帳號:guest(3.141.25.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林昱辰
作者(外文):Lin, Yu-Chen
論文名稱(中文):透過氧化物中間層改質銅銦鎵硒太陽能電池之背電極介面
論文名稱(外文):Rear Contact Interface Modification by Introducing Oxide Interfacial Layer in Cu(In, Ga)Se2 thin film solar cells
指導教授(中文):賴志煌
指導教授(外文):Lai, Chih-Huang
口試委員(中文):闕郁倫
謝嘉民
口試委員(外文):Chueh, Yu-Lun
Shieh, Jia-Min
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:107031605
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:100
中文關鍵詞:銅銦鎵硒背接觸介面氧化物中間層
外文關鍵詞:Cu(In, Ga)Se2rear interfacemetal oxide interfacial layer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:184
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
根據IEA國際能源總署的統計結果,由於世界人口總數的不斷成長,石油燃料蘊藏不超過百年,因此開發再生能源燃料勢在必行。銅銦鎵硒薄膜太陽能電池具有較目前市佔率90%的矽晶太陽能電池較高的吸收係數,因此厚度可減薄至矽晶太陽能電池的百分之一倍,使應用可以更加廣泛,且成本與材料使用率的減少是非常可觀的;目前銅銦鎵硒薄膜太陽能電池的世界光電轉換效率達到23.35%,使得銅銦鎵硒太陽能電池逐漸受到學術界與產業界的重視,然而載子介面復合一直是限制銅銦鎵硒異質接面太陽能電池效率進一步增加的主要原因,相對於背電極與吸收層的接觸介面,有較多研究探討如何改善吸收層與緩衝層接觸介面的載子復合,因此本論文即著眼於如何改善背接觸介面的能帶結構,藉此提高元件光電轉換效率。
第一部分,我們提出透過將鉬背電極於氧氣氛下退火刻意在表面形成高功函數的氧化物達到降低背接觸介面能障的目的,進而使效率得到2%以上的提升,並以此來探討氧化物中間層對於元件表現的影響。
第二部分,接續第一部份的氧氣退火處理,我們從四大層面探討元件表現提升的原因,分別為(1)鹼金族元素擴散影響(2)MoSe2厚度影響(3)吸收層的品質(4)背接觸介面改善,最後利用變溫電性量測擬合得出背接觸介面能障與介面載子復合活化能確實可以透過氧化物中間層得到改善。
第三部份,我們引入氧化鎢中間層確保氧化鎢會於高溫硒化製程後存在於背接觸介面中,達到進一步降低背接觸介面能障效果,因此FF可以從無氧化處理的鉬背電極元件的65%提升至73%,並且有效達到效率的提升,最後我們推測出背接觸介面的能帶結構來解釋介面能障降低的原因。
According to the statistical results of the International Energy Agency, due to the limited resources that petroleum reserves do not exceed a hundred years and growing population of the world. The development of the renewable energy is imperative. Because of the higher absorption coefficient in Copper indium gallium selenide thin film solar cells than Silicon solar cells which holds over 90% market share, the thickness of the film could be reduced to one hundredth of the Silicon solar cells. Therefore, the application would be more extensive and the reduction in cost or materials utilization is extremely considerable. The highest conversion efficiency of CIGSe solar cells is 23.35% which attracts lots of attention of academia and industry, but the interface recombination has always been the critical reason to limit the further efficiency improvement in heterjunction CIGS solar cells. Compared with the rear contact interface, there are more studies about how to passivate the front interface recombination. As a result, we focus on how to modify the rear contact interface band structure to enhance the device conversion efficiency.
In the first part, we propose intentionally to form a high work function oxide on the surface of molybdenum back electrode by annealing it in oxygen atmosphere. Therefore, the conversion efficiency could be enhanced more than 2% compared with as-deposited molybdenum back electrode. Afterwards, we discuss the influence of oxide interfacial layer on device performance base on this approach.
In the second part, we discuss the performance improvement from four perspectives which are the effect of alkai elements diffusion, MoSe2 thickness, absorber quality and rear contact interface modification respectively. At last, we confirm the rear contact barrier height and interface recombination activation energy could be modify by fitting the results from low temperature measurement.
In the third part, we introduce tungsten oxide as interfacial layer to make sure it will exist at the rear interface after selenization process that further reduces the back contact barrier height. Therefore, the fill factor will be improved from 65% to 73% and thereby enhance the device efficiency. Finally, we depict the rear contact interface band structure to explain the reason of reduced back barrier height.
摘要
目錄
˙第一章 緒論 12
1.1 研究起源 12
1.2 光伏元件發展史 12
1.3 研究動機 13
第二章 文獻回顧 15
2.1 太陽能電池原理 15
2.2 電流密度-電壓曲線特性 16
2.2.1 開路電壓(Open circuit voltage) 18
2.2.2 短路電流(Short circuit current density) 19
2.2.3 填充因子(Fill factor) 19
2.2.4 光電轉換效率(Efficiency) 19
2.2.5 串聯電阻(Series resistance)和並聯電阻(Shunt resistance) 19
2.2.6 量子轉換效率(Quantum efficiency) 20
2.3 銅銦鎵硒太陽能電池(CIGS)元件結構介紹 21
2.3.1 基板(Substrate) 22
2.3.2 鉬背電極(Mo back contact) 23
2.3.3 吸收層(Absorber) 24
2.3.4 緩衝層(Buffer layer) 25
2.3.5 窗口層(Window layer) 25
2.3.6 鋁上電極(Al front electrode) 26
2.4 Cu(Inx, Ga1-x)Se2 太陽能電池薄膜特性與發展進程 26
2.4.1 CIGS薄膜性質 27
2.4.2 CIGS 太陽能電池的本質摻雜缺陷 29
2.4.3 CIGS 太陽能電池的載子復合 30
2.4.4 共蒸鍍製程 31
2.4.5 合金後硒化連續製程 32
2.4.6 鹼金族的摻雜 33
2.5 背電極接觸接面探討 34
2.5.1金屬-P型半導體接觸接面概論 34
2.5.2點接觸(point contact) 38
2.5.3 MoSe2的匹配性及探討 40
2.5.4 金屬氧化物中間層鈍化 42
2.5.5 鹼金族擴散效應 47
第三章 實驗設計及材料分析與方法 49
3.1元件製作 49
3.1.1 磁控濺鍍系統 49
3.1.2 試片製備 49
3.2 材料分析 51
3.2.1 X光繞射分析(X-Ray Diffraction, XRD) 51
3.2.2 X光螢光分析(X-Ray Fluorescence, XRF) 52
3.2.3 X光電子能譜儀(X-Ray Photoelectron Spectroscopy, XPS) 53
3.2.4紫外線光電子能譜儀(Ultraviolet Photoelectron Spectroscopy, UPS) 54
3.2.5二次離子質譜儀(SIMS) 54
3.2.6冷場發射掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 55
3.2.7 原子力學顯微鏡(Atomic Force Microscopy, AFM) 56
3.2.10 IV量測 57
第四章 實驗結果與討論 57
4.1 第一部分 鉬背電極經由氧氣氛熱退火處理 57
4.1.1 實驗流程與架構 57
4.1.2 新鮮鉬熱退火處理電性分析 59
4.1.3 鉬表面氧化態分析 61
4.1.3 優化氧氣退火處理參數 64
4.2 第二部分 效率提升之原因探討 66
4.2.1 鹼金族元素擴散影響 66
4.2.2 MoSe2厚度影響 70
4.2.3 吸收層品質 73
4.2.4 分離背接觸介面 75
4.2.5 背接觸介面改善 77
4.3 第三部分 引入氧化鎢中間層 82
4.3.1 CIGS/MoSe2介面分析 83
4.3.2 元件效率表現 86
4.3.3 背接觸介面能帶結構 91
第五章 結論 94
第六章 參考文獻 95
[1] IEA. (2019). 國際能源總署(IEA)2018年能源效率市場報告解析. Available: https://km.twenergy.org.tw/DocumentFree/reference_more?id=208
[2] W. Li, X. Yan, A. G. Aberle, and S. Venkataraj, "Effect of sodium diffusion on the properties of CIGS solar absorbers prepared using elemental Se in a two-step process," Sci Rep, vol. 9, no. 1, p. 2637, Feb 25 2019.
[3] S. Frontier. (2019). Japanese CIS Thin-Film Solar Module Manufacturer Solar Frontier Achieves 23.35% Thin-Film Cell Efficiency; Results Verified By Country’s AIST. Available: http://taiyangnews.info/technology/solar-frontier-23-35-cis-world-record/
[4] T. Solar. (2015). TSMC Solar hits 16.5% CIGS module efficiency to break fresh record. Available: https://renewablesnow.com/news/tsmc-solar-hits-16-5-cigs-module-efficiency-to-break-fresh-record-474245/
[5] 太陽能分類. Available: https://sites.google.com/site/ensatptd/tai-yang-guang-dian-fa-dian
[6] E. Handick et al., "Potassium Postdeposition Treatment-Induced Band Gap Widening at Cu(In,Ga)Se(2) Surfaces--Reason for Performance Leap?," ACS Appl Mater Interfaces, vol. 7, no. 49, pp. 27414-20, Dec 16 2015.
[7] T. Kato, "Cu(In,Ga)(Se,S)2solar cell research in Solar Frontier: Progress and current status," Japanese Journal of Applied Physics, vol. 56, no. 4S, 2017.
[8] K. J. Hsiao, J. D. Liu, H. H. Hsieh, and T. S. Jiang, "Electrical impact of MoSe2 on CIGS thin-film solar cells," Phys Chem Chem Phys, vol. 15, no. 41, pp. 18174-8, Nov 7 2013.
[9] D. Abou-Ras et al., "Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells," Thin Solid Films, vol. 480-481, pp. 433-438, 2005.
[10] H. Mirhosseini, J. Kiss, G. Roma, and C. Felser, "Reducing the Schottky barrier height at the MoSe2/Mo(110) interface in thin-film solar cells: Insights from first-principles calculations," Thin Solid Films, vol. 606, pp. 143-147, 2016.
[11] X. Zhu, Z. Zhou, Y. Wang, L. Zhang, A. Li, and F. Huang, "Determining factor of MoSe2 formation in Cu(In,Ga)Se2 solar Cells," Solar Energy Materials and Solar Cells, vol. 101, pp. 57-61, 2012.
[12] 吳鎮國、盧以昕、許仲成、陳欣卉、吳育任, "淺談太陽能電池的原理與應用," National Taiwan University2014.
[13] Available: https://www.moneydj.com/KMDJ/wiki/wikiViewer.aspx?keyid=33a047d9-1766-4774-94dc-fda31b908c2b
[14] P.-P. Choi, O. Cojocaru-Mirédin, R. Wuerz, and D. Raabe, "Comparative atom probe study of Cu(In,Ga)Se2 thin-film solar cells deposited on soda-lime glass and mild steel substrates," Journal of Applied Physics, vol. 110, no. 12, 2011.
[15] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, "Effects of heavy alkali elements in Cu(In,Ga)Se2solar cells with efficiencies up to 22.6%," physica status solidi (RRL) - Rapid Research Letters, vol. 10, no. 8, pp. 583-586, 2016.
[16] P. Blösch et al., "Comparative Study of Different Back-Contact Designs for High-Efficiency CIGS Solar Cells on Stainless Steel Foils," IEEE Journal of Photovoltaics, vol. 1, no. 2, pp. 194-199, 2011.
[17] A. Chirila et al., "Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells," Nat Mater, vol. 12, no. 12, pp. 1107-11, Dec 2013.
[18] V. Karade et al., "Insights into kesterite's back contact interface: A status review," Solar Energy Materials and Solar Cells, vol. 200, 2019.
[19] P. M. P. Salomé, J. Malaquias, P. A. Fernandes, and A. F. d. Cunha, "Mo bilayer for thin film photovoltaics revisited," Journal of Physics D: Applied Physics, vol. 43, no. 34, 2010.
[20] T.-Y. Lin, C.-H. Chen, L.-W. Wang, W.-C. Huang, Y.-W. Jheng, and C.-H. Lai, "Engineering Na-transport to achieve high efficiency in ultrathin Cu(In,Ga)Se2 solar cells with controlled preferred orientation," Nano Energy, vol. 41, pp. 697-705, 2017.
[21] T. Klinkert et al., "New insights into the Mo/Cu(In,Ga)Se2 interface in thin film solar cells: Formation and properties of the MoSe2 interfacial layer," J Chem Phys, vol. 145, no. 15, p. 154702, Oct 21 2016.
[22] J.-H. Yoon, T.-Y. Seong, and J.-h. Jeong, "Effect of a Mo back contact on Na diffusion in CIGS thin film solar cells," Progress in Photovoltaics: Research and Applications, vol. 21, no. 1, pp. 58-63, 2013.
[23] W. Shockley and H. J. Queisser, "Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells," Journal of Applied Physics, vol. 32, no. 3, pp. 510-519, 1961.
[24] D. Liao and A. Rockett, "Cd doping at the CuInSe2/CdS heterojunction," Journal of Applied Physics, vol. 93, no. 11, pp. 9380-9382, 2003.
[25] D. Hariskos et al., "New reaction kinetics for a high-rate chemical bath deposition of the Zn(S,O) buffer layer for Cu(In,Ga)Se2-based solar cells," Progress in Photovoltaics: Research and Applications, vol. 20, no. 5, pp. 534-542, 2012.
[26] Y. K. Motoshi Nakamura, Yoshiyuki Chiba,Hideki Hakuma, Taizo Kobayashi, and Tokio Nakada, "Achievement of 19.7% efficiency with a small-sized Cu(InGa)(SeS)2 solar cells prepared by sulfurization after selenization process with Zn based buffer," 2013.
[27] T. Y. Rui Kamada, Shunsuke Adachi, Atsushi Handa, Kong Fai Tai, Takuya Kato, and Hiroki Sugimoto, "New World Record Cu(In,Ga)(Se,S)2 Thin Film Solar Cell Efficiency beyond 22%," 2016.
[28] J. L. Shay, S. Wagner, and H. M. Kasper, "Efficient CuInSe2/CdS solar cells," Applied Physics Letters, vol. 27, no. 2, pp. 89-90, 1975.
[29] A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi, and A. M. Hermann, "High‐efficiency CuInxGa1−xSe2solar cells made from (Inx,Ga1−x)2Se3precursor films," Applied Physics Letters, vol. 65, no. 2, pp. 198-200, 1994.
[30] D. Rudmann, "Effects of sodium on growth and properties of Cu(In,Ga)Se₂ thin films and solar cells," 2004.
[31] W. Witte et al., "Gallium gradients in Cu(In,Ga)Se2thin-film solar cells," Progress in Photovoltaics: Research and Applications, vol. 23, no. 6, pp. 717-733, 2015.
[32] S.-H. W. S. B. Zhang, and Alex Zunger, "Defect physics of the CuInSe2 chalcopyrite semiconductor," Physical Review B, vol. 57, no. 16, p. 9642, 1998.
[33] S. Bose et al., "A morphological and electronic study of ultrathin rear passivated Cu(In,Ga)Se2 solar cells," Thin Solid Films, vol. 671, pp. 77-84, 2019.
[34] W. Li, W. Li, Y. Feng, and C. Yang, "Numerical analysis of the back interface for high efficiency wide band gap chalcopyrite solar cells," Solar Energy, vol. 180, pp. 207-215, 2019.
[35] J. Ramanujam and U. P. Singh, "Copper indium gallium selenide based solar cells – a review," Energy & Environmental Science, vol. 10, no. 6, pp. 1306-1319, 2017.
[36] J. Bi et al., "Influence of Cu on Ga diffusion during post-selenizing the electrodeposited Cu/In/Ga metallic precursor process," Solar Energy Materials and Solar Cells, vol. 182, pp. 92-97, 2018.
[37] D. E. T. Cynthia L. Jensen, James H. Ermer, Gary A. Pollock, "THE ROLE OF GALLIUM IN CuInSe, SOLAR CELLS," IEEE, 1993.
[38] S. Niki et al., "CIGS absorbers and processes," Progress in Photovoltaics: Research and Applications, vol. 18, no. 6, pp. 453-466, 2010.
[39] L. Stolt, J. Hedström, J. Kessler, M. Ruckh, K. O. Velthaus, and H. W. Schock, "ZnO/CdS/CuInSe2thin‐film solar cells with improved performance," Applied Physics Letters, vol. 62, no. 6, pp. 597-599, 1993.
[40] J. Eid, H. Liang, I. Gereige, S. Lee, and J. V. Duren, "Combinatorial study of NaF addition in CIGSe films for high efficiency solar cells," Progress in Photovoltaics: Research and Applications, vol. 23, no. 3, pp. 269-280, 2015.
[41] S.-H. Wei, S. B. Zhang, and A. Zunger, "Effects of Na on the electrical and structural properties of CuInSe2," Journal of Applied Physics, vol. 85, no. 10, pp. 7214-7218, 1999.
[42] N. Nicoara et al., "Direct evidence for grain boundary passivation in Cu(In,Ga)Se2 solar cells through alkali-fluoride post-deposition treatments," Nat Commun, vol. 10, no. 1, p. 3980, Sep 4 2019.
[43] M. Theelen, V. Hans, N. Barreau, H. Steijvers, Z. Vroon, and M. Zeman, "The impact of alkali elements on the degradation of CIGS solar cells," Progress in Photovoltaics: Research and Applications, vol. 23, no. 5, pp. 537-545, 2015.
[44] E. Handick et al., "Formation of a K-In-Se Surface Species by NaF/KF Postdeposition Treatment of Cu(In,Ga)Se2 Thin-Film Solar Cell Absorbers," ACS Appl Mater Interfaces, vol. 9, no. 4, pp. 3581-3589, Feb 1 2017.
[45] D. Hauschild et al., "Impact of a RbF Postdeposition Treatment on the Electronic Structure of the CdS/Cu(In,Ga)Se2 Heterojunction in High-Efficiency Thin-Film Solar Cells," ACS Energy Letters, vol. 2, no. 10, pp. 2383-2387, 2017.
[46] i. D.K. Schroder, Hoboken, New Jersey, "Semicond. Mater. Device Charact., John Wiley & Sons Ltd," p. 128, 2006.
[47] H. Simchi, "BACK SURFACE STUDIES OF Cu(In,Ga)Se2," 2014.
[48] X. Zhang, M. Kobayashi, and A. Yamada, "Comparison of Ag(In,Ga)Se2/Mo and Cu(In,Ga)Se2/Mo Interfaces in Solar Cells," ACS Appl Mater Interfaces, vol. 9, no. 19, pp. 16215-16220, May 17 2017.
[49] H.-W. S. Roland Scheer, Wiley-VCH Verlag and W. GmbH & Co. KGaA, Germany, Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices. 2011.
[50] W. Li, J. Chen, H. Cui, F. Liu, and X. Hao, "Inhibiting MoS2 formation by introducing a ZnO intermediate layer for Cu2ZnSnS4 solar cells," Materials Letters, vol. 130, pp. 87-90, 2014.
[51] S. Chen, J. R. Manders, S.-W. Tsang, and F. So, "Metal oxides for interface engineering in polymer solar cells," Journal of Materials Chemistry, vol. 22, no. 46, 2012.
[52] H. Lin, Irfan, W. Xia, H. N. Wu, Y. Gao, and C. W. Tang, "MoOx back contact for CdS/CdTe thin film solar cells: Preparation, device characteristics, and stability," Solar Energy Materials and Solar Cells, vol. 99, pp. 349-355, 2012.
[53] O. Almora, L. G. Gerling, C. Voz, R. Alcubilla, J. Puigdollers, and G. Garcia-Belmonte, "Superior performance of V 2 O 5 as hole selective contact over other transition metal oxides in silicon heterojunction solar cells," Solar Energy Materials and Solar Cells, vol. 168, pp. 221-226, 2017.
[54] S. Englund et al., "Characterization of TiN back contact interlayers with varied thickness for Cu 2 ZnSn(S,Se) 4 thin film solar cells," Thin Solid Films, vol. 639, pp. 91-97, 2017.
[55] S. Uličná et al., "Deposition and application of a Mo–N back contact diffusion barrier yielding a 12.0% efficiency solution-processed CIGS solar cell using an amine–thiol solvent system," Journal of Materials Chemistry A, vol. 7, no. 12, pp. 7042-7052, 2019.
[56] H. Guo et al., "Dual function of ultrathin Ti intermediate layers in CZTS solar cells: Sulfur blocking and charge enhancement," Solar Energy Materials and Solar Cells, vol. 175, pp. 20-28, 2018.
[57] H. Cui, X. Liu, F. Liu, X. Hao, N. Song, and C. Yan, "Boosting Cu2ZnSnS4 solar cells efficiency by a thin Ag intermediate layer between absorber and back contact," Applied Physics Letters, vol. 104, no. 4, 2014.
[58] F. Zhou et al., "Improvement of J(sc) in a Cu2ZnSnS4 Solar Cell by Using a Thin Carbon Intermediate Layer at the Cu2ZnSnS4/Mo Interface," ACS Appl Mater Interfaces, vol. 7, no. 41, pp. 22868-73, Oct 21 2015.
[59] Z. J. Li-Kao et al., "Towards ultrathin copper indium gallium diselenide solar cells: proof of concept study by chemical etching and gold back contact engineering," Progress in Photovoltaics: Research and Applications, vol. 20, no. 5, pp. 582-587, 2012.
[60] G. Altamura et al., "Alternative back contacts in kesterite Cu2ZnSn(S1-xSex)4 thin film solar cells," Journal of Renewable and Sustainable Energy, vol. 6, no. 1, 2014.
[61] J. Gong et al., "Enhancing photocurrent of Cu(In,Ga)Se2 solar cells with actively controlled Ga grading in the absorber layer," Nano Energy, vol. 62, pp. 205-211, 2019.
[62] J. d. W. Gizem Birant, Marc Meuris, Jef Poortmans, Bart Vermang, "Dielectric-Based Rear Surface Passivation apporaches for CIGS solar cells -review," Applied Sciences, 2019.
[63] B. Vermang et al., "Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells," Prog Photovolt, vol. 22, no. 10, pp. 1023-1029, Oct 2014.
[64] R. Kotipalli, B. Vermang, J. Joel, R. Rajkumar, M. Edoff, and D. Flandre, "Investigating the electronic properties of Al2O3/Cu(In,Ga)Se2 interface," AIP Advances, vol. 5, no. 10, 2015.
[65] P. M. P. Salomé et al., "Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layer," Advanced Materials Interfaces, vol. 5, no. 2, 2018.
[66] A. Duchatelet, G. Savidand, R. N. Vannier, and D. Lincot, "Optimization of MoSe 2 formation for Cu(In,Ga)Se 2 -based solar cells by using thin superficial molybdenum oxide barrier layers," Thin Solid Films, vol. 545, pp. 94-99, 2013.
[67] H. Simchi, B. E. McCandless, T. Meng, and W. N. Shafarman, "Structure and interface chemistry of MoO3 back contacts in Cu(In,Ga)Se2 thin film solar cells," Journal of Applied Physics, vol. 115, no. 3, 2014.
[68] K. H. Ong et al., "Formation of MoOx barrier layer under atmospheric based condition to control MoSe2 formation in CIGS thin film solar cell," Materials Technology, vol. 33, no. 11, pp. 723-729, 2018.
[69] M. T. Greiner, L. Chai, M. G. Helander, W.-M. Tang, and Z.-H. Lu, "Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies," Advanced Functional Materials, vol. 22, no. 21, pp. 4557-4568, 2012.
[70] Z. He et al., "Energy Band Alignment in Molybdenum Oxide/Cu(In,Ga)Se2 Interface for High-Efficiency Ultrathin Cu(In,Ga)Se2 Solar Cells from Low-Temperature Growth," ACS Applied Energy Materials, 2020.
[71] D. C. Leeor Kronik, * and Hans Werner Schock, "Effects of Sodium on Polycrystalline CIGS and its solar cell performance," advanced materials 1998.
[72] J.-H. Yoon et al., "Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity," Solar Energy Materials and Solar Cells, vol. 95, no. 11, pp. 2959-2964, 2011.
[73] R. V. Forest, E. Eser, B. E. McCandless, R. W. Birkmire, and J. G. Chen, "Understanding the role of oxygen in the segregation of sodium at the surface of molybdenum coated soda-lime glass," AIChE Journal, vol. 60, no. 6, pp. 2365-2372, 2014.
[74] S. Lin et al., "Adjustment of alkali element incorporations in Cu(In,Ga)Se2 thin films with wet chemistry Mo oxide as a hosting reservoir," Solar Energy Materials and Solar Cells, vol. 174, pp. 16-24, 2018.
[75] D. Colombara et al., "Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers," Nat Commun, vol. 9, no. 1, p. 826, Feb 26 2018.
[76] J. Gong et al., "Role of surface microstructure of Mo back contact on alkali atom diffusion and Ga grading in Cu(In,Ga)Se2 thin film solar cells," Energy Science & Engineering, 2019.
[77] NARLabs國家實驗研究室. 利用X-ray看透材料原子排列結構看世界. Available: https://www.narlabs.org.tw/tw/xcscience/cont?xsmsid=0I148638629329404252&qcat=0I164512522332344267&sid=0K107352975420455604
[78] How Handheld XRF Works: A Step-by-Step Guide. Available: https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/handheld-xrf/how-xrf-works.html
[79] (2019). X射線光電子能譜學. Available: https://zh.wikipedia.org/wiki/X%E5%B0%84%E7%BA%BF%E5%85%89%E7%94%B5%E5%AD%90%E8%83%BD%E8%B0%B1%E5%AD%A6
[80] Z. Kang et al., "Kelvin probe force microscopy for perovskite solar cells," Science China Materials, vol. 62, no. 6, pp. 776-789, 2019.
[81] L. Liu, T. K. Lau, Z. Zhi, L. Huang, S. Wang, and X. Xiao, "Modification of Mo Back Contact with MoO3−x Layer and its Effect to Enhance the Performance of Cu2ZnSnS4 Solar Cells," Solar RRL, vol. 2, no. 12, 2018.
[82] B. Fleutot et al., "GaSe Formation at the Cu(In,Ga)Se2/Mo Interface-A Novel Approach for Flexible Solar Cells by Easy Mechanical Lift-Off," Advanced Materials Interfaces, vol. 1, no. 4, 2014.
[83] S. Ranjbar et al., "Improvement of kesterite solar cell performance by solution synthesized MoO3
interfacial layer," physica status solidi (a), vol. 214, no. 1, 2017.
[84] 唐. 田荣璋. (2009). W-O 二元合金相圖. Available: http://www.cnnmol.com/search/ResultView.aspx?conId=KGYVnDP0C0g%3D

(此全文20250825後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *