi.com.
78. Journal, D.V.-E.E. and M.; 2008, undefined Nanomaterials an Introduction to Synthesis, Properties and Application. eemj.eu.
79. Yadav, K.; Kumar, P.; Ravi Teja, D.; Chakraborty, S.; Chakraborty, M.; Sanjeeb Mohapatra, S.; Sahoo, A.; C Chou, M.M.; Liang, C.-T.; Hang, D.-R. A Review on Low-Dimensional Nanomaterials: Nanofabrication, Characterization and Applications. mdpi.com 2022, doi:10.3390/nano13010160.
80. García-Betancourt, M.; … S.J.-T.M. in the; 2020, undefined Low Dimensional Nanostructures: Measurement and Remediation Technologies Applied to Trace Heavy Metals in Water. books.google.com.
81. Korkin, A.; Gusev, E.; Labanowski, J.; Luryi, S. Nanotechnology for Electronic Materials and Devices; 2010;
82. Wang, Z.; Hu, T.; Liang, R.; Wei, M. Application of Zero-Dimensional Nanomaterials in Biosensing. Front Chem 2020, 8, doi:10.3389/FCHEM.2020.00320/FULL.
83. Yang, T.; Liu, Y.; Wang, H.; Duo, Y.; Zhang, B.; … Y.G.-J. of M.; 2020, undefined Recent Advances in 0D Nanostructure-Functionalized Low-Dimensional Nanomaterials for Chemiresistive Gas Sensors. pubs.rsc.org.
84. Cao, H. Synthesis, Characterization, and Applications of Zero-Dimensional (0D) Nanostructures. Synthesis and Applications of Inorganic Nanostructures 2017, 21–146, doi:10.1002/9783527698158.CH2.
85. Zhao, Y.; Hong, H.; Gong, Q.; Nanomaterials, L.J.-J. of; 2013, undefined 1D Nanomaterials: Synthesis, Properties, and Applications. hindawi.com.
86. Machín, A.; Fontánez, K.; Arango, J.C.; Ortiz, D.; De León, J.; Pinilla, S.; Nicolosi, V.; Petrescu, F.I.; Morant, C.; Márquez, F. One-Dimensional (1D) Nanostructured Materials for Energy Applications. mdpi.com 2021, doi:10.3390/ma14102609.
87. Paramasivam, G.; Palem, V.V.; Sundaram, T.; Sundaram, V.; Kishore, S.C.; Bellucci, S. Nanomaterials: Synthesis and Applications in Theranostics. Nanomaterials 2021, 11, doi:10.3390/NANO11123228.
88. Rizvi, M.; Gerengi, H.; Gupta, P. Functionalization of Nanomaterials: Synthesis and Characterization. Functionalized Nanomaterials for Corrosion Mitigation: Synthesis, Characterization, and Applications, Part 1 - Functionalization of Nanomaterials: Synthesis and Characterization 2022, doi:10.1021/bk-2022-1418.ch001.
89. Singh, N.; biomedical, S.S.-T. nanostructures for; 2020, undefined Properties of Two-Dimensional Nanomaterials. Elsevier.
90. Zhang, H. Ultrathin Two-Dimensional Nanomaterials. ACS Nano 2015, 9, 9451–9469, doi:10.1021/ACSNANO.5B05040.
91. Cheng, J.; Gao, L.; Li, T.; Mei, S.; Wang, C.; Wen, B.; Huang, W.; Li, C.; Zheng, G.; Wang, H.; et al. Two-Dimensional Black Phosphorus Nanomaterials: Emerging Advances in Electrochemical Energy Storage Science. Nanomicro Lett 2020, 12, doi:10.1007/S40820-020-00510-5.
92. Glavin, N.R.; Muratore, C.; Snure, M. Toward 2D Materials for Flexible Electronics: Opportunities and Outlook. Oxford Open Materials Science 2020, 1, doi:10.1093/OXFMAT/ITAA002.
93. Wang, J.; Li, G.; Materials-Synthesis, L.L.-T.; 2016, undefined Synthesis Strategies about 2D Materials. books.google.com.
94. Butler, S.Z.; Hollen, S.M.; Cao, L.; Cui, Y.; Gupta, J.A.; Gutiérrez, H.R.; Heinz, T.F.; Hong, S.S.; Huang, J.; Ismach, A.F.; et al. Progress, Challenges, and Opportunities in Two-Dimensional Materials beyond Graphene. ACS Nano 2013, 7, 2898–2926, doi:10.1021/NN400280C.
95. Zhao, H.; Lei, Y. 3D Nanostructures for the Next Generation of High-Performance Nanodevices for Electrochemical Energy Conversion and Storage. Adv Energy Mater 2020, 10, doi:10.1002/AENM.202001460.
96. Zhang, L.; Forgham, H.; Shen, A.; Wang, J.; … J.Z.-J. of M.; 2022, undefined Nanomaterial Integrated 3D Printing for Biomedical Applications. pubs.rsc.org.
97. Gough, D. Van; Juhl, A.; today, P.B.-M.; 2009, undefined Programming Structure into 3D Nanomaterials. Elsevier.
98. Utke, I.; Michler, J.; Winkler, R.; Micromachines, H.P.-; 2020, undefined Mechanical Properties of 3D Nanostructures Obtained by Focused Electron/Ion Beam-Induced Deposition: A Review. mdpi.com.
99. Cao, H. Synthesis, Characterization, and Applications of Three-Dimensional (3D) Nanostructures. Synthesis and Applications of Inorganic Nanostructures 2017, 363–520, doi:10.1002/9783527698158.CH5.
100. Cao, H. Synthesis, Characterization, and Applications of Three-Dimensional (3D) Nanostructures. Synthesis and Applications of Inorganic Nanostructures 2017, 363–520, doi:10.1002/9783527698158.CH5.
101. 陈征; 邓振波 High Efficiency Organic Light-Emitting Diodes Using CuOx/ Cu Dual Buffer Layers. 2015.
102. High Efficiency Organic Light-Emitting Diodes Using CuOx/Cu Dual Buffer Layers. - Google Search Available online: https://www.google.com/search?q=High+efficiency+organic+light-emitting+diodes+using+CuOx%2FCu+dual+buffer+layers.&sxsrf=APwXEdcmEmxZR_EWJLNDaevBXzi-vGJl5A%3A1685377949147&ei=ndN0ZOfCCOzN2roPjqeUyAo&ved=0ahUKEwinheKP-pr_AhXsplYBHY4TBakQ4dUDCA8&uact=5&oq=High+efficiency+organic+light-emitting+diodes+using+CuOx%2FCu+dual+buffer+layers.&gs_lcp=Cgxnd3Mtd2l6LXNlcnAQAzIECCMQJzoHCCMQ6gIQJzoNCC4QxwEQrwEQ6gIQJzoQCAAQ4wQQ6QQQ6gIQtAIYAToVCAAQAxCPARDqAhC0AhCMAxDlAhgCOhUILhADEI8BEOoCELQCEIwDEOUCGAJKBAhBGABQ-QVY-QVg9wtoAXABeACAAZoBiAGaAZIBAzAuMZgBAKABAaABArABFMABAdoBBggBEAEYAdoBBggCEAEYCw&sclient=gws-wiz-serp (accessed on 30 May 2023).
103. Ding, T.; Yang, X.; Bai, L.; Zhao, Y.; Fong, K.; … N.W.-O.; 2015, undefined Colloidal Quantum-Dot LEDs with a Solution-Processed Copper Oxide (CuO) Hole Injection Layer. Elsevier.
104. Nie, G.; Dong, B.; Wu, S.; Zhan, S.; Xu, Y.; Sheng, W.; Liu, Y.; Wu, X. Mechanistic Analysis of Embedded Copper Oxide in Organic Thin-Film Transistors with Controllable Threshold Voltage. ACS Omega 2019, 4, 8506–8511, doi:10.1021/ACSOMEGA.8B02726.
105. Murdoch, G.B.; Greiner, M.; Helander, M.G.; Wang, Z.B.; Lu, Z.H. A Comparison of CuO and Cu2 O Hole-Injection Layers for Low Voltage Organic Devices. Appl Phys Lett 2008, 93, doi:10.1063/1.2966140/923658.
106. Choi, D.; Kim, D.; Lee, C.; Hafeez, H.; … S.S.-N.; 2021, undefined Highly Efficient, Heat Dissipating, Stretchable Organic Light-Emitting Diodes Based on a MoO3/Au/MoO3 Electrode with Encapsulation. nature.com.
107. Huang, F.; Liu, H.; Li, X.; Wang, S. Enhancing Hole Injection by Processing ITO through MoO3 and Self-Assembled Monolayer Hybrid Modification for Solution-Processed Hole Transport Layer-Free OLEDs. Chemical Engineering Journal 2022, 427, 131356, doi:10.1016/J.CEJ.2021.131356.
108. Ayobi, A.; Mirnia, S.; … M.R.-… and A.M.; 2019, undefined The Effects of Molybdenum Trioxide (MoO3) Thickness on the Improvement of Driving and Operating Voltages of Organic Light Emitting Devices. oam-rc.inoe.ro.
109. Li, Y.; Tang, Z.; Hänisch, C.; Will, P.-A.; Kovac, M.; Hou, J.-L.; Scholz, R.; Leo, K.; Lenk, S.; Reineke, S.; et al. Ultrathin MoO3 Layers in Composite Metal Electrodes: Improved Optics Allow Highly Efficient Organic Light-Emitting Diodes. Adv Opt Mater 2019, 7, 1801262, doi:10.1002/ADOM.201801262.
110. Saikia, D.; Sarma, R. Fabrication of Organic Light-Emitting Diode Using Molybdenum Trioxide Interlayer between Electrode and Organic Interface. Bulletin of Materials Science 2018, 41, doi:10.1007/S12034-018-1606-2.
111. Hong, K.; Kim, K.; Kim, S.; Lee, I.; Cho, H.; Yoo, S.; Choi, H.W.; Lee, N.Y.; Tak, Y.H.; Lee, J.L. Optical Properties of WO3/Ag/WO3 Multilayer as Transparent Cathode in Top-Emitting Organic Light Emitting Diodes. Journal of Physical Chemistry C 2011, 115, 3453–3459, doi:10.1021/JP109943B.
112. Caron, B.; Quesnel, E.; Maindron, T. Physical Characterization of Ag:WO3 Cermet Films Used as Top Electrode for Stable and High Contrast Organic Light-Emitting Diodes. Org Electron 2021, 96, 106248, doi:10.1016/J.ORGEL.2021.106248.
113. Kumar, P.; Agrawal, N.; … S.C.-I.T. on; 2019, undefined Highly-Efficient Solution Processed Yellow Organic Light Emitting Diode With Tungsten Trioxide Hole Injection/Transport Layer. ieeexplore.ieee.org.
114. Kim, Y.H.; Kwon, S.; Lee, J.H.; Park, S.M.; Lee, Y.M.; Kim, J.W. Hole Injection Enhancement by a WO3 Interlayer in Inverted Organic Light-Emitting Diodes and Their Interfacial Electronic Structures. Journal of Physical Chemistry C 2011, 115, 6599–6604, doi:10.1021/JP111128K/SUPPL_FILE/JP111128K_SI_001.PDF.
115. Qi, Z.; Cao, J.; Ding, L.; Wang, J. Transparent and Transferrable Organic Optoelectronic Devices Based on WO3/Ag/WO3 Electrodes. Appl Phys Lett 2015, 106, doi:10.1063/1.4907865.
116. Choi, S.; Seok, H.; Rhee, S.; Hahm, D.; … W.B.-J. of A. and; 2021, undefined Magnetron-Sputtered Amorphous V2O5 Hole Injection Layer for High Performance Quantum Dot Light-Emitting Diode. Elsevier.
117. Saikia, D.; Sarma, R. Improved Performance of Organic Light-Emitting Diode with Vanadium Pentoxide Layer on the FTO Surface. Pramana - Journal of Physics 2017, 88, doi:10.1007/S12043-017-1389-9.
118. Chen, T.H.; Liou, Y.; Wu, T.J.; Chen, J.Y. Vanadium-Doped Indium Tin Oxide as Hole-Injection Layer in Organic Light-Emitting Devices. Appl Phys Lett 2005, 87, 1–3, doi:10.1063/1.2137892.
119. Zhang, Y.; Li, W.; Xu, K.; Kang, P.; Liu, L.; … L.W.-O.& L.; 2019, undefined Sol-Gel Processed Vanadium Oxide as Efficient Hole Injection Layer in Visible and Ultraviolet Organic Light-Emitting Diodes. Elsevier.
120. Zhang, H.; Wang, S.; Sun, X.; C, S.C.-J. of M.C.; 2017, undefined Solution-Processed Vanadium Oxide as an Efficient Hole Injection Layer for Quantum-Dot Light-Emitting Diodes. pubs.rsc.org.
121. Hwang, H.; Park, H.; Metals, D.M.-S.; 2022, undefined Highly Efficient Inverted Phosphorescent Organic Light-Emitting Devices with ZnO Nanoparticles Electron Injection Layer. Elsevier.
122. Pawar, A.; Kadam, P.; Kamat, R.; Today, S.S.-M.; 2020, undefined Modeling and Simulation of Zinc Oxide Anode Based Organic Light Emitting Diode. Elsevier.
123. Chen, G.; Liu, F.; Ling, Z.; Zhang, P.; Wei, B.; Zhu, W. Efficient Organic Light Emitting Diodes Using Solution-Processed Alkali Metal Carbonate Doped ZnO as Electron Injection Layer. Front Chem 2019, 7, doi:10.3389/FCHEM.2019.00226/FULL.
124. Jeong, K.W.; Kim, H.S.; Yi, G.R.; Kim, C.K. Enhancing the Electroluminescence of OLEDs by Using ZnO Nanoparticle Electron Transport Layers That Exhibit the Auger Electron Effect. Molecular Crystals and Liquid Crystals 2018, 663, 61–70, doi:10.1080/15421406.2018.1468099.
125. Musavi, H.; Fadavieslam, M.R. Improving Organic Light-Emitting Diode Performance with ZnO Nanoparticles. Journal of Materials Science: Materials in Electronics 2017, 28, 7797–7801, doi:10.1007/S10854-017-6475-8.
126. Kang, S.; Jillella, R.; Park, S.; Park, S.; Kim, J.H.; Oh, D.; Kim, J.; Park, J. Organic–Inorganic Hybrid Device with a Novel Deep-Blue Emitter of a Donor–Acceptor Type, with ZnO Nanoparticles for Solution-Processed OLEDs. mdpi.com 2022, doi:10.3390/nano12213806.
127. Gupta, N.; Grover, R.; Mehta, D.S.; Saxena, K. A Simple Technique for the Fabrication of Zinc Oxide-PEDOT:PSS Nanocomposite Thin Film for OLED Application. Synth Met 2016, 221, 261–267, doi:10.1016/J.SYNTHMET.2016.09.014.
128. Chun, J.Y.; Han, J.W.; Kim, T.W.; Seo, D.S. Enhancement of Organic Light-Emitting Diodes Efficiency Using Carbon Nanotube Doped Hole-Injection Layer on the Al-Doped ZnO Anode. ECS Solid State Letters 2012, 1, R13, doi:10.1149/2.004203SSL/XML.
129. Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renewable and Sustainable Energy Reviews 2018, 81, 536–551, doi:10.1016/J.RSER.2017.08.020.
130. Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renewable and Sustainable Energy Reviews 2018, 81, 536–551, doi:10.1016/J.RSER.2017.08.020.
131. Meulenkamp, E.A. Synthesis and Growth of ZnO Nanoparticles. Journal of Physical Chemistry B 1998, 102, 5566–5572, doi:10.1021/JP980730H.
132. Hong, R.; Pan, T.; Qian, J.; Journal, H.L.-C.E.; 2006, undefined Synthesis and Surface Modification of ZnO Nanoparticles. Elsevier.
133. Garcia, M.A.; Merino, J.M.; Pinel, E.F.; Quesada, A.; De La Venta, J.; González, M.L.R.; Castro, G.R.; Crespo, P.; Llopis, J.; González-Calbet, J.M.; et al. Magnetic Properties of ZnO Nanoparticles. Nano Lett 2007, 7, 1489–1494, doi:10.1021/NL070198M.
134. Talam, S.; Karumuri, S.R.; Gunnam, N. Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. ISRN Nanotechnology 2012, 2012, 1–6, doi:10.5402/2012/372505.
135. Shetti, N.P.; Malode, S.J.; Nayak, D.S.; Bagihalli, G.B.; Kalanur, S.S.; Malladi, R.S.; Reddy, C.V.; Aminabhavi, T.M.; Reddy, K.R. Fabrication of ZnO Nanoparticles Modified Sensor for Electrochemical Oxidation of Methdilazine. Appl Surf Sci 2019, 496, 143656, doi:10.1016/J.APSUSC.2019.143656.
136. Kumari, P.; Misra, K.P.; Chattopadhyay, S.; Samanta, S. A Brief Review on Transition Metal Ion Doped ZnO Nanoparticles and Its Optoelectronic Applications. Mater Today Proc 2021, 43, 3297–3302, doi:10.1016/J.MATPR.2021.02.299.
137. Jiang, J.; Pi, J.; Cai, J. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg Chem Appl 2018, 2018, doi:10.1155/2018/1062562.
138. Yang, P.; Yan, H.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.; Pham, J.; He, R.; Choi, H.-J. Controlled Growth of ZnO Nanowires and Their Optical Properties**., doi:10.1002/1616-3028.
139. Hu, H.; Huang, X.; Deng, C.; Chen, X.; Qian, Y. Hydrothermal Synthesis of ZnO Nanowires and Nanobelts on a Large Scale. Mater Chem Phys 2007, 106, 58–62, doi:10.1016/J.MATCHEMPHYS.2007.05.016.
140. Wischmeier, L.; Voss, T.; Börner, S.; Schade, W. Comparison of the Optical Properties of As-Grown Ensembles and Single ZnO Nanowires. Appl Phys A Mater Sci Process 2006, 84, 111–116, doi:10.1007/S00339-006-3589-X.
141. Wen, B.; Sader, J.E.; Boland, J.J. Mechanical Properties of ZnO Nanowires. Phys Rev Lett 2008, 101, 175502, doi:10.1103/PHYSREVLETT.101.175502/FIGURES/4/MEDIUM.
142. Wang, J.; Gao, L. Hydrothermal Synthesis and Photoluminescence Properties of ZnO Nanowires. Solid State Commun 2004, 132, 269–271, doi:10.1016/J.SSC.2004.07.052.
143. Park, J.H.; Choi, H.J.; Choi, Y.J.; Sohn, S.H.; Park, J.G. Ultrawide ZnO Nanosheets. J Mater Chem 2004, 14, 35–36, doi:10.1039/B312821K.
144. Kim, D.; Shin, S.H.R.; Kim, Y.; Crossley, K.; Kim, Y.; Han, H.; Yoo, J. Hierarchical Assembly of ZnO Nanowire Trunks Decorated with ZnO Nanosheets for Lithium Ion Battery Anodes. RSC Adv 2020, 10, 13655–13661, doi:10.1039/D0RA00372G.
145. Li, J.; Fan, H.; Jia, X. Multilayered ZnO Nanosheets with 3D Porous Architectures: Synthesis and Gas Sensing Application. Journal of Physical Chemistry C 2010, 114, 14684–14691, doi:10.1021/JP100792C/SUPPL_FILE/JP100792C_SI_001.PDF.
146. Kar, S.; Dev, A.; Chaudhuri, S. Simple Solvothermal Route to Synthesize ZnO Nanosheets, Nanonails, and Well-Aligned Nanorod Arrays. Journal of Physical Chemistry B 2006, 110, 17848–17853, doi:10.1021/JP0629902/ASSET/IMAGES/LARGE/JP0629902F00009.JPEG.
147. Li, J.; Sun, Q.; Yao, Q.; Wang, J.; Han, S.; Jin, C. Fabrication of Robust Superhydrophobic Bamboo Based on ZnO Nanosheet Networks with Improved Water-, UV-, and Fire-Resistant Properties. J Nanomater 2015, 2015, doi:10.1155/2015/431426.
148. Wang, X.; Zhang, E.; Shi, H.; Tao, Y.; Ren, X. Semiconductor-Based Surface Enhanced Raman Scattering (SERS): From Active Materials to Performance Improvement. Analyst 2022, 147, 1257–1272, doi:10.1039/D1AN02165F.
149. Qu, Y.; Huang, R.; Qi, W.; Shi, M.; Su, R.; He, Z. Controllable Synthesis of ZnO Nanoflowers with Structure-Dependent Photocatalytic Activity. Catal Today 2020, 355, 397–407, doi:10.1016/J.CATTOD.2019.07.056.
150. Wang, C. Triethylamine Sensing Properties of ZnO Nanostructures Prepared by Hydrothermal Method at Different PH Values. Chem Phys Lett 2020, 749, 137471, doi:10.1016/J.CPLETT.2020.137471.
151. Borbón, S.; Lugo, S.; López, I. Fast Synthesis of ZnO Nanoflowers Using a Conductively Heated Sealed-Vessel Reactor without Additives. Mater Sci Semicond Process 2019, 91, 310–315, doi:10.1016/J.MSSP.2018.12.001.
152. Kilic, B.; Günes, T.; Besirli, I.; Sezginer, M.; Tuzemen, S. Construction of 3-Dimensional ZnO-Nanoflower Structures for High Quantum and Photocurrent Efficiency in Dye Sensitized Solar Cell. Appl Surf Sci 2014, 318, 32–36, doi:10.1016/J.APSUSC.2013.12.065.
153. Kim, J.W.; Porte, Y.; Ko, K.Y.; Kim, H.; Myoung, J.M. Micropatternable Double-Faced ZnO Nanoflowers for Flexible Gas Sensor. ACS Appl Mater Interfaces 2017, 9, 32876–32886, doi:10.1021/ACSAMI.7B09251/ASSET/IMAGES/LARGE/AM-2017-09251P_0005.JPEG.
154. Fan, J.; Li, T.; Heng, H. Hydrothermal Growth of ZnO Nanoflowers and Their Photocatalyst Application. Bulletin of Materials Science 2016, 39, 19–26, doi:10.1007/S12034-015-1145-Z/FIGURES/10.
155. Zhang, S.; Chen, H.S.; Matras-Postolek, K.; Yang, P. ZnO Nanoflowers with Single Crystal Structure towards Enhanced Gas Sensing and Photocatalysis. Physical Chemistry Chemical Physics 2015, 17, 30300–30306, doi:10.1039/C5CP04860E.
156. Pathak, T.K.; Coetsee-Hugo, E.; Swart, H.C.; Swart, C.W.; Kroon, R.E. Preparation and Characterization of Ce Doped ZnO Nanomaterial for Photocatalytic and Biological Applications. Materials Science and Engineering: B 2020, 261, 114780, doi:10.1016/J.MSEB.2020.114780.
157. Rezaie, M.N.; Mohammadnejad, S.; Ahadzadeh, S. Hybrid Inorganic-Organic Light-Emitting Heterostructure Devices Based on ZnO. Opt Laser Technol 2021, 138, doi:10.1016/J.OPTLASTEC.2020.106896.
158. Djuriić, A.B.; Ng, A.M.C.; Chen, X.Y. ZnO Nanostructures for Optoelectronics: Material Properties and Device Applications. Prog Quantum Electron 2010, 34, 191–259, doi:10.1016/J.PQUANTELEC.2010.04.001.
159. Shahedi, Z.; Mohammad, •; Jafari, R. Synthesis Al Complex and Investigating Effect of Doped ZnO Nanoparticles in the Electrical and Optical Efficiency of OLEDS. Applied Physics A 2016 123:1 2016, 123, 1–9, doi:10.1007/S00339-016-0715-2.
160. Mucur, S.Pi.I.I.; Tumay, T.A.I.; Birdoʇan, S.; San, S.E.; Tekin, E. Triangular-Shaped Zinc Oxide Nanoparticles Enhance the Device Performances of Inverted OLEDs. Nano-Structures & Nano-Objects 2015, 1, 7–14, doi:10.1016/J.NANOSO.2015.01.001.
161. Aleshina, A.N.; Alexandrova, E.L.; Shcherbakov, I.P. Efficient Hybrid Active Layers for OLEDs Based on Polyfluorene and ZnO Nanoparticles. EPJ Applied Physics 2010, 51, 33202-p1-33202-p5, doi:10.1051/EPJAP/2010104.
162. Manzhi, P.; Alam, M.B.; Kumari, R.; Krishna, R.; Singh, R.K.; Srivastava, R.; Sinha, O.P. Li-Doped ZnO Nanostructures for the Organic Light Emitting Diode Application. Vacuum 2017, 146, 462–467, doi:10.1016/J.VACUUM.2017.07.018.
163. Periyayya, U.; Kang, J.H.; Ryu, J.H.; Hong, C.H. Synthesis and Improved Luminescence Properties of OLED/ZnO Hybrid Materials. Vacuum 2011, 86, 254–260, doi:10.1016/J.VACUUM.2011.06.016.
164. Jayabharathi, J.; Prabhakaran, A.; Thanikachalam, V.; Sundharesan, M. Hybrid Organic-Inorganic Light Emitting Diodes: Effect of Ag-Doped ZnO. J Photochem Photobiol A Chem 2016, 325, 88–96, doi:10.1016/J.JPHOTOCHEM.2016.04.007.
165. Felbier, P. All-Inorganic Heterostructure Light-Emitting Devices Based on ZnO Nanoparticles. 2015.
166. Lee, H.; Park, I.; Kwak, J.; Yoon, D.; Letters, C.L.-A.P.; 2010, undefined Improvement of Electron Injection in Inverted Bottom-Emission Blue Phosphorescent Organic Light Emitting Diodes Using Zinc Oxide Nanoparticles. aip.scitation.org 2010, 96, doi:10.1063/1.3400224.
167. Pan, J.; Chen, J.; Huang, Q.; Khan, Q.; Liu, X.; Tao, Z.; … W.L.-R.; 2015, undefined Flexible Quantum Dot Light Emitting Diodes Based on ZnO Nanoparticles. pubs.rsc.org.
168. Chen, Y.; Deng, S.; Xu, N.; Chen, J. Recent Progress on ZnO Nanowires Cold Cathode and Its Applications. Nanomaterials 2021, 11, doi:10.3390/NANO11082150.
169. Fang, H.; Deng, W.; Zhang, X.; Xu, X.; Zhang, M.; Jie, J.; Zhang, X. Few-Layer Formamidinium Lead Bromide Nanoplatelets for Ultrapure-Green and High-Efficiency Light-Emitting Diodes. Nano Res 2019, 12, 171–176, doi:10.1007/S12274-018-2197-3/METRICS.
170. Jou, J.H.; Yang, Y.M.; Chen, S.Z.; Tseng, J.R.; Peng, S.H.; Hsieh, C.Y.; Lin, Y.X.; Chin, C.L.; Shyue, J.J.; Sun, S.S.; et al. High-Efficiency Wet- and Dry-Processed Green Organic Light Emitting Diodes with a Novel Iridium Complex-Based Emitter. Adv Opt Mater 2013, 1, 657–667, doi:10.1002/ADOM.201300172.
171. Sasabe, H.; Kido, J. Multifunctional Materials in High-Performance OLEDs: Challenges for Solid-State Lighting. Chemistry of Materials 2011, 23, 621–630, doi:10.1021/CM1024052/ASSET/IMAGES/MEDIUM/CM-2010-024052_0020.GIF.
172. Tao, P.; Miao, Y.; Wang, H.; Xu, B.; Zhao, Q. High-Performance Organic Electroluminescence: Design from Organic Light-Emitting Materials to Devices. Chem Rec 2019, 19, 1531–1561, doi:10.1002/TCR.201800139.
173. Jou, J.H.; Kumar, S.; Agrawal, A.; Li, T.H.; Sahoo, S. Approaches for Fabricating High Efficiency Organic Light Emitting Diodes. J Mater Chem C Mater 2015, 3, 2974–3002, doi:10.1039/C4TC02495H.
174. Meyer, J.; Hamwi, S.; Schmale, S.; Winkler, T.; Johannes, H.H.; Riedl, T.; Kowalsky, W. A Strategy towards P-Type Doping of Organic Materials with HOMO Levels beyond 6 EV Using Tungsten Oxide. J Mater Chem 2009, 19, 702–705, doi:10.1039/B819485H.
175. Zhao, C.; Wang, W.; Ma, Y. Molecular Design toward Good Hole Transport Materials Based on Anthra[2,3-c]Thiophene: A Theoretical Investigation. Comput Theor Chem 2013, Complete, 25–31, doi:10.1016/J.COMPTC.2012.12.031.
176. Gupta, S.; Chang, C.; Anbalagan, A.K.; Lee, C.H.; Tai, N.H. Reduced Graphene Oxide/Zinc Oxide Coated Wearable Electrically Conductive Cotton Textile for High Microwave Absorption. Compos Sci Technol 2020, 188, 107994, doi:10.1016/J.COMPSCITECH.2020.107994.
177. Wong-Ng, W.; McMurdie, H.F.; Hubbard, C.R.; Mighell, A.D. JCPDS-ICDD Research Associateship (Cooperative Program with NBS/NIST). J Res Natl Inst Stand Technol 2001, 106, 1013, doi:10.6028/JRES.106.052.
178. Khorsand Zak, A.; Razali, R.; Abd Majid, W.H.; Darroudi, M. Synthesis and Characterization of a Narrow Size Distribution of Zinc Oxide Nanoparticles. Int J Nanomedicine 2011, 6, 1399–1403, doi:10.2147/IJN.S19693.
179. Of, J.; Фізики, N.-A.E.P.Ж.Н.-Т.Е. Chemical Synthesis and Optical Properties of ZnO Nanoparticles. 2014, 6, 4015.
180. Haffad, S.; Cicero, G.; Samah, M. Structural and Electronic Properties of ZnO Nanowires: A Theoretical Study. Energy Procedia 2011, 10, 128–137, doi:10.1016/J.EGYPRO.2011.10.165.
181. Xu, J.; Shi, S.; Wang, C.; Zhang, Y.; Liu, Z.; Zhang, X.; Li, L. Effect of Surface-to-Volume Ratio on the Optical and Magnetic Properties of ZnO Nanorods by Hydrothermal Method. J Alloys Compd 2015, 648, 521–526, doi:10.1016/J.JALLCOM.2015.07.038.
182. Lin, P.; Chen, X.; Zhang, K.; -, al; Ramelan, A.H.; Wahyuningsih, S.; Munawaroh, H.; Narayan, R. ZnO Wide Bandgap Semiconductors Preparation for Optoelectronic Devices. IOP Conf Ser Mater Sci Eng 2017, 176, 012008, doi:10.1088/1757-899X/176/1/012008.
183. Greene, L.E.; Yuhas, B.D.; Law, M.; Zitoun, D.; Yang, P. Solution-Grown Zinc Oxide Nanowires. Inorg Chem 2006, 45, 7535–7543, doi:10.1021/IC0601900/ASSET/IMAGES/MEDIUM/IC0601900N00001.GIF.
184. Allami, S.; Allami, S. ZnO Nanowires Growth Direction and Parameters Affecting Their Surface Morphology. Nanowires - Synthesis, Properties and Applications [Working Title] 2021, doi:10.5772/INTECHOPEN.80538.
185. Musavi, H.; Fadavieslam, M.R. Improving Organic Light-Emitting Diode Performance with ZnO Nanoparticles. Journal of Materials Science: Materials in Electronics 2017, 28, 7797–7801, doi:10.1007/S10854-017-6475-8/FIGURES/6.
186. Movlarooy, T. Study of Quantum Confinement Effects in ZnO Nanostructures. Mater Res Express 2018, 5, 035032, doi:10.1088/2053-1591/AAB389.
187. Alshehri, N.A.; Lewis, A.R.; Pleydell-Pearce, C.; Maffeis, T.G.G. Investigation of the Growth Parameters of Hydrothermal ZnO Nanowires for Scale up Applications. Journal of Saudi Chemical Society 2018, 22, 538–545, doi:10.1016/J.JSCS.2017.09.004.
188. Li, S.M.; Zhang, L.X.; Zhu, M.Y.; Ji, G.J.; Zhao, L.X.; Yin, J.; Bie, L.J. Acetone Sensing of ZnO Nanosheets Synthesized Using Room-Temperature Precipitation. Sens Actuators B Chem 2017, 249, 611–623, doi:10.1016/J.SNB.2017.04.007.
189. Adachi, N.; Hisatomi, T.; Sano, M.; Tsuya, H. Reduction of Grown-In Defects by High Temperature Annealing. J Electrochem Soc 2000, 147, 350, doi:10.1149/1.1393199/XML.
190. Kumar, S.; Sahare, P.D. EFFECTS OF ANNEALING ON THE SURFACE DEFECTS OF ZINC OXIDE NANOPARTICLES. https://doi.org/10.1142/S1793292012500221 2012, 7, doi:10.1142/S1793292012500221.
(此全文20260706後開放外部瀏覽)
Full-text
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *