帳號:guest(3.141.30.210)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):翁事陽
作者(外文):Wong, Shih-Young
論文名稱(中文):利用原子層沉積法於蜂窩狀結構上製備鉭基光觸媒並藉Z-scheme及局部性表面電漿共振效應提升其光催化水解產氫
論文名稱(外文):Fabrication of Ta-based Photocatalysts on a Nanohoneycomb Structure by ALD and Their Improved Photocatalytic Hydrogen Evolutions by Z-scheme and Localized Surface Plasmon Resonance Effect
指導教授(中文):彭宗平
指導教授(外文):Perng, Tsong-Pyng
口試委員(中文):柯志忠
王致傑
口試委員(外文):Kei, Chi-Chung
Wang, Chih-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:107031606
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:173
中文關鍵詞:產氫氮化鉭氧化鎢氧化鉭原子層沉積法奈米蜂窩狀結構局部性表面電漿共振效應
外文關鍵詞:H2 evolutionTa3N5WO3Ta2O5ALDNanohoneycombZ-schemeLSPR Effect
相關次數:
  • 推薦推薦:0
  • 點閱點閱:126
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,氫氣已被視為一種優異的替代能源,因其可以解決如全球暖化、空氣汙染及化石燃料耗盡的問題,而透過光催化水解產生氫氣的方法很具產業潛力。在本研究中,先利用伽凡尼取代反應合成出奈米蜂窩狀結構(nHC),並以其為基材作後續的光觸媒沉積,以提供比平面模板更大的反應面積。接著,利用原子層沉積技術(ALD),將氮化鉭(Ta3N5)與氧化鎢(WO3)構成的Z-scheme異質結構製備在nHC 上,以改善Ta3N5因其快速的電子電洞復合率而造成較差的光催化效率。除此之外,為了研究局部性表面電漿共振(LSPR)效應,亦藉由ALD製備氧化鉭(Ta2O5)於nHC 上,並接續在其上沉積金奈米顆粒,得到所需樣品。
合成nHC為首要步驟,方法為將鍍在矽基板上的鋁膜浸泡於0.1 M的氯化鎳溶液中,並持續48小時。其窩穴大小可藉由調整氯化鎳的濃度來改變。分析nHC的能量散射X射線譜(EDX)及X射線光電子能譜(XPS)得知,此結構中含有鋁、鎳、氧與氫元素,而利用掃描式電子顯微鏡(SEM)圖,可量測出nHC 的窩穴大小及深度分別為79與180 nm。
本研究中所有光觸媒材料包含Ta3N5、WO3及Ta2O5,均使用ALD製備。此三種材料的前驅物分別為五甲基二甲基氨基鉭(PDMAT)與氨氣、六羰基鎢(W(CO)6)與水及PDMAT與水。其ALD成長速率以橢偏儀量測,估計每一循環可分別成長0.752、0.251及0.463 Å。三種材料以ALD成長於矽基板與nHC上,其結晶行為均透過低掠角X射線繞射儀(GIXRD)及XPS來研究。經估計,Ta3N5與WO3的能帶大小分別為2.27與2.86 eV。
在製備由Ta3N5與WO3組成的異質結構前,會先製備Ta3N5於nHC上(Ta3N5@nHC)。方法是先利用ALD沉積氮化鉭於nHC上,接著將其在氨氣下退火,加熱至750 °C後持溫30分鐘,可得到所需樣品。此樣品在氬氣氣氛下做快速退火及在空氣中退火的穩定性,皆透過GIXRD作分析。經研究發現,儘管於700 °C並持溫10分鐘做快速退火,或是在空氣中以350 °C做1小時持溫退火,仍可保留住Ta3N5相。Ta3N5@nHC在全光譜照射下的產氫速率為0.24 mmol/g‧h,為Ta3N5薄膜(Ta3N5@Si)的1.85倍之多,表明了nHC基材高表面積的優勢。
WO3@Ta3N5@nHC (WOTN@nHC)異質結構的製程是先將WO3以ALD沉積於Ta3N5@nHC上,接著將此樣品於氬氣氣氛下加熱至550 °C後持溫10分鐘做快速退火。GIXRD圖顯示出,此異質結構的組成為氧化鎢(W18O49)結晶相與Ta3N5結晶相。另一方面,Ta3N5@WO3@nHC (TNWO@nHC)異質結構的製程是先將WO3以ALD沉積於nHC上,緊接著以ALD沉積上Ta3N5,隨後進行三步驟的熱處理,第一步:於750 °C氨氣氣氛下退火30分鐘;第二步:於350 °C空氣下退火1小時;第三步:加熱至650 °C並持溫10分鐘做快速退火。經分析此異質結構的XPS後發現,在三步驟的熱處理中,Ta3N5的含量逐漸減少,而WO3的含量則逐漸增加。最終的異質結構經GIXRD及XPS分析後,確認其組成為非晶態的WO3與結晶態的Ta3N5。產氫結果方面,兩種異質結構在全光譜或可見光照射下的產氫效率,均比Ta3N5@nHC高,此可歸功於Z-scheme的形成。此外,WOTN@nHC因其有比TNWO@nHC更多的光吸收及更好的結晶性,而有更好的產氫表現;再者,WOTN@nHC中極薄的WO3膜能防止Ta3N5在溶液中的不穩定性,亦同時提供電子穿隧的可能。其在白金助催化劑的協助下,可分別於全光譜及可見光的照射中達到1.13 mmol/g‧h 及15.6 μmol/g‧h的產氫效率。
為了要形成以LSPR介導的結構,首先將Ta2O5以ALD沉積在nHC上,並將此樣品於氬氣氣氛下進行快速退火,加熱至750 °C後持溫3分鐘,在nHC上得到結晶態的Ta2O5 (Ta2O5@nHC)。接著將金以濺鍍方式沉積於Ta2O5@nHC,並做退火,得到奈米顆粒金在Ta2O5@nHC的最終所需樣品。初沉積的金顆粒經過600、650及700 °C退火後,顆粒大小會隨著溫度增加而增加。金在Ta2O5@nHC上產生的LSPR現象,可透過檢視此樣品的紫外可見光光譜而觀察到。結果顯示,LSPR強度與金的顆粒大小有關。初沉積的金在Ta2O5@nHC上的樣品,經白金助催化劑的協助,能成功在可見光照射下產生氫氣,其產氫效率為1.13 mmol/g‧h。而經過650 °C退火後的樣品,同樣在白金助催化劑的協助下,可見光照射下的產氫效率可達到前者的71%,是所有退火樣品中最高的效率。另外,當奈米顆粒金沉積於Ta3N5@nHC、WOTN@nHC及TNWO@nHC三種樣品上,並加入白金助催化劑,亦可藉LSPR的作用提升三者之在可見光下的產氫效率。
Photocatalytic water splitting is a potential way to produce hydrogen gas which is regarded as an alternative energy source for solving the problems such as global warming, air pollution, and fossil fuel exhaustion. In this research, a nanohoneycomb structure (nHC) synthesized by a galvanic replacement reaction was used as a substrate for further deposition of photocatalysts to provide a larger reaction area than planar substrates. A Z-scheme heterostructure composed of Ta3N5 and WO3 were prepared on the nHC by atomic layer deposition (ALD) to improve the photocatalytic activity of Ta3N5 which suffers from rapid recombination rate of electron–hole (e−‒h+) pairs. Furthermore, Ta2O5 was prepared on the nHC by ALD and then Au nanoparticles were deposited on the Ta2O5@nHC to study the localized surface plasmon resonance (LSPR) effect.
The nHC was firstly synthesized by immersing an Al film coated on Si in a 0.1 M NiCl2 solution for 48 h. It was composed of Al, Ni, O, and H elements from the energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopic (XPS) analyses. The cell size could be adjusted by the concentration of Ni2+. The average cell size and depth of the nHC were measured to be 79 nm and 180 nm, respectively, from the scanning electron microscopic (SEM) images.
The precursors for ALD of Ta3N5, WO3, and Ta2O5 were pentakis(dimethylamino)tantalum (PDMAT) and NH3, W(CO)6 and H2O, and PDMAT and H2O, respectively. The growth rates of the three materials were measured by a spectroscopic ellipsometer and estimated to be 0.752, 0.251, and 0.463 Å/cycle, respectively. The crystallization behaviors of ALD-grown Ta3N5, WO3, and Ta2O5 on Si and the nHC were studied by grazing incidence X-ray diffraction (GIXRD) and XPS. The bandgaps of Ta3N5 and WO3 were estimated to be 2.27 and 2.86 eV, respectively.
Prior to the fabrication of Ta3N5 and WO3 heterostructures, the Ta3N5@nHC was prepared by depositing Ta3N5 on the nHC by ALD, followed by annealing in NH3 at 750 °C for 30 min. The stabilities of Ta3N5@nHC annealed in Ar by rapid thermal annealing (RTA) and in air were also studied by XRD. It was found that the Ta3N5 phase could be retained either by heating to 700 °C in RTA and stayed for 10 min or by air annealing at 350 °C for 1 h. The H2 evolution rate of Ta3N5@nHC was 0.24 mmol/g‧h under a 300-W Xe lamp irradiation, which was 1.85 times higher than that of Ta3N5@Si, indicating the advantage of using the nHC substrate because its higher surface area.
The WO3@Ta3N5@nHC (WOTN@nHC) heterostructure was fabricated by depositing WO3 on the Ta3N5@nHC by ALD, followed by RTA in Ar at 550 °C for 10 min. The XRD pattern of WOTN@nHC showed that the heterostructure was composed of crystalline W18O49 and Ta3N5 phases. On the other hand, the Ta3N5@WO3@nHC (TNWO@nHC) was fabricated by depositing Ta3N5 on the WO3@nHC by ALD, followed by a three-step heat treatment: annealing in NH3 at 750 °C for 30 min, annealing in air at 350 °C for 1 h, and RTA in Ar at 650 °C for 10 min. The XPS analyses of the TNWO@nHC demonstrated that the amounts of Ta3N5 and WO3 were gradually decreased and increased, respectively, during the three-step heat treatment. The final heterostructure was composed of amorphous WO3 and crystalline Ta3N5, as confirmed by the XRD and XPS analyses. The results of H2 evolution showed that both heterostructures had higher evolution rates than that of Ta3N5@nHC under irradiation with or without a visible-light filter, which could be ascribed to the merit of Z-scheme heterostructure. Moreover, the WOTN@nHC had better performance than that of TNWO@nHC due to more light absorption and better crystallinity. The ultrathin WO3 film in the WOTN@nHC could not only prevent the Ta3N5 film from degradation but also make the electron tunneling possible, The H2 evolution rate of the WOTN@nHC with the Pt cocatalyst reached 1.13 mmol/g‧h and 15.6 μmol/g‧h under irradiation without and with a visible-light filter, respectively.
An LSPR-mediated photocatalyst structure was constructed by sputtering and annealing Au to form nanoparticles on the Ta2O5@nHC. The Ta2O5@nHC was fabricated by depositing Ta2O5 on the nHC by ALD, followed by annealing in Ar by RTA at 750 °C for 3 min. The as-prepared Au@Ta2O5@nHC (Au@Ta2O5@nHC-0) was further annealed in air at 600, 650, and 700 °C for 1 h to form Au nanoparticles on the Ta2O5@nHC. The LSPR phenomenon was observed by examining the UV-Vis absorption spectra of Au@Ta2O5@nHCs, and the LSPR intensity could be correlated to the particle size of Au nanoparticles. The H2 evolution results of the as-prepared and annealed samples revealed that the Au@Ta2O5@nHC-0 with the Pt cocatalyst successfully generated H2 with an evolution rate of 8.3 μmol/g‧h under visible light irradiation, and the highest H2 evolution rate was reached by the sample annealed at 650 °C (ATO@nHC(650)), which was 71 % higher than that of the Au@Ta2O5@nHC-0. The LSPR effect also functioned when Au nanoparticles were prepared on the Ta3N5@nHC, WOTN@nHC, and TNWO@nHC, as confirmed by the enhancement of H2 evolution under visible light irradiation with the Pt cocatalyst.
摘要.............................................................I
Abstract.........................................................IV
誌謝.............................................................VIII
Table of Contents................................................XI
Chapter 1 Introduction...........................................1
1.1 Research background........................................1
1.2 Motivation of the research.................................4
Chapter 2 Literature Review......................................8
2.1 Photocatalytic water splitting.............................8
2.1.1 Fundamentals of photocatalytic water splitting.............10
2.1.2 Z-scheme heterostructures..................................14
2.1.3 Surface plasmon resonance (SPR) effect.....................18
2.1.4 Cocatalysts................................................24
2.2 Properties of photocatalysts...............................28
2.2.1 Tantalum(V) nitride (Ta3N5)................................30
2.2.2 Tungsten oxide (WO3).......................................35
2.2.3 Tantalum(V) oxide (Ta2O5)..................................39
2.3 Atomic layer deposition (ALD)..............................43
2.3.1 Principle of ALD...........................................45
2.3.2 ALD of Ta3N5...............................................49
2.3.3 ALD of WO3.................................................51
Chapter 3 Experimental Procedures................................57
3.1 Synthesis of nanohoneycomb structures......................57
3.2 Preparation of photocatalyst structures....................57
3.2.1 Fabrication of Ta3N5@nHC by ALD............................57
3.2.2 Fabrication of WO3–Ta3N5@nHC heterostructure by ALD........60
3.2.3 Fabrication of Ta3N5–WO3@nHC heterostructure by ALD........63
3.3 Construction of LSPR-mediated photocatalyst structures.....64
3.3.1 Fabrication of Ta2O5@nHC by ALD............................64
3.3.2 Deposition of Au nanoparticles as a plasmonic metal........64
3.4 Loading of Pt nanoparticles as a cocatalyst................66
3.5 Characterization techniques................................67
3.6 Photocatalytic hydrogen evolution measurement..............69
Chapter 4 Results and Discussion.................................71
4.1 Characterization of nanohoneycomb structure................71
4.1.1 Formation of Ni-nHC and Co-nHC.............................71
4.1.2 Surface area estimation of nHC.............................77
4.1.3 XPS analysis of nHC........................................80
4.2 Characterization of ALD-grown Ta3N5 thin films.............80
4.3 Characterization of ALD-grown WO3 thin films...............85
4.4 Formation of WOTN@nHC......................................90
4.4.1 Crystallization of WO3 by RTA..............................90
4.4.2 Stability of Ta3N5 during RTA..............................92
4.4.3 Characterization of WOTN@nHC...............................92
4.5 Formation of TNWO@nHC by a three-step heat treatment.......96
4.5.1 First step heat treatment..................................96
4.5.2 Second step heat treatment.................................100
4.5.3 Third step heat treatment..................................106
4.6 Characterization of ALD-grown Ta2O5 thin film..............110
4.7 Weight estimation of the prepared photocatalysts...........114
4.8 Characterization of Au nanoparticles on Ta2O5@nHC..........116
4.8.1 Morphology of Au nanoparticles on Ta2O5@nHC................116
4.8.2 Loading of Au nanoparticles on Ta2O5@nHC...................118
4.8.3 UV-vis absorption of Au nanoparticles on Ta2O5@nHC.........124
4.9 Characterization of ALD-grown Pt nanoparticles.............128
4.10 Photocatalytic hydrogen evolution..........................130
4.11 Proposed mechanisms........................................138
Chapter 5 Conclusions............................................146
Chapter 6 Suggested Future Work..................................149
References.......................................................152

[1] https://ourworldindata.org/fossil-fuels
[2] https://www.ecotricity.co.uk/our-green-energy/energy-independence/the-end-of-fossil-fuels
[3] El-Montasser, G.; Ben-Salha, O. A new methodology for assessing the energy use–environmental degradation nexus. Environ. Monit. Assess. 2019, 191, 587.
[4] Staffell, I.; Scamman, D.; Abad, A. V.; Balcombe, P.; Dodds, P. E.; Ekins, P.; Shah, N.; Ward, K. R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491.
[5] Mazloomi, K.; Gomes, C. Hydrogen as an energy carrier: prospects and challenges. Renew. Sustain. Energy Rev. 2012, 16, 3024–3033.
[6] Dunn, S. Hydrogen futures: toward a sustainable energy system. Int. J. Hydrogen Energy 2002, 27, 235–264.
[7] Acar, C.; Dincer, I.; Naterer, G. F. Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int. J. Energy Res. 2016, 40, 1449–1473.
[8] Jafari, T.; Moharreri, E.; Amin, A. S.; Miao, R.; Song, W.; Suib, S. L. Photocatalytic water splitting—the untamed dream: a review of recent advances. Molecules 2016, 21, 900.
[9] Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.
[10] Chen, X.; Shen, S.; Guo, L.; Mao S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.
[11] Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.
[12] Cao, S.; Piao, L.; Chen, X. Emerging photocatalysts for hydrogen evolution. Trends. Chem. 2020, 2, 57–70.
[13] Afroz, K.; Moniruddin, M.; Bakranov, N.; Kudaibergenov, S.; Nuraje, N. A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials. J. Mater. Chem. A 2018, 6, 21696–21718.
[14] Moniz, S. J. A; Shevlin, S. A.; Martin, D. J.; Guo, Z. -X.; Tang, J. Visible-light driven heterojunction photocatalysts for water splitting – a critical review. Energy Environ. Sci. 2015, 8, 731–759.
[15] Rahman, M. Z.; Kibria, M. G.; Mullins, C. B. Metal-free photocatalysts for hydrogen evolution. Chem. Soc. Rev. 2020, Advance Article.
[16] Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.
[17] Khan, M. M.; Ansari, S. A.; Pradhan, D.; Ansari, M. O.; Han, D. H.; Lee, J.; Cho, M. H. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A 2014, 2, 637–644.
[18] Wang, J.; Wang, Z.; Huang, B.; Ma, Y.; Liu, Y.; Qin, X.; Zhang, X.; Dai, Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 2012, 4, 4024–4030.
[19] Chen, X.; Liu, L.; Huang, F. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885.
[20] Iwase, A.; Yoshino, S.; Takayama, T.; Ng, Y. N.; Amal, R.; Kudo, A. Water splitting and CO2 reduction under visible light irradiation using Z‑scheme systems consisting of metal sulfides, CoOx-loaded BiVO4, and a reduced graphene oxide electron mediator. J. Am. Chem. Soc. 2016, 138, 10260–10264.
[21] Li, H.; Yu, H.; Sun, L.; Zhai, J.; Han, X. A self-assembled 3D PtTiO2 architecture for high-performance photocatalytic hydrogen production. Nanoscale 2015, 7, 1610–1615.
[22] Li, R.; Li, C. Photocatalytic water splitting on semiconductor-based photocatalysts. Adv. Catal. 2017, 60, 1–57.
[23] Li, R. Latest progress in hydrogen production from solar water splitting via photocatalysis, photoelectrochemical, and photovoltaic‐photoelectrochemical solutions. Chinese J. Catal. 2017, 38, 5–12.
[24] Varma, R. S.; Thorat, N.; Fernandes, R.; Kothari, D. C.; Patel, N.; Miotello, A. Dependence of photocatalysis on charge carrier separation in Ag-doped and decorated TiO2 nanocomposites. Catal. Sci. Technol. 2016, 6, 8428–8440.
[25] Bai, S.; Wang, L.; Li, Z.; Xiong, Y. Facet-engineered surface and interface design of photocatalytic materials. Adv. Sci. 2017, 4, 1600216.
[26] Humayun, M.; Raziq, F.; Khan A.; Luo, W. Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chem. Lett. Rev. 2018, 11, 86–102.
[27] Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555–1614.
[28] Li, H.; Tu, W.; Zhou, Y.; Zou, Z. Z-scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges. Adv. Sci. 2016, 3, 1500389.
[29] Bard, A. J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J. Photochem. 1979, 10, 59–75.
[30] Wang, Y.; Suzuki, H.; Xie, J.; Tomita, O.; Martin, D. J.; Higashi, M.; Kong, D.; Abe, R.; Tang, J. Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z‑scheme water splitting systems. Chem. Rev. 2018, 118, 5201–5241.
[31] Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Jaroniec, M. Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater. Today 2018, 21, 1042–1063.
[32] Hara, S.; Yoshimizu, M.; Tanigawa, S.; Ni, L.; Ohtani, B.; Irie, H. Hydrogen and oxygen evolution photocatalysts synthesized from strontium titanate by controlled doping and their performance in two-step overall water splitting under visible light. J. Phys. Chem. C 2012, 116, 17458–17463.
[33] Maeda, K. Z‑scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 2013, 3, 1486–1503.
[34] Yu, Z. B.; Xie, Y. P.; Liu, G.; Lu, G. Q.; Ma, X. L.; Cheng, H.-M. Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2013, 1, 2773–2776.
[35] Wang, X.; Liu, G.; Chen, Z.-G.; Li, F.; Wang, L.; Lu, G. Q.; Cheng, H.-M. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chem. Commun. 2009, 23, 3452–3454.
[36] Zhang, L. J.; Li, S.; Liu, B. K.; Wang, D. J.; Xie, T. F. Highly efficient CdS/WO3 photocatalysts: Z‑scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal. 2014, 4, 3724–3729.
[37] Hsu, W.-P.; Mishra, M.; Liu, W.-Z.; Su, C.-Y.; Perng, T.-P. Fabrication of direct Z-scheme Ta3N5-WO2.72 film heterojunction photocatalyst for enhanced hydrogen evolution. Appl. Catal. B 2017, 201, 511–517.
[38] Liang, Y.-H.; Liao, M.-W.; Mishra, M.; Perng, T.-P. Fabrication of Ta3N5–ZnO direct Z-scheme photocatalyst for hydrogen generation. Int. J. Hydrog. Energy 2019, 44, 19162–19167.
[39] Khan, M. R.; Chuan, T. W.; Yousuf, A.; Chowdhury, M. N. K.; Cheng, C. K. Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: study of their mechanisms to enhance photocatalytic activity. Catal. Sci. Technol. 2015, 5, 2522–2531.
[40] Kosuda, K. M.; Bingham, J. M.; Wustholz, K. L.; Duyne, R. P. V. Nanostructures and surface-enhanced Raman spectroscopy. Compr. Nanosci. Technol. 2011, 3, 263–301.
[41] Masson, J. F. Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens. 2017, 2, 16–30.
[42] Homola, J. (Ed.) 2006, Surface Plasmon Resonance Based Sensors (Springer Series on Chemical Sensors and Biosensors) (Heidelberg: Springer)
[43] Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213.
[44] Ozbay, E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189–193.
[45] Larsson, E. M.; Langhammer, C.; Zorić, I.; Kasemo, B. Nanoplasmonic probes of catalytic reactions. Science 2009, 326, 1091–1094.
[46] Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.
[47] Zhang, Q.; Gangadharan, D. T.; Liu, Y.; Xu, Z.; Chaker, M.; Ma, D. Recent advancements in plasmon-enhanced visible light-driven water splitting. J. Materiomics 2017, 3, 33–50.
[48] Youngblood, W. J.; Lee, S.-H. A.; Kobayashi, Y.; Hernandez-Pagan, E. A.; Hoertz, P. G.; Moore, T. A.; Moore, A. L.; Gust, D.; Mallouk, T. E. Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J. Am. Chem. Soc. 2009, 131, 926–927.
[49] Tian, Y.; Tatsuma, T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 2005, 127, 7632–7637.
[50] Zheng, Z.; Tachikawa, T.; Majima, T. Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J. Am. Chem. Soc. 2014, 136, 6870–6873.
[51] Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 2006, 96, 113002.
[52] Ingram, D. B.; Linic, S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 2011, 133, 5202–5205.
[53] Zhang, X.; Zhu, Y.; Yang, X.; Wang, S.; Shen, J.; Lin, B.; Li, C. Enhanced visible light photocatalytic activity of interlayer-isolated triplex Ag@SiO2@TiO2 core–shell nanoparticles. Nanoscale 2013, 5, 3359–3366.
[54] Christopher, P.; Ingram, D. B.; Linic, S. Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: photochemistry mediated by Ag surface plasmons. J. Phys. Chem. C 2010, 114, 9173–9177.
[55] Yang, J.; Wang, D.; Han, H.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909.
[56] Zhang, G.; Lan, Z.-A.; Wang, X. Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. Chem. Sci. 2017, 8, 5261–5274.
[57] Wang, Y.; Yao, J.; Li, H.; Su, D.; Antonietti, M. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J. Am. Chem. Soc. 2011, 133, 2362–2365.
[58] Iwase, A.; Ng, Y. H.; Ishiguro, Y.; Kudo, A.; Amal, R. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J. Am. Chem. Soc. 2011, 133, 11054–11057.
[59] Cheng, N.; Tian, J.; Liu, Q.; Ge, C.; Qusti, A. H.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants. ACS Appl. Mater. Interfaces 2013, 5, 6815–6819.
[60] Osaki, J.; Yoda, M.; Takashima, T.; Irie, H. Selective loading of platinum or silver cocatalyst onto a hydrogen-evolution photocatalyst in a silver-mediated all solid-state Z-scheme system for enhanced overall water splitting. RSC Adv. 2019, 9, 41913–41917.
[61] Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893–2939.
[62] Yan, H.; Yang, J.; Ma, G.; Wu, G.; Zong, X.; Lei, Z.; Shi, J.; Li, C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. J. Catal. 2009, 266, 165–168.
[63] Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.
[64] Garcia-Esparza, A. T.; Cha, D.; Ou, Y.; Kubota, J.; Domen, K.; Takanabe, K. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting. ChemSusChem 2013, 6, 168–181.
[65] Husin, H.; Su, W.-N.; Chen, H.-M.; Pan, C.-J.; Chang, S.-H.; Rick, J.; Chuang, W.-T.; Sheu, H.-S.; Hwang, B.-J. Photocatalytic hydrogen production on nickel-loaded LaxNa1-xTaO3 prepared by hydrogen peroxide-water based process. Green Chem. 2011, 13, 1745–1754.
[66] Brese, N. E.; O’Keeffe, M. Structure of Ta3N5 at 16 K by time-of-flight neutron diffraction. Acta Cryst. 1991, C47, 2291–2294.
[67] Fang, C. M.; Orhan, E.; de Wijs, G. A.; Hintzen, H. T.; de Groot, R. A.; Marchand, R.; Saillard, J. -Y.; de With, G. The electronic structure of tantalum (oxy)nitrides TaON and Ta3N5. J. Mater. Chem. 2001, 11, 1248–1252.
[68] Dabirian, A.; van de Krol, R. High-temperature ammonolysis of thin film Ta2O5 photoanodes: evolution of structural, optical, and photoelectrochemical properties. Chem. Mater. 2015, 27, 708–715.
[69] Wang, L.; Zhou, X.; Nguyen, N. T.; Hwang, I.; Schmuki, P. Strongly enhanced water splitting performance of Ta3N5 nanotube photoanodes with subnitrides. Adv. Mater. 2016, 28, 2432–2438.
[70] Cheng, Q.; Fan, W.; He, Y.; Ma, P.; Vanka, S.; Fan, S.; Mi, Z.; Wang, D. Photorechargeable high voltage redox battery enabled by Ta3N5 and GaN/Si dual-photoelectrode. Adv. Mater. 2017, 29, 1700312.
[71] Hitoki, G.; Ishikawa, A.; Takata, T.; Kondo, J. N.; Hara, M.; Domen, K. Ta3N5 as a novel visible light-driven photocatalyst (λ < 600 nm). Chem. Lett. 2002, 31, 736–737.
[72] Maeda, K.; Nishimura, N.; Domen, K. A precursor route to prepare tantalum (V) nitride nanoparticles with enhanced photocatalytic activity for hydrogen evolution under visible light. Appl. Catal. A 2009, 370, 88–92.
[73] Feng, X.; LaTempa, T. J.; Basham, J. I.; Mor, G. K.; Varghese, O. K.; Grimes, C. A. Ta3N5 nanotube arrays for visible light water photoelectrolysis. Nano Lett. 2010, 10, 948–952.
[74] Adhikari, S. P.; Hood, Z. D.; More, K. L.; Ivanov, I.; Zhang, L.; Grossab, M.; Lachgar, A. Visible light assisted photocatalytic hydrogen generation by Ta2O5/Bi2O3, TaON/Bi2O3, and Ta3N5/Bi2O3 composites. RSC Adv. 2015, 5, 54998–55005.
[75] Narkeviciute, I.; Chakthranont, P.; Mackus, A. J. M; Hahn, C.; Pinaud, B. A.; Bent, S. F.; Jaramillo, T. F. Tandem core−shell Si−Ta3N5 photoanodes for photoelectrochemical water splitting. Nano Lett. 2016, 16, 7565–7572.
[76] Jones, D. R.; Gomez, V.; Bear, J. C.; Rome, B.; Mazzali, F.; McGettrick, J. D.; Lewis, A. R.; Margadonna, S.; Al-Masry, W. A.; Dunnill, C. W. Active removal of waste dye pollutants using Ta3N5/W18O49 nanocomposite fibres. Sci. Rep. 2017, 7, 4090.
[77] Chun, W.-J.; Ishikawa, A.; Fujisawa, H.; Takata, T.; Kondo, J. N.; Hara, M.; Kawai, M.; Matsumoto, Y.; Domen, K. Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J. Phys. Chem. B 2003, 107, 1798–1803.
[78] Ziani, A.; Nurlaela, E.; Dhawale, D. S.; Silva, D. A.; Alarousu, E.; Mohammed, O. F.; Takanabe, K. Carrier dynamics of a visible-light-responsive Ta3N5 photoanode for water oxidation. Phys. Chem. Chem. Phys. 2015, 17, 2670–2677.
[79] He, Y.; Thorne, J. E.; Wu, C. H.; Ma, P.; Du, C.; Dong, Q.; Guo, J.; Wang, D. What limits the performance of Ta3N5 for solar water splitting? Chem 2016, 1, 640–655.
[80] Yuliati, L.; Yang, J.-H.; Wang, X.; Maeda, K.; Takata, T.; Antonietti, M.; Domen, K. Highly active tantalum(V) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation. J. Mater. Chem. 2010, 20, 4295–4298.
[81] Wang, Z.; Inoue, Y.; Hisatomi, T.; Ishikawa, R.; Wang, Q.; Takata, T.; Chen, S.; Shibata, N.; Ikuhara, Y.; Domen, K. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 2018, 1, 756–763.
[82] Roussel, P.; Labbé, P.; Groult, D. Symmetry and twins in the monophosphate tungsten bronze series (PO2)4(WO3)2m (2 ≤ m ≤ 14). Acta Cryst. 2000, B56, 377–391.
[83] Migas, D. B.; Shaposhnikov, V. L.; Borisenko, V. E. Tungsten oxides. II. The metallic nature of Magnéli phases. J. Appl. Phys. 2010, 108, 093714.
[84] Somani, P. R.; Radhakrishnan, S. Electrochromic materials and devices: present and future. ‎Mater. Chem. Phys. 2002, 77, 117–133.
[85] Shendage, S. S.; Patil, V. L.; Vanalakar, S. A.; Patil, S. P.; Harale, N. S.; Bhosale, J. L.; Kim, J. H.; Patil, P. S. Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens. Actuators B Chem. 2017, 240, 426–433.
[86] Nayak, A. K.; Das, A. K.; Pradhan, D. High performance solid-state asymmetric supercapacitor using green synthesized graphene−WO3 nanowires nanocomposite. ACS Sustain. Chem. Eng. 2017, 5, 10128–10138.
[87] Szilágyi, I. M.; Fórizs, B.; Rosseler, O.; Szegedi, Á.; Németh, P.; Király, P.; Tárkányi, G.; Vajna, B.; Varga-Josepovits, K.; László, K.; Tóth, A. L.; Baranyai, P.; Leskelä, M. WO3 photocatalysts: influence of structure and composition. J. Catal. 2012, 294, 119–127.
[88] Mahmood, K.; Swain, B. S.; Kirmani, A. R.; Amassian, A. Highly efficient perovskite solar cells based on a nanostructured WO3–TiO2 core–shell electron transporting material. J. Mater. Chem. A 2015, 3, 9051–9057.
[89] González-Borrero, P. P.; Sato, F.; Medina, A. N.; Baesso, M. L.; Bento, A. C. Optical band-gap determination of nanostructured WO3 film. Appl. Phys. Lett. 96, 2010, 96, 061909.
[90] Bessegato, G. G.; Guaraldo, T. T.; de Brito, J. F.; Brugnera, M. F.; Zanoni, M. V. B. Achievements and trends in photoelectrocatalysis: from environmental to energy applications. Electrocatalysis 2015, 6, 415–441.
[91] Katsumata, H.; Tachi, Y.; Suzuki, T.; Kaneco, S. Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts. RSC Adv. 2014, 4, 21405–21409.
[92] Yang, Y.; Kawazoe, Y. Prediction of new ground-state crystal structure of Ta2O5. Phys. Rev. Mater. 2018, 2, 034602.
[93] Ezhilvalavan, S.; Tseng, T. Y. Preparation and properties of tantalum pentoxide (Ta2O5) thin films for ultra large scale integrated circuits (ULSIs) application – a review. J. Mater. Sci. Mater. Electron. 1999, 10, 9–31.
[94] Sertel, T.; Ozen, Y.; Baran, V.; Ozcelik, S. Effect of single-layer Ta2O5 and double-layer SiO2/Ta2O5 anti-reflective coatings on GaInP/GaAs/Ge triple-junction solar cell performance. J. Alloys Compd. 2019, 806, 439–450.
[95] Suzuki, T. M.; Nakamura, T.; Saeki, S.; Matsuoka, Y.; Tanaka, H.; Yano, K.; Kajino, T.; Morikawa, T. Visible light-sensitive mesoporous N-doped Ta2O5 spheres: synthesis and photocatalytic activity for hydrogen evolution and CO2 reduction. J. Mater. Chem. 2012, 22, 24584–24590.
[96] Luo, Y.; Liu, X.; Tang, X.; Luo, Y.; Zeng, Q.; Deng, X.; Ding, S.; Sun, Y. Gold nanoparticles embedded in Ta2O5/Ta3N5 as active visible-light plasmonic photocatalysts for solar hydrogen evolution. J. Mater. Chem. A 2014, 2, 14927–14939.
[97] Johnson, R. W.; Hultqvist, A.; Bent, S. F. A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today 2014, 17, 236–246.
[98] Pakkala, A.; Putkonen, M. Atomic layer deposition. In Handbook of Deposition Technologies for Films and Coatings; 2010; pp. 364−391.
[99] Aleskovskii, V. B.; Kol’tsov, S. I. Some characteristics of molecular layering reactions. Abstract of scientific and technical conference, Goskhimizdat, Leningrad, 1965, p. 67 (in Russian).
[100] Suntola, T.; Antson, J. Method for producing compound thin films. U.S. Patent #4,058,430, Issued Nov. 25, 1977.
[101] George, S. M. Atomic layer deposition: an overview. Chem. Rev. 2010, 110, 111–131.
[102] https://www.atomiclimits.com/alddatabase/
[103] Knoops, H. C. M.; Potts, S. E.; Bol, A. A.; Kessels, W. M. M. Atomic layer deposition. In Handbook of Crystal Growth: Thin Films and Epitaxy; Kuech, K. F. Ed.; Elsevier; Amsterdam, The Netherlands, 2015; pp. 1101–1134.
[104] Vos, M. F. J.; Mackus, A. J. M.; Kessels, W. M. M. Atomic Layer Deposition Process Development – 10 steps to successfully develop, optimize and characterize ALD recipes. 2019, 3. AtomicLimits.
[105] Puurunen, R. L. Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J. Appl. Phys. 2005, 97, 121301.
[106] Profijt, H. B.; Potts, S. E.; van de Sanden, M. C. M.; Kessels, W. M. M. Plasma-assisted atomic layer deposition: basics, opportunities, and challenges. J. Vac. Sci. Technol. A 2011, 29, 050801.
[107] Oviroh, P. O.; Akbarzadeh, R.; Pan, D.; Coetzee, R. A. M.; Jen, T.-C. New development of atomic layer deposition: processes, methods and applications. Sci. Technol. Adv. Mater. 2019, 20, 465–496.
[108] Alén, P.; Juppo, M.; Ritala, M.; Sajavaara, T.; Juhani Keinonen, J.; Leskelä, M. Atomic layer deposition of Ta(Al)N(C) thin films using trimethylaluminum as a reducing agent. J. Electrochem. Soc. 2001, 148, G566–G571.
[109] Ritala, M.; Kalsi, P.; Riihelä, D.; Kukli, K.; Leskelä, M.; Jokinen, J. Controlled growth of TaN, Ta3N5, and TaOxNy thin films by atomic layer deposition. Chem. Mater. 1999, 11, 1712–1718.
[110] Fang, Z.; Aspinall, H. C.; Odedra, R.; Potter, R. J. Atomic layer deposition of TaN and Ta3N5 using pentakis(dimethylamino)tantalum and either ammonia or monomethylhydrazine. J. Cryst. Growth 2011, 331, 33–39.
[111] Hajibabaei, H.; Little, D. J.; Pandey, A.; Wang, D.; Mi, Z.; Hamann, T. W. Direct deposition of crystalline Ta3N5 thin films on FTO for PEC water splitting. ACS Appl. Mater. Interfaces 2019, 11, 15457–15466.
[112] Tägtström, P.; Mårtensson, P.; Jansson, U.; Carlsson, J.-O. Atomic layer epitaxy of tungsten oxide films using oxyfluorides as metal precursors. J. Electrochem. Soc. 1999, 146, 3139–3143.
[113] Malm, J.; Sajavaara, T.; Karppinen, M. Atomic layer deposition of WO3 thin films using W(CO)6 and O3 precursors. Chem. Vap. Deposition 2012, 18, 245–248.
[114] Liu, R.; Lin, Y.; Chou, L.; Sheehan, S. W.; He, W.; Zhang, F.; Hou, H. J. M.; Wang, D. Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. Angew. Chem. 2011, 123, 519–522.
[115] Balasubramanyam, S.; Sharma, A.; Vandalon, V. Plasma-enhanced atomic layer deposition of tungsten oxide thin films using (tBuN)2(Me2N)2W and O2 plasma. J. Vac. Sci. Technol. A 2018, 36, 01B103.
[116] Smith, S. W.; McAuliffe, K. G.; Conley Jr, J. F. Atomic layer deposited high-k nanolaminate capacitors. Solid State Electron. 2010, 54, 1076–1082.
[117] Lintanf-Salaün, A.; Mantoux, A.; Djurado, E.; Blanquet, E. Atomic layer deposition of tantalum oxide thin films for their use as diffusion barriers in microelectronic devices. Microelectron. Eng. 2010, 87, 373–378.
[118] Blanquart, T.; Longo, V.; Niinistö, J.; Heikkilä, M.; Kukli, K.; Ritala, M.; Leskelä, M. High-performance imido–amido precursor for the atomic layer deposition of Ta2O5. Semicond. Sci. Technol. 2012, 27, 074003.
[119] Heil, S. B. S.; Roozeboom, F.; Van de Sanden, M. C. M.; Kessels, W. M. M. Plasma-assisted atomic layer deposition of Ta2O5 from alkylamide precursor and remote O2 plasma. J. Vac. Sci. Technol. A 2008, 26, 472–480.
[120] Nandi, D. K.; Sarkar, S. K. Atomic layer deposition of tungsten oxide for solar cell application. Energy Procedia 2014, 54, 782–788.
[121] Zhang, K.; McCleese, C.; Lin, P.; Chen, X.;Morales, M.; Cao, W.; Seo, F. J.; Burda, C.; Baumgart, H. Synthesis of ALD tungsten trioxide thin films from W(CO)6 and H2O precursors. ECS Trans. 2015, 69, 199–209.
[122] Liu, Q.; Wang, F.; Lin, H.; Xie, Y.; Tong, N.; Lin, J.; Zhang, X.; Zhang, Z.; Wang, X. Surface oxygen vacancy and defect engineering of WO3 for improved visible light photocatalytic performance. Catal. Sci. Technol. 2018, 8, 4399–4406.
[123] Kalanur, S. S.; Yoo, I.-H.; Cho, I.-S.; Seo, H. Effect of oxygen vacancies on the band edge properties of WO3 producing enhanced photocurrents. Electrochim. Acta 2019, 296, 517–527.
[124] Yu, H.; Guo, J.; Wang, C.; Zhang, J.; Liu, J.; Dong, G.; Zhong, X.; Diao, X. Essential role of oxygen vacancy in electrochromic performance and stability for WO3-y films induced by atmosphere annealing. Electrochim. Acta 2020, 332, 135504.
[125] Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.
[126] Wu, B.-H. Liu, W.-T. Chen, T.-Y. Perng, T.-P. Huang, J.-H. Chen, L.-J. Plasmon-enhanced photocatalytic hydrogen production on Au/TiO2 hybrid nanocrystal arrays. Nano Energy 2016, 27, 412–419.
[127] Wang, H.; Xu, P.; Wang, T. The preparation and properties study of photocatalytic nanocrystalline/nanoporous WO3 thin films. Mater. Des. 2002, 23, 331–336.
[128] Nandiyanto, A. B. D.; Oktiani, R.; Ragadhita, R.; Sukmafitri, A.; Zaen, R. Amorphous content on the photocatalytic performance of micrometer-sized tungsten trioxide particles. Arabian J. Chem. 2018, 13, 331–336.
[129] Nurlaela, E.; Ould-Chikh, S.; Harb, M.; del Gobbo, S.; Aouine, M.; Puzenat, E.; Sautet, P.; Domen, K.; Basset, J.-M.; Takanabe, K. Critical role of the semiconductor—electrolyte interface in photocatalytic performance for water-splitting reactions using Ta3N5 particles. Chem. Mater. 2014, 26, 4812–4825.
[130] Wang, D.; Hisatomi, T.; Takata, T.; Pan, C.; Katayama, M.; Kubota, J.; Domen, K. Core/shell photocatalyst with spatially separated co-catalysts for efficient reduction and oxidation of water. Angew. Chem. Int. Ed. 2013, 52, 11252–11256.
[131] Qi, Y.; Chen, S.; Li, M.; Ding, Q.; Li, Z.; Cui, J.; Dong, B.; Zhang, F.; Li, C. Achievement of visible-light-driven Z-scheme overall water splitting using barium-modified Ta3N5 as a H2-evolving photocatalyst. Chem. Sci. 2017, 8, 437–443.
[132] Zhou, C.; Shang, L.; Yu, H.; Bian, T.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Mesoporous plasmonic Au-loaded Ta2O5 nanocomposites for efficient visible light photocatalysis. Catal. Today 2014, 225, 158–163.
[133] Suzuki, T. M.; Nakamura, T.; Saeki, S.; Matsuoka, Y.; Tanaka, H.; Yano, K.; Kajino, T.; Morikawa, T. Visible light-sensitive mesoporous N-doped Ta2O5 spheres: synthesis and photocatalytic activity for hydrogen evolution and CO2 reduction. J. Mater. Chem. 2012, 22, 24584–24590.
[134] Yu, X.; Zhao, J.; Huang, J.; Zhao, J.; Guo, Y.; Tang, Y.; Ma, X.; Li, Z.; Guo, Q.; Zhao, J. Visible light photocatalysis of amorphous Cl-Ta2O5x microspheres for stabilized hydrogen generation. J. Colloid Interface Sci. 2020, 572, 141–150.
[135] Wang, G.; Ma, X.; Wei, S.; Li, S.; Qiao, J.; Wang, J.; Song, Y. Highly efficient visible-light driven photocatalytic hydrogen production from a novel Z-scheme Er3+:YAlO3/Ta2O5-V5+||Fe3+-TiO2/Au coated composite. J. Power Sources 2018, 373, 161–171.
[136] Chen, Y. W.; Prange, J. D.; Dühnen, S.; Park, Y.; Gunji, M.; Chidsey, C. E. D.; Mclntyre, P. C. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 2011, 10, 539–544.
[137] Huang, L.; Wang, X.; Yang, J.; Liu, G.; Han, J.; Li, C. Dual cocatalysts loaded type Ⅰ CdS/ZnS core/shell nanocrystals as effective and stable photocatalysts for H2 evolution. J. Phys. Chem. C 2013, 117, 11584–11591.
[138] Ming, J.; Liu, A.; Zhao, J.; Zhang, P.; Huang, H.; Lin, H.; Xu, Z.; Zhang, X.; Wang, X.; Hofkens, J.; Roeffaers, M. B. J.; Long, J. Hot π-electron tunneling of metal–insulator–COF nanostructures for efficient hydrogen production. Angew. Chem. Int. Ed. 2019, 58, 18290–18294.
[139] Kumaravel, V.; Imam, M. D.; Badreldin, A.; Chava, R. K.; Do, J. Y.; Kang, M.; Abdel-Wahab, A. Photocatalytic hydrogen production: role of sacrificial reagents on the activity of oxide, carbon, and sulfide catalysts. Catalysts 2019, 9, 276.
[140] Patnaik, S.; Swain, G.; Parida, K. M. Highly efficient charge transfer through a double Z-scheme mechanism by a Cu-promoted MoO3/g-C3N4 hybrid nanocomposite with superior electrochemical and photocatalytic performance. Nanoscale 2018, 10, 5950–5964.
[141] Dong, S.; Cui, L.; Tian, Y.; Xia, L.; Wu, Y.; Yu, J.; Bagley, D. M.; Sun, J.; Fan, B. A novel and high-performance double Z-scheme photocatalyst ZnO-SnO2-Zn2SnO4 for effective removal of the biological toxicity of antibiotics. J. Hazard. Mater. 2020, 399, 123017.
[142] Zhang, X.; Wang, X.; Chai, J.; Xue, S.; Wang, R.; Jiang, L.; Wang, J.; Zhang, Z.; Dionysiou, D. D. Construction of novel symmetric double Z-scheme BiFeO3/CuBi2O4/BaTiO3 photocatalyst with enhanced solar-light-driven photocatalytic performance for degradation of norfloxacin. Appl. Catal. B 2020, 272, 119017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *