帳號:guest(3.144.102.156)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):顏敏修
作者(外文):Yen, Min-Siou
論文名稱(中文):大面積製備氧化鋅奈米複合材料於光觸媒分解甲醛氣體之應用
論文名稱(外文):Large Area Growth of ZnO Nanocomposites for Photocatalytic Decomposition of Formaldehyde Gas
指導教授(中文):林鶴南
指導教授(外文):Lin, Heh-Nan
口試委員(中文):李紫原
廖建能
口試委員(外文):Lee, Chi-Young
Liao, Chien-Neng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:107031590
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:67
中文關鍵詞:氧化鋅奈米柱奈米複合材料光觸媒表面電漿子甲醛
外文關鍵詞:ZnOnanorodnanocompositephotocatalystsurface plasmonformaldehyde
相關次數:
  • 推薦推薦:0
  • 點閱點閱:313
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  本研究於大面積玻璃基板上製備銅氧化物、銀、金修飾之氧化鋅奈米柱,進行光觸媒分解甲醛氣體之實驗。透過低溫水熱法製程,氧化鋅奈米柱可順利成長於100 cm2之大面積玻璃基板上,再透過光沉積法及電子束物理氣相沉積法以製備雙元奈米複合材料。
  透過掃描式電子顯微鏡觀察表面形貌,可觀察到氧化鋅奈米柱為均勻的六角柱狀。以X射線繞射光譜進行分析,可確認氧化鋅奈米柱為纖鋅礦結構。光致發光光譜則顯示經修飾後之氧化鋅奈米柱,於紫外光放光波段強度降低。其中以Au/ZnO下降的程度最大,代表有最佳之電子電洞分離成效。透過紫外光—可見光光譜分析,可得知修飾後材料對於可見光之吸收有所提升。
  光觸媒分解甲醛氣體實驗中,以16 L鋁合金腔體作為固定式反應器,通入甲醛氣體汙染源,並使用4 W UVA螢光燈管光源,照射基板進行分解實驗。不同濃度測試中,使用1 ppm ~ 4 ppm初始濃度進行實驗。當照光120分鐘後,Au/ZnO均展現最佳分解成效,最高可以移除 80% 之甲醛。經線性擬合後,ZnO、CuxO/ZnO、Ag/ZnO與Au/ZnO的準一階反應常數平均值依序為0.0037 min-1、0.0041 min-1、0.0079 min-1、0.0147 min-1。分解效率最高的Au/ZnO之反應常數為ZnO的3.97倍。延長反應時間測試中,於1 ppm初始濃度下照光 360 分鐘後,Au/ZnO可移除90% 之甲醛,使濃度降低至法定標準濃度值附近。改以4 W 日光燈管光源測試中,於1 ppm初始濃度下照光120 分鐘後,Au/ZnO可移除45% 之甲醛。這些結果顯示Au/ZnO很適合於常溫下以光觸媒分解甲醛。
This study aims to investigate the photocatalytic decomposition of gaseous formaldehyde using copper oxide, silver, or gold modified zinc oxide nanorods on large glass substrates. Zinc oxide nanorods were successfully grown on 100 cm2 glass substrates by using the low temperature hydrothermal method. Binary nanocomposites were then prepared by the photodeposition method and the electron beam physical vapor deposition method.
The morphology of the samples was examined by the scanning electron microscope, showing that hexagonal-prism-shaped zinc oxide nanorods were uniformly grown. The wurtzite crystal structure of zinc oxide nanorods was confirmed by the X-ray diffraction pattern. From the photoluminescence spectra, the intensity of the ultraviolet emission reduced after the modification. The photoluminescence intensity of Au/ZnO sample exhibited the lowest value, indicating that this sample had the best ability to inhibit the recombination of the electron-hole pairs. From the ultraviolet-visible spectra, modified samples had enhanced absorption properties in the visible light region.
Among all the photocatalytic decomposition of gaseous formaldehyde experiments, a 16 L aluminum alloy fixed bed reactor was used. After introducing gaseous formaldehyde into the chamber, a 4 W UVA fluorescent light tube was turned on for the decomposition tests. The effect of different initial concentrations was tested from 1 to 4 ppm. Au/ZnO showed the best removal efficiency of formaldehyde, which could remove 80% formaldehyde after 120 min. The average pseudo first order reaction constants of ZnO, CuxO/ZnO, Ag/ZnO, and Au/ZnO were 0.0037 min-1, 0.0041 min-1, 0.0079 min-1, and 0.0147 min-1, respectively. Au/ZnO had the highest value of the reaction constant, which was 3.97 times higher than the value of ZnO. The effect of prolonged tests was tested under 1 ppm for 360 min. Au/ZnO removed 90% formaldehyde, which could approximately meet the mandatory standard. The effect of 4 W visible light source was tested by using Au/ZnO under 1 ppm for 120 min. Au/ZnO still removed 45 percent formaldehyde under this condition. These tests showed that Au/ZnO had good potential for the photocatalytic decomposition of gaseous formaldehyde at room temperature.
摘要 I
Abstract II
誌謝 IV
總目錄 V
圖目錄 VII
表目錄 X
第一章、緒論 2
1.1 前言 2
1.2 揮發性有機汙染物 3
1.3 空氣淨化方法 4
1.4 研究動機 9
第二章 文獻回顧 11
2.1 氧化鋅 11
2.1.1 氧化鋅的晶體結構 11
2.1.2 氧化鋅的合成方法 12
2.1.3 氧化鋅的光學性質 13
2.2 光觸媒催化反應 15
2.2.1 影響光觸媒效率因子 16
2.2.2 光沉積法改質 18
2.2.3 光觸媒分解氣相有機汙染物 20
2.3 表面電漿子 23
第三章 研究方法 26
3.1 實驗設計 26
3.2 材料製備流程 27
3.2.1 成長氧化鋅奈米柱 27
3.2.2 光沉積法製備奈米複合材料 28
3.2.3 電子束蒸鍍法製備奈米複合材料 29
3.3 分析儀器 30
3.3.1 掃描式電子顯微鏡 30
3.3.2 能量色散X射線光譜儀 30
3.3.3 螢光光譜儀 30
3.3.4 紫外光-可見光光譜儀 31
3.3.5 X射線繞射儀 31
3.4 光觸媒分解氣相甲醛實驗 32
3.4.1 分解系統架構 32
3.4.2 氣體濃度計算 34
3.4.3 氣體分解實驗 35
第四章 結果與討論 37
4.1 材料分析 37
4.1.1 表面形貌 37
4.1.2 結構與組成 41
4.1.3 光學性質分析 44
4.2 光觸媒分解甲醛結果 47
4.2.1 空白組測試 47
4.2.2 不同初始濃度測試 48
4.2.3 長時間測試 53
4.2.4 可見光源測試 55
第五章 結論 59
參考文獻 61
1. Klepeis, N. E.; Nelson, W. C.; Ott, W. R.; Robinson, J. P.; Tsang, A. M.; Switzer, P.; Behar, J. V.; Hern, S. C.; Engelmann, W. H., The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11 (3), 231-252.
2. Seppanen, O. A.; Fisk, W. J.; Mendell, M. J., Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings. Indoor Air 1999, 9 (4), 226-252.
3. Bonetta, S.; Bonetta, S.; Mosso, S.; Sampo, S.; Carraro, E., Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system. Environ. Monit. Assess 2010, 161 (1-4), 473-483.
4. Brown, S. K.; Sim, M. R.; Abramson, M. J.; Gray, C. N., Concentrations of Volatile Organic-Compounds in Indoor Air - a Review. Indoor Air 1994, 4 (2), 123-134.
5. Jones, A. P., Indoor air quality and health. Atmos. Environ. 1999, 33 (28), 4535-4564.
6. Salthammer, T.; Mentese, S.; Marutzky, R., Formaldehyde in the indoor environment. Chem. Rev. 2010, 110 (4), 2536-2572.
7. Wolkoff, P., Impact of air velocity, temperature, humidity, and air on long-term VOC emissions from building products. Atmos. Environ. 1998, 32 (14-15), 2659-2668.
8. Wu, P. C.; Li, Y. Y.; Lee, C. C.; Chiang, C. M.; Su, H. J., Risk assessment of formaldehyde in typical office buildings in Taiwan. Indoor Air 2003, 13 (4), 359-363.
9. Barthomeuf, D., Basic zeolites: Characterization and uses in adsorption and catalysis. Catal. Rev. Sci. Eng. 1996, 38 (4), 521-612.
10. Zhang, X.; Gao, B.; Creamer, A. E.; Cao, C.; Li, Y., Adsorption of VOCs onto engineered carbon materials: A review. J. Hazard. Mater. 2017, 338, 102-123.
11. Maleki, H., Recent advances in aerogels for environmental remediation applications: A review. Chem. Eng. J. 2016, 300, 98-118.
12. Khan, N. A.; Hasan, Z.; Jhung, S. H., Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J. Hazard. Mater. 2013, 244-245, 444-56.
13. Tan, L.; Tan, B., Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem. Soc. Rev. 2017, 46 (11), 3322-3356.
14. Yang, C. T.; Miao, G.; Pi, Y. H.; Xia, Q. B.; Wu, J. L.; Li, Z.; Xiao, J., Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem. Eng. J. 2019, 370, 1128-1153.
15. Pei, J. J.; Zhang, J. S. S., Critical review of catalytic oxidization and chemisorption methods for indoor formaldehyde removal. Hvac&R Res. 2011, 17 (4), 476-503.
16. Liotta, L. F., Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B 2010, 100 (3-4), 403-412.
17. Huang, H. B.; Xu, Y.; Feng, Q. Y.; Leung, D. Y. C., Low temperature catalytic oxidation of volatile organic compounds: a review. Catal. Sci. Technol. 2015, 5 (5), 2649-2669.
18. Zhang, C.; He, H., A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature. Catal. Today 2007, 126 (3-4), 345-350.
19. Nie, L. H.; Yu, J. G.; Jaroniec, M.; Tao, F. F., Room-temperature catalytic oxidation of formaldehyde on catalysts. Catal. Sci. Technol. 2016, 6 (11), 3649-3669.
20. Guo, J. H.; Lin, C. X.; Jiang, C. J.; Zhang, P. Y., Review on noble metal-based catalysts for formaldehyde oxidation at room temperature. Appl. Surf. Sci. 2019, 475, 237-255.
21. Mamaghani, A. H.; Haghighat, F.; Lee, C.-S., Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Appl. Catal. B 2017, 203, 247-269.
22. Mo, J. H.; Zhang, Y. P.; Xu, Q. J.; Lamson, J. J.; Zhao, R. Y., Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmos. Environ. 2009, 43 (14), 2229-2246.
23. Wang, S.; Ang, H. M.; Tade, M. O., Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ. Int. 2007, 33 (5), 694-705.
24. Huang, Y.; Ho, S. S.; Lu, Y.; Niu, R.; Xu, L.; Cao, J.; Lee, S., Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect. Molecules 2016, 21 (1), 56.
25. Pirhashemi, M.; Habibi-Yangjeh, A.; Rahim Pouran, S., Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J. Ind. Eng. Chem. 2018, 62, 1-25.
26. Bhowmick, M.; Semmens, M. J., Ultraviolet Photooxidation for the Destruction of Vocs in Air. Water Res. 1994, 28 (11), 2407-2415.
27. Atkinson, R.; Arey, J., Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103 (12), 4605-4638.
28. Meller, R.; Moortgat, G. K., Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225-375 nm. J. Geophys. Res. Atmos. 2000, 105 (D6), 7089-7101.
29. Nawrocki, J.; Kasprzyk-Hordern, B., The efficiency and mechanisms of catalytic ozonation. Appl. Catal. B 2010, 99 (1-2), 27-42.
30. Kwong, C.; Chao, C. Y. H.; Hui, K. S.; Wan, M. P., Removal of VOCs from indoor environment by ozonation over different porous materials. Atmos. Environ. 2008, 42 (10), 2300-2311.
31. Augugliaro, V.; Litter, M.; Palmisano, L.; Soria, J., The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance. J. Photochem. Photobiol. C 2006, 7 (4), 127-144.
32. Pettit, T.; Irga, P. J.; Torpy, F. R., Towards practical indoor air phytoremediation: A review. Chemosphere 2018, 208, 960-974.
33. Vandenbroucke, A. M.; Morent, R.; De Geyter, N.; Leys, C., Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J. Hazard. Mater. 2011, 195, 30-54.
34. Wenderich, K.; Mul, G., Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chem. Rev. 2016, 116 (23), 14587-14619.
35. Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S. J.; Morkoç, H., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98 (4), 041301.
36. Zhang, Y.; Ram, M. K.; Stefanakos, E. K.; Goswami, D. Y., Synthesis, Characterization, and Applications of ZnO Nanowires. J. Nanomater. 2012, 2012, 1-22.
37. Spanhel, L., Colloidal ZnO nanostructures and functional coatings: A survey. J. Sol-Gel Sci. Technol. 2006, 39 (1), 7-24.
38. Baruah, S.; Dutta, J., Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 2009, 10 (1), 013001.
39. Jiang, J.; Li, Y.; Tan, S.; Huang, Z., Synthesis of zinc oxide nanotetrapods by a novel fast microemulsion-based hydrothermal method. Mater. Lett. 2010, 64 (20), 2191-2193.
40. Song, J.; Lim, S., Effect of Seed Layer on the Growth of ZnO Nanorods. J. Phys. Chem. C 2007, 111 (2), 596-600.
41. Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y.; Saykally, R. J.; Yang, P., Low‐Temperature Wafer‐Scale Production of ZnO Nanowire Arrays. Angew. Chem. 2003, 115 (26), 3139-3142.
42. Hu, Z.; Oskam, G.; Searson, P. C., Influence of solvent on the growth of ZnO nanoparticles. J. Colloid Interface Sci. 2003, 263 (2), 454-460.
43. Ashfold, M. N. R.; Doherty, R. P.; Ndifor-Angwafor, N. G.; Riley, D. J.; Sun, Y., The kinetics of the hydrothermal growth of ZnO nanostructures. Thin Solid Films 2007, 515 (24), 8679-8683.
44. Govender, K.; Boyle, D. S.; Kenway, P. B.; O'Brien, P., Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 2004, 14 (16), 2575-2591.
45. Sugunan, A.; Warad, H. C.; Boman, M.; Dutta, J., Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine. J. Sol-Gel Sci. Technol. 2006, 39 (1), 49-56.
46. Ahn, C. H.; Kim, Y. Y.; Kim, D. C.; Mohanta, S. K.; Cho, H. K., A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys. 2009, 105 (1), 013502.
47. Schmidt-Mende, L.; MacManus-Driscoll, J. L., ZnO – nanostructures, defects, and devices. Mater. Today 2007, 10 (5), 40-48.
48. Linsebigler, A. L.; Lu, G.; Yates, J. T., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95 (3), 735-758.
49. Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238 (5358), 37-38.
50. Mills, A.; Le Hunte, S., An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A 1997, 108 (1), 1-35.
51. Zhang, Z.; Wang, C.-C.; Zakaria, R.; Ying, J. Y., Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. J. Phys. Chem. B 1998, 102 (52), 10871-10878.
52. Maira, A. J.; Yeung, K. L.; Soria, J.; Coronado, J. M.; Belver, C.; Lee, C. Y.; Augugliaro, V., Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts. Appl. Catal. B 2001, 29 (4), 327-336.
53. Yang, L.; Liu, Z.; Shi, J.; Zhang, Y.; Hu, H.; Shangguan, W., Degradation of indoor gaseous formaldehyde by hybrid VUV and TiO2/UV processes. Sep. Purif. Technol. 2007, 54 (2), 204-211.
54. Obuchi, E.; Sakamoto, T.; Nakano, K.; Shiraishi, F., Photocatalytic decomposition of acetaldehyde over TiO2/SiO2 catalyst. Chem. Eng. Sci. 1999, 54 (10), 1525-1530.
55. Obee, T. N.; Brown, R. T., TiO2 Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene. Environ. Sci. Technol. 1995, 29 (5), 1223-1231.
56. Peral, J.; Ollis, D., Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation. J. Catal. 1992, 136 (2), 554-565.
57. Jacoby, W. A.; Blake, D. M.; Noble, R. D.; Koval, C. A., Kinetics of the Oxidation of Trichloroethylene in Air via Heterogeneous Photocatalysis. J. Catal. 1995, 157 (1), 87-96.
58. Fernando, C. A. N.; de Silva, P. H. C.; Wethasinha, S. K.; Dharmadasa, I. M.; Delsol, T.; Simmonds, M. C., Investigation of n-type Cu2O layers prepared by a low cost chemical method for use in photo-voltaic thin film solar cells. Renew. Energy 2002, 26 (4), 521-529.
59. Kim, J.; Kim, W.; Yong, K., CuO/ZnO Heterostructured Nanorods: Photochemical Synthesis and the Mechanism of H2S Gas Sensing. J. Phys. Chem. C 2012, 116 (29), 15682-15691.
60. Gratzel, M., Photoelectrochemical cells. Nature 2001, 414 (6861), 338-344.
61. Konaka, R.; Kasahara, E.; Dunlap, W. C.; Yamamoto, Y.; Chien, K. C.; Inoue, M., Irradiation of titanium dioxide generates both singlet oxygen and superoxide anion. Free Radical Biol. Med. 1999, 27 (3-4), 294-300.
62. Yang, J. J.; Li, D. X.; Zhang, Z. J.; Li, Q. L.; Wang, H. Q., A study of the photocatalytic oxidation of formaldehyde on Pt/Fe2O3/TiO2. J. Photochem. Photobiol. A 2000, 137 (2-3), 197-202.
63. Sun, S.; Ding, J.; Bao, J.; Gao, C.; Qi, Z.; Li, C., Photocatalytic Oxidation of Gaseous Formaldehyde on TiO2: An In Situ DRIFTS Study. Catal. Letters 2010, 137 (3-4), 239-246.
64. Xiao, G.; Huang, A.; Su, H.; Tan, T., The activity of acrylic-silicon/nano-TiO2 films for the visible-light degradation of formaldehyde and NO2. Build. Environ. 2013, 65, 215-221.
65. Wang, M. Y.; Lu, Y. W.; Wu, F.; Zhang, X. J.; Yang, C. X., Photocatalytic Decomposition of Formaldehyde by Combination of Ozone and AC Network with UV365nm, UV254nm and UV254+185nm. Procedia Eng. 2015, 121, 521-527.
66. Liu, R.; Wang, J.; Zhang, J.; Xie, S.; Wang, X.; Ji, Z., Honeycomb-like micro-mesoporous structure TiO2/sepiolite composite for combined chemisorption and photocatalytic elimination of formaldehyde. Microporous Mesoporous Mater. 2017, 248, 234-245.
67. Liao, Y.; Xie, C.; Liu, Y.; Huang, Q., Enhancement of photocatalytic property of ZnO for gaseous formaldehyde degradation by modifying morphology and crystal defect. J. Alloys Compd. 2013, 550, 190-197.
68. Liang, W.; Li, J.; Jin, Y., Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV. Build. Environ. 2012, 51, 345-350.
69. Laciste, M. T.; de Luna, M. D. G.; Tolosa, N. C.; Lu, M. C., Degradation of gaseous formaldehyde via visible light photocatalysis using multi-element doped titania nanoparticles. Chemosphere 2017, 182, 174-182.
70. Jiang, X.; Xu, W.; Yu, L., Photocatalytic Decomposition of Gaseous HCHO over Ag Modified TiO2 Nanosheets at Ambient Temperature. Nanomaterials 2019, 9 (3), 338.
71. Huang, Y.; Xu, H.; Yang, H.; Lin, Y.; Liu, H.; Tong, Y., Efficient Charges Separation Using Advanced BiOI-Based Hollow Spheres Decorated with Palladium and Manganese Dioxide Nanoparticles. ACS Sustain. Chem. Eng. 2018, 6 (2), 2751-2757.
72. Huang, Y.; Long, B.; Tang, M.; Rui, Z.; Balogun, M.-S.; Tong, Y.; Ji, H., Bifunctional catalytic material: An ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Appl. Catal. B 2016, 181, 779-787.
73. Huang, Q.; Ma, W.; Yan, X.; Chen, Y.; Zhu, S.; Shen, S., Photocatalytic decomposition of gaseous HCHO by ZrxTi1−xO2 catalysts under UV–vis light irradiation with an energy-saving lamp. J. Mol. Catal. A Chem. 2013, 366, 261-265.
74. Barnes, W. L.; Dereux, A.; Ebbesen, T. W., Surface plasmon subwavelength optics. Nature 2003, 424 (6950), 824-830.
75. Hutter, E.; Fendler, J. H., Exploitation of Localized Surface Plasmon Resonance. Adv. Mater. 2004, 16 (19), 1685-1706.
76. Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J., Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 2013, 13 (1), 240-247.
77. Brongersma, M. L.; Halas, N. J.; Nordlander, P., Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10 (1), 25-34.
78. Kortüm, G.; Braun, W.; Herzog, G., Principles and Techniques of Diffuse-Reflectance Spectroscopy. Angew. Chem. Int. Ed. 1963, 2 (7), 333-341.
79. Tauc, J.; Grigorovici, R.; Vancu, A., Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B 1966, 15 (2), 627-637.
80. Heinemann, M.; Eifert, B.; Heiliger, C., Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3. Phys. Rev. B 2013, 87 (11), 115111.
81. Yu, J.; Wang, S.; Low, J.; Xiao, W., Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15 (39), 16883-16890.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *