帳號:guest(52.14.90.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳和新
作者(外文):Chen, Ho Shin
論文名稱(中文):利用激發複合體製作高效率低色溫有機發光二極體
論文名稱(外文):Exciplex System Enabling High Efficiency Low Color Temperature Organic Light Emitting Diodes
指導教授(中文):周卓煇
指導教授(外文):Jou, Jwo-Huei
口試委員(中文):呂芳賢
岑尚仁
薛景中
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:107031602
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:73
中文關鍵詞:有機發光二極體激發複合體低色溫
外文關鍵詞:Organic Light Emitting DiodesExciplexLow color temperature
相關次數:
  • 推薦推薦:0
  • 點閱點閱:541
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
市售人工照明富含藍光,不僅會汙染夜空、破壞生態,還會抑制人體褪黑激素的分泌,影響生理節律,故開發出不含藍光的低色溫OLED極為重要,為了提升低色溫OLED的元件表現,本研究藉由選用合適的供體(Donor)和受體(Acceptor),合成出激發複合體(Exciplex),使分子間有效能量轉移並提高效率;此外,對於有機發光二極體而言,濕式製程具有低成本、可快速連續製造等優點,因此本論文特別探討如何利用可濕式製作的激發複合體,來製作出高效率低色溫OLED元件。
本實驗以電洞傳輸材料3,6-Bis(N-carbazolyl)-N-phenylcarbazole(BCC-36)當作供體,電子傳輸材料2,4,6-Tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine(PO-T2T)當作受體,形成激發複合體,並搭配客體綠光染料Bis(2-phenylquinoline) acetylacetonate iridium(III) [ Ir(ppy)2(acac) ]和紅光染料Tris(2-phenylquinoline) iridium(III) [ Ir(2-phq)3 ],製作出高效率低色溫有機發光二極體;當綠光和紅光染料摻雜濃度分別為12.5 wt%、5 wt%時,在亮度100 cd/m2下,其色溫可達1975 K,能量效率為38.7 lm/W,電流效率為43.3 cd/A,外部量子效率為20.1 %,最大外部量子效率可達25.1 %,此最大外部量子效率為激發複合體濕式製程的世界紀錄。此低色溫OLED具有良好元件表現可歸因於:一、激發複合體的單重態和三重態能階差小(∆EST = 0.09 eV),使三重態激子可藉由環境熱能進行反向系統間跨越,成為單重激發態進而放光,二、供體和受體具有優異的電荷傳輸能力,能夠快速地引導電荷到達界面,三、良好的元件結構設計,使電荷有效在界面累積,四、激發複合體的光激發光譜與發光材料的吸收光譜重疊面積大,使激發複合體有效能量轉移(energy transfer)至發光染料。
Nowadays, artificial lighting is rich in blue light, which not only pollutes the night sky and destroys the ecology, but also inhibits the secretion of melatonin and affects the circadian rhythm. Therefore, it is extremely important to develop low color temperature OLEDs without blue emission. In order to improve the performance of low color temperature OLED devices, we selected an appropriate donor and acceptor to synthesize an exciplex to enable efficient energy transfer between molecules. In addition, the solution process has the advantages of low cost and rapid continuous manufacturing for organic light-emitting diodes. As a result, we specifically discusses how to use the solution-processed exciplex to fabricate high efficiency low color temperature OLED devices.
In this study, we form an exciplex system by using the hole transporting material 3,6-Bis(N-carbazolyl)-N-phenylcarbazole(BCC36)as the donor and the electron transporting material 2,4,6-Tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-T2T)as the acceptor. To produce high efficiency low color temperature organic light emitting diodes, the exciplex is doped with green phosphorescent emitter Bis(2-phenylquinoline) acetylacetonate iridium(III) [ Ir(ppy)2(acac) ] and red phosphorescent emitter Tris(2-phenylquinoline) iridium(III) [ Ir(2-phq)3 ]. When the doping concentrations of the green and red dyes are 12.5 wt% and 5 wt% respectively, the color temperature can be reduced to 1975 K, the power efficiency is 38.7 lm/W, the current efficiency is 43.3 cd/A, and the external quantum efficiency is 20.1% at a luminance of 100 cd/m2. The maximum external quantum efficiency can reach to 25.1% which is the world record for the exciplex in solution process. This low color temperature OLED which has good device performance can be attributed to the following : (1) The singlet-triplet gap(∆EST = 0.09 eV)of the exciplex system is small, so the system can convert triplets into singlets and achieve reverse intersystem crossing (RISC) by the environmental thermal energy;(2) The donor and acceptor have excellent charge transport capabilities and can quickly transport the charge to the interface;(3) The good device structure design allows the charge to accumulate effectively at the interface;(4) The photoluminescent spectrum of the exciplex and the absorption spectrum of the emitters have large overlapping area, so that the exciplex can effectively transfer energy to the emitters.
摘要---I
ABSTRACT---III
獻---V
致謝---VI
目錄---X
表目錄---XIV
圖目錄---XV
壹、緒論---1
貳、文獻回顧---3
2-1、OLED的發光原理---3
2-2、OLED的能量傳遞機制---7
2-3、OLED的基本結構---10
2-4、OLED的元件效率---10
2-5、OLED材料之發展---12
2-5-1、陽極材料---12
2-5-2、電洞注入材料---12
2-5-3、電洞傳輸材料---13
2-5-4、電子傳輸材料---14
2-5-5、電子注入材料---14
2-5-6、陰極材料---15
參、激發複合體有機發光二極體---16
3-1、激發複合體有機發光二極體介紹---16
3-2、激發複合體形成機制及條件---17
3-3、激發複合體之功能與優點---18
3-4、用於單色OLED之激發複合物主體---19
3-4-1、高效率紅光OLEDs---19
3-4-2、高效率綠光OLEDs---20
3-4-3、高效率藍光OLEDs---22
3-5、激發複合體有機發光二極體重要文獻回顧---24
3-6、提高激發複合體元件表現之方法---28
肆、實驗方法---29
4-1、本研究使用之材料---29
4-1-1、材料之功能、全名與簡稱---29
4-1-2、材料之化學結構式---31
4-2、材料特性量測儀器之原理與方法---34
4-2-1、紫外線-可見光吸收光譜(Ultraviolet visble absorption, UV-Vis)之量測---34
4-2-2、光激發光譜(Photoluminescent spectrum)之量測---34
4-2-3、時間解析光激發光譜(Time-Resolved Photoluminescence
,TRPL)之量測---35
4-3、元件設計與製備---35
4-3-1元件電路設計---35
4-3-2 ITO基材清潔---36
4-3-3旋轉塗佈電洞注入層---37
4-3-4旋轉塗佈發光層---37
4-3-5真空熱蒸鍍製程---38
4-3-6成膜鍍率測定---39
4-3-7有機層和無機層之製備---39
4-4、元件之量測及發光效率之計算---40
伍、結果與討論---42
5-1、材料之光物理特性---42
5-2-1、紫外線-可見光吸收光譜及光激發光譜---43
5-2-2、時間解析光激發光譜---46
5-2、元件結構---47
5-3、供受體濃度對元件的影響---48
5-4、不同發光機制對元件的影響---50
5-5、高效率低色溫有機發光二極體---56
陸、結論---66
柒、參考資料---68
附錄、個人著作目錄---73
(A) 研討會論文---73
(B) 得獎紀錄---73



[1] M. Anandan and O. Prache, "Large area spacer-less field emissive display package," ed: Google Patents, 2001.
[2] J. Y. Lee, J. H. Kwon, and H. K. Chung, "High efficiency and low power consumption in active matrix organic light emitting diodes," Organic Electronics, vol. 4, no. 2-3, pp. 143-148, 2003.
[3] R. S. Cok, R. D. Feldman, and J. C. Burtis, "Broad color gamut display," ed: Google Patents, 2003.
[4] W. C. Choy and C. Ho, "Improving the viewing angle properties of microcavity OLEDs by using dispersive gratings," Optics express, vol. 15, no. 20, pp. 13288-13294, 2007.
[5] S. H. K. Park et al., "42.3: Transparent ZnO thin film transistor for the application of high aperture ratio bottom emission AM‐OLED display," in SID Symposium Digest of Technical Papers, 2008, vol. 39, no. 1, pp. 629-632: Wiley Online Library.
[6] H. Lim et al., "Flexible Organic Electroluminescent Devices Based on Fluorine‐Containing Colorless Polyimide Substrates," Advanced Materials, vol. 14, no. 18, pp. 1275-1279, 2002.
[7] X. Zhou et al., "Very-low-operating-voltage organic light-emitting diodes using AP-doped amorphous hole injection layer," Applied Physics Letters, vol. 78, no. 4, pp. 410-412, 2001.
[8] A. Köhler, J. S. Wilson, and R. H. Friend, "Fluorescence and phosphorescence in organic materials," Advanced Materials, vol. 14, no. 10, pp. 701-707, 2002.
[9] M. Baldo, M. Thompson, and S. Forrest, "High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer," Nature, vol. 403, no. 6771, pp. 750-753, 2000.
[10] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, "Highly efficient organic light-emitting diodes from delayed fluorescence," Nature, vol. 492, no. 7428, p. 234, 2012.
[11] P. Pander, A. Kudelko, A. Brzeczek, M. Wroblowska, K. Walczak, and P. Data, "Analysis of exciplex emitters," Disp. Imaging, vol. 2, pp. 265-277, 2017.
[12] X. Liu et al., "Power-efficient solution-processed red organic light-emitting diodes based on an exciplex host and a novel phosphorescent iridium complex," Journal of Materials Chemistry C, vol. 4, no. 24, pp. 5787-5794, 2016.
[13] J.-H. Jou et al., "Organic light-emitting diode-based plausibly physiologically-friendly low color-temperature night light," Organic Electronics, vol. 13, no. 8, pp. 1349-1355, 2012.
[14] J.-H. Jou et al., "Enabling a blue-hazard free general lighting based on candle light-style OLED," Optics express, vol. 23, no. 11, pp. A576-A581, 2015.
[15] D. Frackowiak, "The jablonski diagram," Journal of Photochemistry and Photobiology B: Biology, vol. 2, no. 3, p. 399, 1988.
[16] M. A. Baldo et al., "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature, vol. 395, no. 6698, pp. 151-154, 1998.
[17] F. Zhao and D. Ma, "Approaches to high performance white organic light-emitting diodes for general lighting," Materials Chemistry Frontiers, vol. 1, no. 10, pp. 1933-1950, 2017.
[18] J.-H. Jou, "OLED Introduction," 2015.
[19] T. Förster, "Zwischenmolekulare energiewanderung und fluoreszenz," Annalen der physik, vol. 437, no. 1-2, pp. 55-75, 1948.
[20] D. L. Dexter, "A theory of sensitized luminescence in solids," The Journal of Chemical Physics, vol. 21, no. 5, pp. 836-850, 1953.
[21] J. Cui et al., "Indium Tin Oxide Alternatives—High Work Function Transparent Conducting Oxides as Anodes for Organic Light‐Emitting Diodes," Advanced materials, vol. 13, no. 19, pp. 1476-1480, 2001.
[22] J.-S. Kim et al., "Indium–tin oxide treatments for single-and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance," Journal of applied physics, vol. 84, no. 12, pp. 6859-6870, 1998.
[23] A. Elschner et al., "PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes," Synthetic metals, vol. 111, pp. 139-143, 2000.
[24] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, "Organic electroluminescent device with a three-layer structure," Japanese journal of applied physics, vol. 27, no. 4A, p. L713, 1988.
[25] K. A. Higginson, X.-M. Zhang, and F. J. C. o. M. Papadimitrakopoulos, "Thermal and morphological effects on the hydrolytic stability of aluminum tris (8-hydroxyquinoline)(Alq3)," vol. 10, no. 4, pp. 1017-1020, 1998.
[26] N.-X. Hu, S. Xie, Z. D. Popovic, B. Ong, and A.-M. Hor, "Novel high Tg hole-transport molecules based on indolo [3, 2-b] carbazoles for organic light-emitting devices," Synthetic Metals, vol. 111, pp. 421-424, 2000.
[27] P. Borsenberger, L. Pautmeier, R. Richert, and H. J. T. J. o. c. p. Bässler, "Hole transport in 1, 1‐bis (di‐4‐tolylaminophenyl) cyclohexane," vol. 94, no. 12, pp. 8276-8281, 1991.
[28] K. A. Higginson, X.-M. Zhang, and F. Papadimitrakopoulos, "Thermal and morphological effects on the hydrolytic stability of aluminum tris (8-hydroxyquinoline)(Alq3)," Chemistry of Materials, vol. 10, no. 4, pp. 1017-1020, 1998.
[29] C. W. T. a. C. H. C. J. Shi, " Patent, No. 5646948," 1997.
[30] T. Hasegawa et al., "11.3: Novel Electron‐Injection Layers for Top‐Emission OLEDs," in SID Symposium Digest of Technical Papers, 2004, vol. 35, no. 1, pp. 154-157: Wiley Online Library.
[31] G. Jabbour, B. Kippelen, N. R. Armstrong, and N. Peyghambarian, "Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices," Applied physics letters, vol. 73, no. 9, pp. 1185-1187, 1998.
[32] S. A. Jenekhe and J. A. Osaheni, "Excimers and exciplexes of conjugated polymers," Science, vol. 265, no. 5173, pp. 765-768, 1994.
[33] M. G. Kuzmin, I. V. Soboleva, and E. V. Dolotova, "Transient Exciplex Formation Electron Transfer Mechanism," Advances in Physical Chemistry, vol. 2011, 2011.
[34] B. Frederichs and H. Staerk, "Energy splitting between triplet and singlet exciplex states determined with E-type delayed fluorescence," Chemical physics letters, vol. 460, no. 1-3, pp. 116-118, 2008.
[35] S. Lee, K. H. Kim, D. Limbach, Y. S. Park, and J. J. Kim, "Low roll‐off and high efficiency orange organic light emitting diodes with controlled co‐doping of green and red phosphorescent dopants in an exciplex forming co‐host," Advanced Functional Materials, vol. 23, no. 33, pp. 4105-4110, 2013.
[36] S. Seo et al., "Recent development of organic light-emitting diode utilizing energy transfer from exciplex to phosphorescent emitter," in Organic Light Emitting Materials and Devices XX, 2016, vol. 9941, p. 99410J: International Society for Optics and Photonics.
[37] D. Li, Y. Hu, and L.-S. Liao, "Triplet exciton harvesting by multi-process energy transfer in fluorescent organic light-emitting diodes," Journal of Materials Chemistry C, vol. 7, no. 4, pp. 977-985, 2019.
[38] K. Udagawa, H. Sasabe, F. Igarashi, and J. Kido, "Simultaneous Realization of High EQE of 30%, Low Drive Voltage, and Low Efficiency Roll‐Off at High Brightness in Blue Phosphorescent OLEDs," Advanced Optical Materials, vol. 4, no. 1, pp. 86-90, 2016.
[39] C. Murawski, K. Leo, and M. C. Gather, "Efficiency roll‐off in organic light‐emitting diodes," Advanced Materials, vol. 25, no. 47, pp. 6801-6827, 2013.
[40] D. Zhang, L. Duan, D. Zhang, and Y. Qiu, "Towards ideal electrophosphorescent devices with low dopant concentrations: the key role of triplet up-conversion," Journal of Materials Chemistry C, vol. 2, no. 42, pp. 8983-8989, 2014.
[41] H. Kim, Y. Byun, R. R. Das, B.-K. Choi, and P.-S. Ahn, "Small molecule based and solution processed highly efficient red electrophosphorescent organic light emitting devices," Applied Physics Letters, vol. 91, no. 9, p. 093512, 2007.
[42] R. Pode, S.-J. Lee, S.-H. Jin, S. Kim, and J. H. Kwon, "Solution processed efficient orange phosphorescent organic light-emitting device with small molecule host," Journal of Physics D: Applied Physics, vol. 43, no. 2, p. 025101, 2009.
[43] K. H. Kim, J. Y. Lee, T. J. Park, W. S. Jeon, G. Kennedy, and J. H. Kwon, "Small molecule host system for solution-processed red phosphorescent OLEDs," Synthetic metals, vol. 160, no. 7-8, pp. 631-635, 2010.
[44] D.-Y. Zhou, H. Zamani Siboni, Q. Wang, L.-S. Liao, and H. Aziz, "Host to guest energy transfer mechanism in phosphorescent and fluorescent organic light-emitting devices utilizing exciplex-forming hosts," The Journal of Physical Chemistry C, vol. 118, no. 41, pp. 24006-24012, 2014.
[45] K.-H. Kim et al., "Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes," Nature communications, vol. 5, no. 1, pp. 1-8, 2014.
[46] B. Zhao et al., "Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host," Scientific reports, vol. 5, p. 10697, 2015.
[47] S. Y. Kim et al., "Organic Light‐Emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter," Advanced Functional Materials, vol. 23, no. 31, pp. 3896-3900, 2013.
[48] B. S. Kim and J. Y. Lee, "Engineering of mixed host for high external quantum efficiency above 25% in green thermally activated delayed fluorescence device," Advanced Functional Materials, vol. 24, no. 25, pp. 3970-3977, 2014.
[49] J. W. Sun, J. H. Lee, C. K. Moon, K. H. Kim, H. Shin, and J. J. Kim, "A fluorescent organic light‐emitting diode with 30% external quantum efficiency," Advanced Materials, vol. 26, no. 32, pp. 5684-5688, 2014.
[50] T. Xu et al., "Highly simplified tandem organic light-emitting devices incorporating a green phosphorescence ultrathin emitter within a novel interface exciplex for high efficiency," ACS applied materials & interfaces, vol. 9, no. 12, pp. 10955-10962, 2017.
[51] C.-J. Shih et al., "Versatile Exciplex-Forming Co-Host for Improving Efficiency and Lifetime of Fluorescent and Phosphorescent Organic Light-Emitting Diodes," ACS applied materials & interfaces, vol. 10, no. 28, pp. 24090-24098, 2018.
[52] X. K. Liu et al., "Prediction and Design of Efficient Exciplex Emitters for High‐Efficiency, Thermally Activated Delayed‐Fluorescence Organic Light‐Emitting Diodes," Advanced Materials, vol. 27, no. 14, pp. 2378-2383, 2015.
[53] H. Shin et al., "Blue phosphorescent organic light‐emitting diodes using an exciplex forming co‐host with the external quantum efficiency of theoretical limit," Advanced Materials, vol. 26, no. 27, pp. 4730-4734, 2014.
[54] J. H. Lee et al., "An exciplex forming host for highly efficient blue organic light emitting diodes with low driving voltage," Advanced Functional Materials, vol. 25, no. 3, pp. 361-366, 2015.
[55] H. Lim, H. Shin, K.-H. Kim, S.-J. Yoo, J.-S. Huh, and J.-J. Kim, "An exciplex host for deep-blue phosphorescent organic light-emitting diodes," ACS applied materials & interfaces, vol. 9, no. 43, pp. 37883-37887, 2017.
[56] S. Lee, D. Limbach, K.-H. Kim, S.-J. Yoo, Y.-S. Park, and J.-J. Kim, "High efficiency and non-color-changing orange organic light emitting diodes with red and green emitting layers," Organic Electronics, vol. 14, no. 7, pp. 1856-1860, 2013.
[57] X. Ban, K. Sun, Y. Sun, B. Huang, and W. Jiang, "Enhanced electron affinity and exciton confinement in exciplex-type host: power efficient solution-processed blue phosphorescent OLEDs with low turn-on voltage," ACS applied materials & interfaces, vol. 8, no. 3, pp. 2010-2016, 2016.
[58] Q. Wang, Q.-S. Tian, Y.-L. Zhang, X. Tang, and L.-S. Liao, "High-efficiency organic light-emitting diodes with exciplex hosts," Journal of Materials Chemistry C, vol. 7, no. 37, pp. 11329-11360, 2019.
[59] C.-J. Shih et al., "Exciplex-forming cohost for high efficiency and high stability phosphorescent organic light-emitting diodes," vol. 10, no. 2, pp. 2151-2157, 2018.
[60] F. S. Rojas and C. B. Ojeda, "Recent development in derivative ultraviolet/visible absorption spectrophotometry: 2004–2008: A review," Analytica Chimica Acta, vol. 635, no. 1, pp. 22-44, 2009.
[61] S. J. Su, T. Chiba, T. Takeda, and J. Kido, "Pyridine‐containing triphenylbenzene derivatives with high electron mobility for highly efficient phosphorescent OLEDs," Advanced Materials, vol. 20, no. 11, pp. 2125-2130, 2008.
[62] H. Murata and A. S. Sandanayaka, "5.1: Invited Paper: Degradation Analysis of Light Emitting Diodes by Time Resolved Photoluminescence Measurements," in SID Symposium Digest of Technical Papers, 2014, vol. 45, no. 1, pp. 32-35: Wiley Online Library.
[63] H. Yersin, "Triplet emitters for OLED applications. Mechanisms of exciton trapping and control of emission properties," in Transition metal and rare earth compounds: Springer, 2004, pp. 1-26.
[64] C.-J. Shih et al., "Versatile Exciplex-Forming Co-Host for Improving Efficiency and Lifetime of Fluorescent and Phosphorescent Organic Light-Emitting Diodes," vol. 10, no. 28, pp. 24090-24098, 2018.
[65] J. A. Osaheni and S. A. Jenekhe, "Efficient blue luminescence of a conjugated polymer exciplex," Macromolecules, vol. 27, no. 3, pp. 739-742, 1994.
[66] K. Goushi and C. Adachi, "Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes," Applied Physics Letters, vol. 101, no. 2, p. 023306, 2012.
[67] D. L. Dexter and J. H. Schulman, "Theory of concentration quenching in inorganic phosphors," The Journal of Chemical Physics, vol. 22, no. 6, pp. 1063-1070, 1954.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *