帳號:guest(52.14.205.138)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):安 祈
作者(外文):AGARWAL AANCHAL
論文名稱(中文):製作及優化高介電係數的介電質材料用在半導體-絕緣體-金屬為底之奈米雷射
論文名稱(外文):Fabrication and Optimization of High-K Dielectric Materials Based Semiconductor-Insulator-Metal Nano Lasers
指導教授(中文):陳力俊
呂明諺
指導教授(外文):Chen, Lih-Juann
Lu, Ming-Yen
口試委員(中文):果尚志
鄭晃忠
吳文偉
口試委員(外文):Gwo, Shan-Gjr
Cheng, Huang-Chung
Wu, Wen-Wei
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:107031890
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:108
中文關鍵詞:高介電常數材料介電常數電漿子奈米雷射半導體絕緣體金屬複合結構
外文關鍵詞:High-k materialsdielectric constantplasmonicsnanolaserSIM hybrid structure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:203
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來科學家們致力於奈米雷射的相關研究,期望有朝一日能實際應用在晶片級光電元件上。其中最不可或缺的即是表面電漿共振效應於奈米雷射的應用,然而由於金屬吸收能帶以及能量容易耗散的問題使得紫外光波段雷射仍充滿許多不確定。
因此本研究將呈現我們的成果:以氧化鋅奈米線為基底的表面電漿雷射,搭配高介電常數的氧化物。
本研究藉由氧化鋅奈米線及單晶鋁基板,並在中間加入一層高介電常數材料作為絕緣體以形成表面電漿雷射。我們使用化學氣相沈積法合成高品質的氧化鋅奈米線並作為增益介質放在使用分子束磊晶沉積的單晶鋁基板上,同時,我們使用電子束蒸鍍沈積高介電常數的絕緣層(氧化鎢、氧化鉬、氧化鉈)並將其置於氧化鋅奈米線及鋁基板中間形成半導體—絕緣體—金屬複合結構SIM。此結構演示了極低的雷射閥值,相較於先前的氧化鋅—氧化鋁—鋁有相當卓越的突破,原因在於高介電常數絕緣層將能量有效的侷限在亞波長範圍內。
本實驗演示了四種不同的高介電常數材料作為絕緣層時對雷射閥值帶來的影響,結果顯示高介電常數材料可以得到較低的雷射閥值,介電常數越高,雷射閥值越低,而雷射閥值同時也與介電層的厚度有關。本實驗顯示出選去特定材料作為介電層有助於增加電磁場的強度。此外,材料的結晶性和缺陷程度都會影響雷射閥值。
Plasmonic nano lasers have garnered considerable enthusiasm as a frontier issue during the last decade. Plasmonic nano lasers with their integration compatibility, paves the way for the eventual realization of on-chip optoelectronic applications. Surface plasmon polaritons are the main characteristic in plasmonic nano lasers that exceedingly focus in the deep-subwavelength regime. Nevertheless, low threshold operating conditions in the ultraviolet (UV) wavelength zone are still uncertain due to the metal absorption and surface plasmon scattering losses induced by the metal-dielectric interface roughness. Therefore, in this dissertation, we present our work on the development of ZnO nanowire-based surface plasmon polariton (SPP) nano lasers with semiconductor–insulator– metal hierarchical nanostructures, which allows various possibilities for SPP nano lasers. Moreover, high-k oxides have been widely utilized as gate dielectrics in advanced MOS devices due to their high dielectric constant presenting advantages such as reduced gate leakage and are regarded as prospective materials for the storage of information and communication, optical interconnects, and computing.
In this thesis, we demonstrated an SPP nano laser consisting of ZnO nanowires coupled with a single-crystalline aluminum (Al) film and high-k dielectric materials as insulating interlayer. High-quality ZnO nanowires grown via chemical vapor deposition process (CVD) were used as the gain media placed over single-crystalline Al film deposited via molecular beam epitaxy (MBE). Meanwhile, a high-k dielectric constant material-based interlayer films (WO3, MoO3 and Ta2O5) were deposited in the midst of the ZnO nanowires and Al film, via e-beam technique, to prevent the optical loss from dominating the metallic region and enhance the optical confinement. The semiconductor-insulator-metal (SIM) hybrid structured SPP laser demonstrated an ultra-low threshold laser operation. This threshold value was strongly influenced and lowered than that previously reported in similar ZnO/Al2O3/Al plasmonic lasers. Such suppression of the lasing threshold is attributed to the insulating layer, which mediated the strong energy confinement of the optical field in the subwavelength regime.
Furthermore, comprehensive investigations of the critical roles of high-k dielectric interlayers on the lasing thresholds of ZnO/high-k material/Al nano lasers for four different dielectric layers have been conducted. The results demonstrated that the high dielectric constant materials as the interlayers over epitaxially grown Al film consisting of high-quality ZnO nanowires construct superb low threshold SPP lasers. It has been found that the lasing threshold varies with increasing thickness and reduces while increasing the dielectric constant. The performances are compared with similarly fabricated nano lasers with Al2O3 and WO3 dielectric interlayers. The critical roles of dielectric constants of the dielectric interlayers on influencing the thresholds of lasing are elucidated. This investigation indicates that the selection of appropriate dielectric interlayer film enhances sustenance of the electromagnetic field energy at room temperature. In addition, the crystallinity and defects of the dielectric layers are also contributing factors in influencing the lasing thresholds.
Abstract ........................................................................................................................................ i
摘要 .............................................................................................................................................. iii
Acknowledgements ...................................................................................................................... v
List of Figures .............................................................................................................................. vii
List of Tables ............................................................................................................................... xiii
List of Acronyms and Abbreviations ........................................................................................... xiv
Table of Contents ....................................................................................................................... xvi
Chapter 1 Introduction ............................................................................................................ 1
1.1 Thesis Rationale .................................................................................................................... 1
1.2 Thesis Structure .................................................................................................................... 2
Chapter 2 Research Background ............................................................................................ 3
2.1 Introduction ........................................................................................................................... 3
2.2 Overview of Nanotechnology ................................................................................................ 3
2.3 One-dimensional Nanostructures ......................................................................................... 4
2.4 Fabrication Techniques of 1-D Nanostructures ..................................................................... 6
2.4.1. Vapor-Liquid-Solid (VLS) Growth Mechanism ..................................................................... 6
2.5. Nano Lasers and Plasmonics ................................................................................................. 8
2.5.1. Development of Plasmonic Systems ............................................................................ 12
2.5.2 Nano Laser Device Design Considerations .................................................................. 14
Chapter 3 Experimental Techniques ...................................................................................... 21
3.1 Introduction .......................................................................................................................... 21
3.2 Methodology Flowchart of SIM-Configured Device Fabrication .......................................... 21
3.3 Experimental Procedures ..................................................................................................... 22
3.3.1 Fabrication of ZnO NWs ............................................................................................... 22
3.3.2 Fabrication of Dielectric Layers by Electron-Beam Evaporation .................................. 25
3.3.3 Growth of Epitaxial Aluminum Film by Molecular Beam Epitaxy (MBE) ........................ 25
3.4 Fabrication of SIM Nano Laser ............................................................................................ 26
3.5 Characterization Techniques ............................................................................................... 27
3.5.1. Electron-Beam Evaporation (E-Gun Deposition) .......................................................... 27
3.5.2. X-Ray Diffractometry (XRD).......................................................................................... 28
3.5.3. X-Ray Photoelectron Spectroscopy (XPS) ................................................................... 30
3.5.4. Scanning Electron Microscopy (SEM) .......................................................................... 30
3.5.5. Transmission Electron Microscopy (TEM) .................................................................... 32
3.5.6. Atomic Force Microscopy (AFM)................................................................................... 34
3.5.7. Spectroscopic Ellipsometry (SE) .................................................................................. 35
3.5.8. Micro-Photoluminescence (µ-PL) Optical Measurement System ................................ 37
Chapter 4 ZnO NWs on SC- Al Film Coupled with an Insulating WO3 Interlayer Manifesting Low Threshold SPP Laser Operation ........................................................................................... 39
4.1 Motivation and Introduction ................................................................................................. 39
4.2 Morphological Characteristics of Epitaxial Aluminum Film .................................................. 41
4.3 Morphological and Structural Properties of ZnO NWs ........................................................ 42
4.4 Effects on the Optical Properties of ZnO Nano Lasers ....................................................... 44
4.4.1 ZnO Nano Lasers Performance with Native Oxide ....................................................... 44
4.2.2 ZnO Nano Lasers Performance with Varying Thickness of WO3 ................................. 46
4.5 Surface Characterization of Dielectric Films ....................................................................... 50
4.5.1 Surficial and Compositional Effects on WO3 Films ...................................................... 50
4.5.2 Ellipsometry Properties of WO3 Films with Varied Thickness ...................................... 52
4.6 Simulated Characteristics of ZnO Nano Laser with Different WO3 Film Thickness ............ 53
4.7 Conclusions ......................................................................................................................... 55
Chapter 5 Superb Low threshold SPP Laser Operation with Tailored Dielectric Interlayers of Varied Thickness ......................................................................................................................... 56
5.1 Motivation and Introduction ................................................................................................. 56
5.2 Characteristics of ZhDlA Hybrid Structure Nano Laser ………….............................………....… 58
5.2.1 Effects of MoO3 Thickness on the Optical Lasing Properties of ZhDlA Nano Laser ... 59
5.2.2 Simulated Characteristics of ZnO Nano Laser with Different MoO3 Film Thickness … 61
5.2.3 Surficial and Compositional Properties of MoO3 Films ………………….......................…… 62
5.2.4 Ellipsometry Properties of MoO3 Films with Varied Thickness …………………...........…… 64
5.2.5 Ta2O5 Thickness Effects on the Optical Properties of ZhDlA Nano Laser ………………. 66
5.2.6 Simulated Characteristics of ZnO Nano Laser with Ta2O5 Dielectric Interlayer Film .. 68
5.2.7 Morphological Characteristics of Ta2O5 Dielectric Interlayer Films …………………..……. 70
5.2.8 Ellipsometry Properties with Altered Thickness of Ta2O5 Dielectric Interlayer Films .. 72
5.3 Comparison on Lasing Performance for Different Dielectric Interlayers ………………………….. 73
5.3.1 Crystallinity of the Different Dielectric Interlayers …………………………………………........…. 76
5.4 Conclusions ……………………………………………………………………………………….............................. 78
Chapter 6 Summary and Conclusions …………………………………………….......................…………… 79
Chapter 7 Future Perspectives ……………………....……………………………………………………………….. 81
7.1 Lasing Performance Enhancement through Coupling Bi-dielectric Spacing Film …………….. 81
7.2 Interface Engineering of Bi-Dielectric Films ……………………………………..………………….........… 83
APPENDIX ................................................................................................................................... 86
References ……………………........................................…………………………………………………………………91
(1) Editorial: “Plenty of Room” Revisited. Nature Nanotechnology. 2009, 4, 781.
(2) Feynman, R. P. There’s Plenty of Room at the Bottom. Journal of Microelectromechanical Systems 1992, 1, 60-66.
(3) Feynman, R. There’s Plenty of Room at the Bottom. In Feynman and Computation; 2018.
(4) Taniguchi, N. On the Basic Concept of “Nano-Technology.” In the basic concept of “Nano-Technology”, Proceedings of the International Conference on Production Engineering Tokyo, Part II, Japan Society of Precision Engineering, Tokyo; 1974, 18-23.
(5) Hulla, J. E.; Sahu, S. C.; Hayes, A. W. Nanotechnology: History and Future. Human and Experimental Toxicology. 2015, 34, 1318-1321.
(6) Yadav, R. Nanotechnology and Nano Computing. International Journal for Research in Applied Science and Engineering Technology 2017, 5, 531-535.
(7) Kumar, P.; Kim, K. H.; Bansal, V.; Kumar, P. Nanostructured Materials: A Progressive Assessment and Future Direction for Energy Device Applications. Coordination Chemistry Reviews. 2017, 353, 113-141.
(8) Poh, T. Y.; Ali, N. A. T. B. M.; mac Aogáin, M.; Kathawala, M. H.; Setyawati, M. I.; Ng, K. W.; Chotirmall, S. H. Inhaled Nanomaterials and the Respiratory Microbiome: Clinical, Immunological and Toxicological Perspectives. Particle and Fibre Toxicology 2018, 15, 1-16.
(9) Chen, C.; Fan, Y.; Gu, J.; Wu, L.; Passerini, S.; Mai, L. One-Dimensional Nanomaterials for Energy Storage. Journal of Physics D: Applied Physics. 2018, 51, 113002.
(10) Garnett, E.; Mai, L.; Yang, P. Introduction: 1D Nanomaterials/Nanowires. Chemical Reviews. 2019, 119, 8955-8957.
(11) Zhang, Z.; Kang, Z.; Liao, Q.; Zhang, X.; Zhang, Y. One-Dimensional ZnO Nanostructure-Based Optoelectronics. Chinese Physics B 2017, 26, 118102.
(12) Yao, X.; Zhang, Y.; Jin, W.; Hu, Y.; Cui, Y. Carbon Nanotube Field-Effect Transistor-Based Chemical and Biological Sensors. Sensors (Switzerland). 2021, 21, 995.
(13) Wang, D.; Noël, V.; Piro, B. Electrolytic Gated Organic Field-Effect Transistors for Application in Biosensors—A Review. Electronics. 2016, 98, 76.
(14) Li, X.; Liu, X.; Li, Y.; Gao, D.; Cao, L. Using Novel Semiconductor Features to Construct Advanced ZnO Nanowires-Based Ultraviolet Photodetectors: A Brief Review. IEEE Access. 2021, 9, 11954-11973.
(15) Guan, N.; Dai, X.; Babichev, A. v.; Julien, F. H.; Tchernycheva, M. Flexible Inorganic Light Emitting Diodes Based on Semiconductor Nanowires. Chemical Science. 2017, 8, 7904-7911.
(16) Kent, T. F.; Carnevale, S. D.; Sarwar, A. T. M.; Phillips, P. J.; Klie, R. F.; Myers, R. C. Deep Ultraviolet Emitting Polarization Induced Nanowire Light Emitting Diodes with AlxGa1-xN Active Regions. Nanotechnology 2014, 25, 455201.
(17) Xu, J.; Ning, C.; Xiong, Q. Introduction to Nanolasers. Zhongguo Jiguang/Chinese Journal of Lasers. 2021, 48, 1501002.
(18) Ma, R. M.; Oulton, R. F. Applications of Nanolasers. Nature Nanotechnology 2019, 14, 12–22.
(19) Saleh, T. A. Nanomaterials: Classification, Properties, and Environmental Toxicities. Environmental Technology and Innovation. 2020, 20, 101067.
(20) Khan, A.; Jadwisienczak, W. M.; Kordesch, M. E. Synthesis and Luminescence Properties of Novel ZnO Nanostructures: Micro and Nanospheres, Polyhedral Cages, Tetra-Pods, Needles, Tipped Nanorods, Nanowires and Other “Microphone-Shaped” Structures. In Materials Research Society Symposium Proceedings; 2005; Vol. 900, 618.
(21) Westwater, J. Growth of Silicon Nanowires via Gold/Silane Vapor–Liquid–Solid Reaction. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 1997, 15, 554-557.
(22) Wagner, R. S.; Ellis, W. C. Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Applied Physics Letters 1964, 4, 89-90.
(23) Jia, C.; Lin, Z.; Huang, Y.; Duan, X. Nanowire Electronics: From Nanoscale to Macroscale. Chemical Reviews. 2019, 119, 9074-9135.
(24) Stockman, M. I.; Kneipp, K.; Bozhevolnyi, S. I.; Saha, S.; Dutta, A.; Ndukaife, J.; Kinsey, N.; Reddy, H.; Guler, U.; Shalaev, V. M.; Boltasseva, A.; Gholipour, B.; Krishnamoorthy, H. N. S.; Macdonald, K. F.; Soci, C.; Zheludev, N. I.; Savinov, V.; Singh, R.; Groß, P.; Lienau, C.; Vadai, M.; Solomon, M. L.; Barton, D. R.; Lawrence, M.; Dionne, J. A.; Boriskina, S. v.; Esteban, R.; Aizpurua, J.; Zhang, X.; Yang, S.; Wang, D.; Wang, W.; Odom, T. W.; Accanto, N.; de Roque, P. M.; Hancu, I. M.; Piatkowski, L.; van Hulst, N. F.; Kling, M. F. Roadmap on Plasmonics. Journal of Optics (United Kingdom) 2018, 20, 043001.
(25) Halas, N. J. Plasmonics: An Emerging Field Fostered by Nano Letters. 2010, 10, 3816-3822.
(26) Jiang, N.; Zhuo, X.; Wang, J. Active Plasmonics: Principles, Structures, and Applications. Chemical Reviews. 2018, 118, 3054-3099.
(27) Shahbazyan, T. V.; Stockman, M. I. Plasmonics: Theory and Applications; 2013, Vol. 15. Dordrecht Springer Netherlands.
(28) Barbillon, G. Plasmonics and Its Applications. Materials. 2019, 12, 1502.
(29) Brongersma, M. L.; Shalaev, V. M. The Case for Plasmonics. Science. 2010, 328, 440-441.
(30) Hu, E. L.; Brongersma, M.; Baca, A. Applications: Nanophotonics and Plasmonics. In Nanotechnology Research Directions for Societal Needs in 2020; 2011, Vol.1, pp. 417-444.
(31) Zia, R.; Schuller, J. A.; Chandran, A.; Brongersma, M. L. Plasmonics: The next Chip-Scale Technology. Materials Today 2006, 9, 20-27.
(32) Kim, S.; Jeong, T.-I.; Park, J.; Ciappina, M. F.; Kim, S. Recent Advances in Ultrafast Plasmonics: From Strong Field Physics to Ultraprecision Spectroscopy. Nanophotonics 2022, 11, 2393-2431.
(33) Wei, H.; Yan, X.; Niu, Y.; Li, Q.; Jia, Z.; Xu, H. Plasmon–Exciton Interactions: Spontaneous Emission and Strong Coupling. Advanced Functional Materials. 2021, 31, 2100889.
(34) Liang, Y.; Li, C.; Huang, Y. Z.; Zhang, Q. Plasmonic Nanolasers in On-Chip Light Sources: Prospects and Challenges. ACS Nano 2020, 14, 14375-14390.
(35) Zayats, A. v.; Smolyaninov, I. I.; Maradudin, A. A. Nano-Optics of Surface Plasmon Polaritons. Physics Reports. 2005, 408, 131-314.
(36) Pitelet, A.; Schmitt, N.; Loukrezis, D.; Scheid, C.; de Gersem, H.; Ciraci, C.; Centeno, E.; Moreau, A. Influence of Spatial Dispersion on Surface Plasmons, Nanoparticles, and Grating Couplers. Journal of the Optical Society of America B-Optical Physics 2019, 36, 2989–2999.
(37) Wang, Z.; Meng, X.; Kildishev, A. v.; Boltasseva, A.; Shalaev, V. M. Nanolasers Enabled by Metallic Nanoparticles: From Spasers to Random Lasers. Laser and Photonics Reviews. 2017, 11, 1700212.
(38) Gwo, S.; Shih, C. K. Semiconductor Plasmonic Nanolasers: Current Status and Perspectives. Reports on Progress in Physics 2016, 79, 086501.
(39) Wang, D.; Wang, W.; Knudson, M. P.; Schatz, G. C.; Odom, T. W. Structural Engineering in Plasmon Nanolasers. Chemical Reviews. 2018, 118, 2865–2881.
(40) Azzam, S. I.; Kildishev, A. v.; Ma, R. M.; Ning, C. Z.; Oulton, R.; Shalaev, V. M.; Stockman, M. I.; Xu, J. L.; Zhang, X. Ten Years of Spasers and Plasmonic Nanolasers. Light: Science and Applications. 2020, 9, 1-21.
(41) Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R. M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X. Plasmon Lasers at Deep Subwavelength Scale. Nature 2009, 461, 629–632.
(42) Lu, Y. J.; Kim, J.; Chen, H. Y.; Wu, C. H.; Dabidian, N.; Sanders, C. E.; Wang, C. Y.; Lu, M. Y.; Li, B. H.; Qiu, X. G.; Chang, W. H.; Chen, L. J.; Shvets, G.; Shih, C. K.; Gwo, S. Plasmonic Nanolaser Using Epitaxially Grown Silver Film. Science (1979) 2012, 337, 450–453.
(43) Lu, Y. J.; Wang, C. Y.; Kim, J.; Chen, H. Y.; Lu, M. Y.; Chen, Y. C.; Chang, W. H.; Chen, L. J.; Stockman, M. I.; Shih, C. K.; Gwo, S. All-Color Plasmonic Nanolasers with Ultralow Thresholds: Autotuning Mechanism for Single-Mode Lasing. Nano Letters 2014, 14, 4381–4388.
(44) Zhang, Q.; Li, G. Y.; Liu, X. F.; Qian, F.; Li, Y.; Sum, T. C.; Lieber, C. M.; Xiong, Q. H. A Room Temperature Low-Threshold Ultraviolet Plasmonic Nanolaser. Nature Communications 2014, 5, 1-9.
(45) Ma, R. M.; Ota, S.; Li, Y.; Yang, S.; Zhang, X. Explosives Detection in a Lasing Plasmon Nanocavity. Nature Nanotechnology 2014, 9, 600-604.
(46) Chou, Y. H.; Hong, K. B.; Chang, C. T.; Chang, T. C.; Huang, Z. T.; Cheng, P. J.; Yang, J. H.; Lin, M. H.; Lin, T. R.; Chen, K. P.; Gwo, S.; Lu, T. C. Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays. Nano Letters 2018, 18, 747–753.
(47) Wu, Z.; Chen, J.; Mi, Y.; Sui, X.; Zhang, S.; Du, W.; Wang, R.; Shi, J.; Wu, X.; Qiu, X.; Qin, Z.; Zhang, Q.; Liu, X. All-Inorganic CsPbBr3 Nanowire Based Plasmonic Lasers. Advanced Optical Materials 2018, 6, 1800674.
(48) Huang, C.; Sun, W. Z.; Fan, Y. B.; Wang, Y. J.; Gao, Y. S.; Zhang, N.; Wang, K. Y.; Liu, S.; Wang, S.; Xiao, S. M.; Song, Q. H. Formation of Lead Halide Perovskite Based Plasmonic Nanolasers and Nanolaser Arrays by Tailoring the Substrate. Acs Nano 2018, 12, 3865–3874.
(49) Li, H.; Li, J. H.; Hong, K. bin; Yu, M. W.; Chung, Y. C.; Hsu, C. Y.; Yang, J. H.; Cheng, C. W.; Huang, Z. T.; Chen, K. P.; Lin, T. R.; Gwo, S.; Lu, T. C. Plasmonic Nanolasers Enhanced by Hybrid Graphene-Insulator-Metal Structures. Nano Letters 2019, 19, 5017-5024.
(50) Wu, D. Q.; Zhao, H. S.; Yao, J. C.; Zhang, D. Y.; Chang, A. M. Development of high-k gate dielectric materials. Journal of Inorganic Materials 2008, 23, 865–871.
(51) Shim, H. S.; Lee, S.; Park, Y. J.; Park, S. M.; Choi, M. Y.; Song, J. K. Polarization of Lasing in ZnO Nanowires. Bull Korean Chem Soc 2015, 36, 1047–1050.
(52) Zalamai, V. v; Ursaki, V. v; Klingshirn, C.; Kalt, H.; Emelchenko, G. A.; Redkin, A. N. Lasing with Guided Modes in ZnO Nanorods and Nanowires. Applied Physics B-Lasers and Optics 2009, 97, 817–823.
(53) Zhang, Y. F.; Russo, R. E.; Mao, S. S. Quantum Efficiency of ZnO Nanowire Nanolasers. Applied Physics Letters 2005, 87, 043106.
(54) Wille, M.; Sturm, C.; Michalsky, T.; Roder, R.; Ronning, C.; Schmidt-Grund, R.; Grundmann, M. Carrier Density Driven Lasing Dynamics in ZnO Nanowires. Nanotechnology 2016, 27, 225702.
(55) Samadi, M.; Zirak, M.; Naseri, A.; Kheirabadi, M.; Ebrahimi, M.; Moshfegh, A. Z. Design and Tailoring of One-Dimensional ZnO Nanomaterials for Photocatalytic Degradation of Organic Dyes: A Review. Research on Chemical Intermediates. 2019, 45, 2197-2254.
(56) Abbas Shah, N.; Gul, M.; Abbas, M.; Amin, M. Synthesis of Metal Oxide Semiconductor Nanostructures for Gas Sensors. In Gas Sensors; 2020; 1, 101.
(57) Migas, D. B.; Shaposhnikov, V. L.; Rodin, V. N.; Borisenko, V. E. Tungsten Oxides. I. Effects of Oxygen Vacancies and Doping on Electronic and Optical Properties of Different Phases of WO3. Journal of Applied Physics 2010, 108, 093713.
(58) Mardare, C. C.; Hassel, A. W. Review on the Versatility of Tungsten Oxide Coatings. Physica Status Solidi (A) Applications and Materials Science 2019, 216, 1900047.
(59) Shimizu, R.; Yamamoto, K.; Suzuki, T.; Ohsawa, T.; Shiraki, S.; Hitosugi, T. Low-Temperature Deposition of Meta-Stable β- MoO3(011) Epitaxial Thin Films Using Step-and-Terrace Substrates. Thin Solid Films 2015, 595, 153-156.
(60) Huang, P. R.; He, Y.; Cao, C.; Lu, Z. H. Impact of Lattice Distortion and Electron Doping on α-MoO3 Electronic Structure. Scientific Reports 2014, 4, 1-7.
(61) Geeta Rani, B.; Saisri, R.; Kailasa, S.; Sai Bhargava Reddy, M.; Maseed, H.; Venkateswara Rao, K. Architectural Tailoring of Orthorhombic MoO3 Nanostructures toward Efficient NO2 Gas Sensing. Journal of Materials Science 2020, 55, 8109-8122.
(62) Tu, L. W.; Kuo, W. C.; Lee, K. H.; Tsao, P. H.; Lai, C. M.; Chu, A. K.; Sheu, J. K. High-Dielectric-Constant Ta2O5/n-GaN Metal-Oxide-Semiconductor Structure. Applied Physics Letters 2000, 77, 3788–3790.
(63) Pai, Y. H.; Chou, C. C.; Shieu, F. S. Preparation and Optical Properties of Ta2O5-x Thin Films. Materials Chemistry and Physics 2008, 107, 524–527.
(64) Valencia-Balvin, C.; Orozco, S.; Osorio-Guillén, J. M.; Pérez-Walton, S. Optical and Dielectric Properties of β-Ta2O5. In Journal of Physics: Conference Series; 2018, 1043, 012036.
(65) Sethi, G.; Olszta, M.; Li, J.; Sloppy, J.; Horn, M. W.; Dickey, E. C.; Lanagan, M. T. Structure and Dielectric Properties of Amorphous Tantalum Pentoxide Thin Film Capacitors. In Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, CEIDP; 2007, 815-818.
(66) Chaneliere, C.; Autran, J. L.; Devine, R. A. B.; Balland, B. Tantalum Pentoxide (Ta2O5) Thin Films for Advanced Dielectric Applications. Materials Science and Engineering R: Reports. 1998, 22, 269-322.
(67) Lai, Y. S.; Chen, J. S. Spectroscopic Ellipsometry Study on the Structure of Ta2O5/SiOxNy/Si Gate Dielectric Stacks. Thin Solid Films 2002, 420, 117–121.
(68) Knight, M. W.; King, N. S.; Liu, L. F.; Everitt, H. O.; Nordlander, P.; Halas, N. J. Aluminum for Plasmonics. Acs Nano 2014, 8, 834–840.
(69) Castro-Lopez, M.; Brinks, D.; Sapienza, R.; van Hulst, N. F. Aluminum for Nonlinear Plasmonics: Resonance-Driven Polarized Luminescence of Al, Ag, and Au Nanoantennas. Nano Letters 2011, 11, 4674–4678.
(70) Gerard, D.; Gray, S. K. Aluminium Plasmonics. Journal of Physics D: Applied Physics 2015, 48, 184001.
(71) Gutierrez, Y.; de la Osa, R. A.; Ortiz, D.; Saiz, J. M.; Gonzalez, F.; Moreno, F. Plasmonics in the Ultraviolet with Aluminum, Gallium, Magnesium and Rhodium. Applied Sciences-Basel 2018, 8, 64.
(72) Ghori, M. Z.; Veziroglu, S.; Hinz, A.; Shurtleff, B. B.; Polonskyi, O.; Strunskus, T.; Adam, J.; Faupel, F.; Aktas, O. C. Role of UV Plasmonics in the Photocatalytic Performance of TiO2 Decorated with Aluminum Nanoparticles. Acs Applied Nano Materials 2018, 1, 3760–3764.
(73) Khlebtsov, N. G.; Dykman, L. A. Optical Properties and Biomedical Applications of Plasmonic Nanoparticles. Journal of Quantitative Spectroscopy & Radiative Transfer 2010, 111, 1–35.
(74) Huang, C. J.; Ye, J.; Wang, S.; Stakenborg, T.; Lagae, L. Gold Nanoring as a Sensitive Plasmonic Biosensor for On-Chip DNA Detection. Applied Physics Letters 2012, 100, 173114.
(75) Chen, C.; Juan, M. L.; Li, Y.; Maes, G.; Borghs, G.; van Dorpe, P.; Quidant, R. Enhanced Optical Trapping and Arrangement of Nano-Objects in a Plasmonic Nanocavity. Nano Letters 2012, 12, 125–132.
(76) Roxworthy, B. J.; Ko, K. D.; Kumar, A.; Fung, K. H.; Chow, E. K. C.; Liu, G. L.; Fang, N. X.; Toussaint, K. C. Application of Plasmonic Bowtie Nanoantenna Arrays for Optical Trapping, Stacking, and Sorting. Nano Letters 2012, 12, 796–801.
(77) Hill, M. T.; Marell, M.; Leong, E. S. P.; Smalbrugge, B.; Zhu, Y. C.; Sun, M. H.; van Veldhoven, P. J.; Geluk, E. J.; Karouta, F.; Oei, Y. S.; Notzel, R.; Ning, C. Z.; Smit, M. K. Lasing in Metal-Insulator-Metal Sub-Wavelength Plasmonic Waveguides. Optics Express 2009, 17, 11107–11112.
(78) Nezhad, M. P.; Simic, A.; Bondarenko, O.; Slutsky, B.; Mizrahi, A.; Feng, L. A.; Lomakin, V.; Fainman, Y. Room-Temperature Subwavelength Metallo-Dielectric Lasers. Nature Photonics 2010, 4, 395–399.
(79) Atwater, H. A.; Polman, A. Plasmonics for Improved Photovoltaic Devices. Nature Materials 2010, 9, 205–213.
(80) Liu, W. L.; Lin, F. C.; Yang, Y. C.; Huang, C. H.; Gwo, S.; Huang, M. H.; Huang, J. S. The Influence of Shell Thickness of Au@TiO2 Core-Shell Nanoparticles on the Plasmonic Enhancement Effect in Dye-Sensitized Solar Cells. Nanoscale 2013, 5, 7953–7962.
(81) Schuller, J. A.; Barnard, E. S.; Cai, W. S.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Plasmonics for Extreme Light Concentration and Manipulation. Nature Materials 2010, 9, 193–204.
(82) Ho, Y. L.; Clark, J. K.; Syazwan, A.; Kamal, A.; Delaunay, J. J. On-Chip Monolithically Fabricated Plasmonic-Waveguide Nanolaser. Nano Letters 2018, 18, 7769–7776.
(83) Binggeli, M.; Li, F. Scaling Optical Communication for On-Chip Interconnect. 2018 19th International Conference on Electronic Packaging Technology (Icept) 2018, 1178–1183.
(84) Altug, H.; Englund, D.; Vuckovic, J. Ultrafast Photonic Crystal Nanocavity Laser. Nature Physics 2006, 2, 484–488.
(85) Ding, K.; Ning, C. Z. Metallic Subwavelength-Cavity Semiconductor Nanolasers. Light-Science & Applications 2012, 1, e20.
(86) Wan, Y. H.; Zheng, Z.; Shi, X. G.; Bian, Y. S.; Liu, J. S. Hybrid Plasmon Waveguide Leveraging Bloch Surface Polaritons for Sub-Wavelength Confinement. Science China-Technological Sciences 2013, 56, 567–572.
(87) Zhang, B.; Bian, Y. S.; Ren, L. Q.; Guo, F.; Tang, S. Y.; Mao, Z. M.; Liu, X. M.; Sun, J. J.; Gong, J. Y.; Guo, X. S.; Huang, T. J. Hybrid Dielectric-Loaded Nanoridge Plasmonic Waveguide for Low-Loss Light Transmission at the Subwavelength Scale. Scientific Reports 2017, 7, 1-9.
(88) Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface Plasmon Subwavelength Optics. Nature 2003, 424, 824–830.
(89) Chou, Y. H.; Chou, B. T.; Lai, Y. Y.; Yang, C. T.; Chiang, C. K.; Lin, S. D.; Lin, T. R.; Lin, C. C.; Kuo, H. C.; Wang, S. C.; Lu, T. C. Ultraviolet Lasing in a ZnO Plasmonic Nanolaser. 2014 24th Ieee International Semiconductor Laser Conference (Islc 2014) 2014, 84–85.
(90) Wu, C. Y.; Kuo, C. T.; Wang, C. Y.; He, C. L.; Lin, M. H.; Ahn, H.; Gwo, S. Plasmonic Green Nanolaser Based on a Metal-Oxide-Semiconductor Structure. Nano Letters 2011, 11, 4256–4260.
(91) Bergman, D. J.; Stockman, M. I. Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems. Physical Review Letters 2003, 90, 027402.
(92) Noginov, M. A.; Zhu, G.; Belgrave, A. M.; Bakker, R.; Shalaev, V. M.; Narimanov, E. E.; Stout, S.; Herz, E.; Suteewong, T.; Wiesner, U. Demonstration of a Spaser-Based Nanolaser. Nature 2009, 460, 1110–1112.
(93) Chou, Y. H.; Chou, B. T.; Chiang, C. K.; Lai, Y. Y.; Yang, C. T.; Li, H.; Lin, T. R.; Lin, C. C.; Kuo, H. C.; Wang, S. C.; Lu, T. C. Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers. Acs Nano 2015, 9, 3978–3983.
(94) Baek, H.; Park, J. B.; Park, J. W.; Hyun, J. K.; Yoon, H.; Oh, H.; Yoon, J. ZnO Nanolasers on Graphene Films. Applied Physics Letters 2016, 108, 263102.
(95) Vanmaekelbergh, D.; van Vugt, L. K. ZnO Nanowire Lasers. Nanoscale 2011, 3, 2783–2800.
(96) Zamfirescu, M.; Kavokin, A.; Gil, B.; Malpuech, G.; Kaliteevski, M. ZnO as a Material Mostly Adapted for the Realization of Room-Temperature Polariton Lasers. Physical Review B 2002, 65, 161205.
(97) Chou, Y. H.; Wu, Y. M.; Hong, K. B.; Chou, B. T.; Shih, J. H.; Chung, Y. C.; Chen, P. Y.; Lin, T. R.; Lin, C. C.; Lin, S. D.; Lu, T. C. High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum. Nano Letters 2016, 16, 3179–3186.
(98) Liao, Y. J.; Cheng, C. W.; Wu, B. H.; Wang, C. Y.; Chen, C. Y.; Gwo, S.; Chen, L. J. Low Threshold Room-Temperature UV Surface Plasmon Polariton Lasers with ZnO Nanowires on Single-Crystal Aluminum Films with Al2O3 Interlayers. Rsc Advances 2019, 9, 13600–13607.
(99) Gong, T.; Munday, J. N. Aluminum-Based Hot Carrier Plasmonics. Applied Physics Letters 2017, 110, 21117.
(100) Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-Temperature Ultraviolet Nanowire Nanolasers. Science (1979) 2001, 292, 1897–1899.
(101) Raether, H. Surface-Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics 1988, 111, 1–133.
(102) Ho, J. F.; Tatebayashi, J.; Sergent, S.; Fong, C. F.; Iwamoto, S.; Arakawa, Y. Low-Threshold near-Infrared GaAs-AlGaAs Core-Shell Nanowire Plasmon Laser. Acs Photonics 2015, 2, 165–171.
(103) Liang, Z. Q.; Sun, J.; Jiang, Y. Y.; Jiang, L.; Chen, X. D. Plasmonic Enhanced Optoelectronic Devices. Plasmonics 2014, 9, 859–866.
(104) Liu, J. J.; Qu, J. L.; Kirchartz, T.; Song, J. Optoelectronic Devices Based on the Integration of Halide Perovskites with Silicon-Based Materials. Journal of Materials Chemistry A 2021, 9, 20919–20940.
(105) Shi, J. L.; Zhang, J. Y.; Yang, L.; Qu, M.; Qi, D. C.; Zhang, K. H. L. Wide Bandgap Oxide Semiconductors: From Materials Physics to Optoelectronic Devices. Advanced Materials 2021, 33, 2006230.
(106) Yao, J. D.; Yang, G. W. 2D Layered Material Alloys: Synthesis and Application in Electronic and Optoelectronic Devices. Advanced Science 2022, 2103036.
(107) Li, Y. T.; Sun, K.; Luo, D.; Wang, Y. M.; Han, L.; Liu, H.; Guo, X. L.; Yu, D. L.; Ren, T. L. A Review on Low-Dimensional Novel Optoelectronic Devices Based on Carbon Nanotubes. Aip Advances 2021, 11, 110701.
(108) Chowdhury, M. M. U. T.; Islam, M. M.; Bhuiyan, M. S. A. Analysis and Improvement of Si Integrated On-Chip Dipole Antennas Using High-k Dielectric Materials for Ultra Wideband Signal Transmission. 2014 International Conference on Informatics, Electronics & Vision (Iciev) 2014, 1–6.
(109) Chen, R.; Ng, K. W.; Ko, W. S.; Parekh, D.; Lu, F. L.; Tran, T. T. D.; Li, K.; Chang-Hasnain, C. Nanophotonic Integrated Circuits from Nanoresonators Grown on Silicon. Nature Communications 2014, 5, 1–10.
(110) Kumar, M. On-Chip Nanophotonic Devices for Optical Communication and Interconnects. 2018 3rd International Conference on Microwave and Photonics (Icmap) 2018, 1.
(111) Abadal, S.; Cabellos-Aparicio, A.; Lazaro, J. A.; Nemirovsky, M.; Alarcon, E.; Sole-Pareta, J. Area and Laser Power Scalability Analysis in Photonic Networks-on-Chip. 2013 17th International Conference on Optical Networking Design and Modeling (Ondm) 2013, 131–136.
(112) Bonse, J.; Rosenfeld, A.; Kruger, J. On the Role of Surface Plasmon Polaritons in the Formation of Laser-Induced Periodic Surface Structures upon Irradiation of Silicon by Femtosecond-Laser Pulses. Journal of Applied Physics 2009, 106, 104910.
(113) Sidiropoulos, T. P. H.; Roder, R.; Geburt, S.; Hess, O.; Maier, S. A.; Ronning, C.; Oulton, R. F. Ultrafast Plasmonic Nanowire Lasers near the Surface Plasmon Frequency. Nature Physics 2014, 10, 870–876.
(114) Krenn, J. R.; Weeber, J. C. Surface Plasmon Polaritons in Metal Stripes and Wires. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 2004, 362, 739–756.
(115) Gramotnev, D. K.; Bozhevolnyi, S. I. Plasmonics beyond the Diffraction Limit. Nature Photonics 2010, 4, 83–91.
(116) Ma, R. M.; Oulton, R. F.; Sorger, V. J.; Bartal, G.; Zhang, X. A. Room-Temperature Sub-Diffraction-Limited Plasmon Laser by Total Internal Reflection. Nature Materials 2011, 10, 110–113.
(117) Zhu, L. Modal Properties of Hybrid Plasmonic Waveguides for Nanolaser Applications. Ieee Photonics Technology Letters 2010, 22, 535–537.
(118) Deng, Q.; Kang, M.; Zheng, D.; Zhang, S. P.; Xu, H. X. Mimicking Plasmonic Nanolaser Emission by Selective Extraction of Electromagnetic Near-Field from Photonic Microcavity. Nanoscale 2018, 10, 7431–7439.
(119) Agarwal, A.; Tien, W. Y.; Huang, Y. S.; Mishra, R.; Cheng, C. W.; Gwo, S.; Lu, M. Y.; Chen, L. J. ZnO Nanowires on Single-Crystalline Aluminum Film Coupled with an Insulating WO3 Interlayer Manifesting Low Threshold SPP Laser Operation. Nanomaterials (Basel) 2020, 10, 1680.
(120) Su, S. C.; Zhu, H.; Zhang, L. X.; He, M.; Zhao, L. Z.; Yu, S. F.; Wang, J. N.; Ling, F. C. C. Low-Threshold Lasing Action in an Asymmetric Double ZnO/ZnMgO Quantum Well Structure. Applied Physics Letters 2013, 103, 131104.
(121) Wang, L. W.; Qu, J. L.; Song, J.; Xian, J. H. A Novel Plasmonic Nanolaser Based on Fano Resonances with Super Low Threshold. Plasmonics 2017, 12, 1145–1151.
(122) Huo, Y. Y.; Jia, T. Q.; Ning, T. Y.; Tan, C. H.; Jiang, S. Z.; Yang, C.; Jiao, Y.; Man, B. Y. A Low Lasing Threshold and Widely Tunable Spaser Based on Two Dark Surface Plasmons. Scientific Reports 2017, 7, 13590.
(123) Kar, A.; Goswami, N.; Saha, A. Tunable Low-Threshold Bistable Goos-Hanchen Shift and Lmbert-Fedorov Shift Using Long-Range Graphene Surface Plasmons within the Terahertz Region. Applied Optics 2019, 58, 9376–9383.
(124) Kuramochi, E.; Duprez, H.; Kim, J.; Takiguchi, M.; Takeda, K.; Fuji, T.; Nozaki, K.; Shinya, A.; Sumikura, H.; Taniyama, H.; Matsuo, S.; Notomi, M. Room Temperature Continuous-Wave Nanolaser Diode Utilized by Ultrahigh-Q Few-Cell Photonic Crystal Nanocavities. Optics Express 2018, 26, 26598–26617.
(125) Michalsky, T.; Wille, M.; Grundmann, M.; Schmidt-Grund, R. Tunable and Switchable Lasing in a ZnO Microwire Cavity at Room Temperature. Journal of Physics D-Applied Physics 2018, 51, 425305.
(126) Chervy, T.; Azzini, S.; Lorchat, E.; Wang, S. J.; Gorodetski, Y.; Hutchison, J. A.; Berciaud, S.; Ebbesen, T. W.; Genet, C. Room Temperature Chiral Coupling of Valley Excitons with Spin-Momentum Locked Surface Plasmons. Acs Photonics 2018, 5, 1281–1287.
(127) Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson, M. v; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead Halide Perovskite Nanowire Lasers with Low Lasing Thresholds and High Quality Factors. Nature Materials 2015, 14, 636–642.
(128) Fu, Y. P.; Zhu, H. M.; Stoumpos, C. C.; Ding, Q.; Wang, J.; Kanatzidis, M. G.; Zhu, X. Y.; Jin, S. Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Acs Nano 2016, 10, 7963–7972.
(129) Qian, F.; Li, Y.; Gradecak, S.; Park, H. G.; Dong, Y. J.; Ding, Y.; Wang, Z. L.; Lieber, C. M. Multi-Quantum-Well Nanowire Heterostructures for Wavelength-Controlled Lasers. Nature Materials 2008, 7, 701–706.
(130) Yang, Z. Y.; Wang, D. L.; Meng, C.; Wu, Z. M.; Wang, Y.; Ma, Y. G.; Dai, L.; Liu, X. W.; Hasan, T.; Liu, X.; Yang, Q. Broadly Defining Lasing Wavelengths in Single Bandgap-Graded Semiconductor Nanowires. Nano Letters 2014, 14, 3153–3159.
(131) Lu, Y. Z.; Gu, F. X.; Meng, C.; Yu, H. K.; Ma, Y. G.; Fang, W.; Tong, L. M. Multicolour Laser from a Single Bandgap-Graded CdSSe Alloy Nanoribbon. Optics Express 2013, 21, 22314–22319.
(132) Rollo, S.; Rani, D.; Olthuis, W.; Garcia, C. P. High Performance Fin-FET Electrochemical Sensor with High-k Dielectric Materials. Sensors and Actuators B-Chemical 2020, 303, 127215.
(133) Xu, P.; Pan, Z. L. Collaborative Applying the Ultra-Low-k Dielectric and the High-k Dielectric Materials for Performance Enhancement in Coupled Multilayer Graphene Nanoribbon Interconnects. Ieee Journal of the Electron Devices Society 2020, 8, 200–212.
(134) Marroun, A.; Touhami, N. A.; el Hamadi, T. E. Improved IGZO-TFT Structure Using High-k Gate Dielectric Materials. 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (Wits) 2019, 1–4.
(135) Zou, J. W.; Wang, H.; Shi, Z. S.; Hao, X. J.; Yan, D. H.; Cui, Z. C. Development of High-k Polymer Materials for Use as a Dielectric Layer in the Organic Thin-Film Transistors. Journal of Physical Chemistry C 2019, 123, 6438–6443.
(136) Hlali, S.; Hizem, N.; Kalboussi, A. High-k Dielectric Materials for the Gate Oxide of a MIS Capacitor: Effect of Interface States on the C-V Characteristics. Journal of Computational Electronics 2016, 15, 1340–1350.
(137) Rasol, M. F. M.; Hamid, F. K. A.; Johari, Z.; Alias, N. E.; Ismail, R. Stacking SiO2/High-K Dielectric Material in 30nm Junction-Less Nanowire Transistor Optimized Using Taguchi Method for Lower Leakage Current. Proceedings of the 2019 Ieee Regional Symposium on Micro and Nanoelectronics (Rsm) 2019, 1–4.
(138) Jellison, G. E.; Baba, J. S. Pseudodielectric Functions of Uniaxial Materials in Certain Symmetry Directions. Journal of the Optical Society of America a-Optics Image Science and Vision 2006, 23, 468–475.
(139) Jellison, G. E.; Boatner, L. A.; Budai, J. D.; Jeong, B. S.; Norton, D. P. Spectroscopic Ellipsometry of Thin Film and Bulk Anatase (TiO2). Journal of Applied Physics 2003, 93, 9537–9541.
(140) Pertsev, N. A.; Dittmann, R.; Plonka, R.; Waser, R. Thickness Dependence of Intrinsic Dielectric Response and Apparent Interfacial Capacitance in Ferroelectric Thin Films. Journal of Applied Physics 2007, 101, 74102.
(141) Zhang, X.; Yan, M.; Ning, T.; Zhao, L.; Jiang, S.; Huo, Y. Low-Threshold Nanolaser Based on Hybrid Plasmonic Waveguide Mode Supported by Metallic Grating Waveguide Structure. Nanomaterials 2021, 11, 2555.
(142) Acharya, J.; Wilt, J.; Liu, B.; Wu, J. Probing the Dielectric Properties of Ultrathin Al/Al2O3 /Al Trilayers Fabricated Using in Situ Sputtering and Atomic Layer Deposition. ACS Applied Materials & Interfaces 2018, 10, 3112–3120.
(143) Chung, Y. C.; Cheng, P. J.; Chou, Y. H.; Chou, B. T.; Hong, K. B.; Shih, J. H.; Lin, S. D.; Lu, T. C.; Lin, T. R. Surface Roughness Effects on Aluminium-Based Ultraviolet Plasmonic Nanolasers. Scientific Reports 2017, 7, 1-9.
(144) Costina, I.; Franchy, R. Band gap of amorphous and well-ordered Al2O3 on Ni3Al (100). Applied Physics Letters 2001, 78, 4139-4141.
(145) Zhu, J., Vasilopoulou, M., Davazoglou, D. et al. Intrinsic Defects and H Doping in WO3. Scientific Reports 2017, 7, 40882.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *