|
1. Klepeis, N. E.; Nelson, W. C.; Ott, W. R.; Robinson, J. P.; Tsang, A. M.; Switzer, P.; Behar, J. V.; Hern, S. C.; Engelmann, W. H., The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11 (3), 231-252. 2. Seppanen, O. A.; Fisk, W. J.; Mendell, M. J., Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings. Indoor Air 1999, 9 (4), 226-252. 3. Bonetta, S.; Bonetta, S.; Mosso, S.; Sampo, S.; Carraro, E., Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system. Environ. Monit. Assess 2010, 161 (1-4), 473-483. 4. Brown, S. K.; Sim, M. R.; Abramson, M. J.; Gray, C. N., Concentrations of Volatile Organic-Compounds in Indoor Air - a Review. Indoor Air 1994, 4 (2), 123-134. 5. Jones, A. P., Indoor air quality and health. Atmos. Environ. 1999, 33 (28), 4535-4564. 6. Salthammer, T.; Mentese, S.; Marutzky, R., Formaldehyde in the indoor environment. Chem. Rev. 2010, 110 (4), 2536-2572. 7. Wolkoff, P., Impact of air velocity, temperature, humidity, and air on long-term VOC emissions from building products. Atmos. Environ. 1998, 32 (14-15), 2659-2668. 8. Wu, P. C.; Li, Y. Y.; Lee, C. C.; Chiang, C. M.; Su, H. J., Risk assessment of formaldehyde in typical office buildings in Taiwan. Indoor Air 2003, 13 (4), 359-363. 9. Barthomeuf, D., Basic zeolites: Characterization and uses in adsorption and catalysis. Catal. Rev. Sci. Eng. 1996, 38 (4), 521-612. 10. Zhang, X.; Gao, B.; Creamer, A. E.; Cao, C.; Li, Y., Adsorption of VOCs onto engineered carbon materials: A review. J. Hazard. Mater. 2017, 338, 102-123. 11. Maleki, H., Recent advances in aerogels for environmental remediation applications: A review. Chem. Eng. J. 2016, 300, 98-118. 12. Khan, N. A.; Hasan, Z.; Jhung, S. H., Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J. Hazard. Mater. 2013, 244-245, 444-56. 13. Tan, L.; Tan, B., Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem. Soc. Rev. 2017, 46 (11), 3322-3356. 14. Yang, C. T.; Miao, G.; Pi, Y. H.; Xia, Q. B.; Wu, J. L.; Li, Z.; Xiao, J., Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem. Eng. J. 2019, 370, 1128-1153. 15. Pei, J. J.; Zhang, J. S. S., Critical review of catalytic oxidization and chemisorption methods for indoor formaldehyde removal. Hvac&R Res. 2011, 17 (4), 476-503. 16. Liotta, L. F., Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B 2010, 100 (3-4), 403-412. 17. Huang, H. B.; Xu, Y.; Feng, Q. Y.; Leung, D. Y. C., Low temperature catalytic oxidation of volatile organic compounds: a review. Catal. Sci. Technol. 2015, 5 (5), 2649-2669. 18. Zhang, C.; He, H., A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature. Catal. Today 2007, 126 (3-4), 345-350. 19. Nie, L. H.; Yu, J. G.; Jaroniec, M.; Tao, F. F., Room-temperature catalytic oxidation of formaldehyde on catalysts. Catal. Sci. Technol. 2016, 6 (11), 3649-3669. 20. Guo, J. H.; Lin, C. X.; Jiang, C. J.; Zhang, P. Y., Review on noble metal-based catalysts for formaldehyde oxidation at room temperature. Appl. Surf. Sci. 2019, 475, 237-255. 21. Mamaghani, A. H.; Haghighat, F.; Lee, C.-S., Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Appl. Catal. B 2017, 203, 247-269. 22. Mo, J. H.; Zhang, Y. P.; Xu, Q. J.; Lamson, J. J.; Zhao, R. Y., Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmos. Environ. 2009, 43 (14), 2229-2246. 23. Wang, S.; Ang, H. M.; Tade, M. O., Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ. Int. 2007, 33 (5), 694-705. 24. Huang, Y.; Ho, S. S.; Lu, Y.; Niu, R.; Xu, L.; Cao, J.; Lee, S., Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect. Molecules 2016, 21 (1), 56. 25. Pirhashemi, M.; Habibi-Yangjeh, A.; Rahim Pouran, S., Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J. Ind. Eng. Chem. 2018, 62, 1-25. 26. Bhowmick, M.; Semmens, M. J., Ultraviolet Photooxidation for the Destruction of Vocs in Air. Water Res. 1994, 28 (11), 2407-2415. 27. Atkinson, R.; Arey, J., Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103 (12), 4605-4638. 28. Meller, R.; Moortgat, G. K., Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225-375 nm. J. Geophys. Res. Atmos. 2000, 105 (D6), 7089-7101. 29. Nawrocki, J.; Kasprzyk-Hordern, B., The efficiency and mechanisms of catalytic ozonation. Appl. Catal. B 2010, 99 (1-2), 27-42. 30. Kwong, C.; Chao, C. Y. H.; Hui, K. S.; Wan, M. P., Removal of VOCs from indoor environment by ozonation over different porous materials. Atmos. Environ. 2008, 42 (10), 2300-2311. 31. Augugliaro, V.; Litter, M.; Palmisano, L.; Soria, J., The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance. J. Photochem. Photobiol. C 2006, 7 (4), 127-144. 32. Pettit, T.; Irga, P. J.; Torpy, F. R., Towards practical indoor air phytoremediation: A review. Chemosphere 2018, 208, 960-974. 33. Vandenbroucke, A. M.; Morent, R.; De Geyter, N.; Leys, C., Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J. Hazard. Mater. 2011, 195, 30-54. 34. Wenderich, K.; Mul, G., Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chem. Rev. 2016, 116 (23), 14587-14619. 35. Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S. J.; Morkoç, H., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98 (4), 041301. 36. Zhang, Y.; Ram, M. K.; Stefanakos, E. K.; Goswami, D. Y., Synthesis, Characterization, and Applications of ZnO Nanowires. J. Nanomater. 2012, 2012, 1-22. 37. Spanhel, L., Colloidal ZnO nanostructures and functional coatings: A survey. J. Sol-Gel Sci. Technol. 2006, 39 (1), 7-24. 38. Baruah, S.; Dutta, J., Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 2009, 10 (1), 013001. 39. Jiang, J.; Li, Y.; Tan, S.; Huang, Z., Synthesis of zinc oxide nanotetrapods by a novel fast microemulsion-based hydrothermal method. Mater. Lett. 2010, 64 (20), 2191-2193. 40. Song, J.; Lim, S., Effect of Seed Layer on the Growth of ZnO Nanorods. J. Phys. Chem. C 2007, 111 (2), 596-600. 41. Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y.; Saykally, R. J.; Yang, P., Low‐Temperature Wafer‐Scale Production of ZnO Nanowire Arrays. Angew. Chem. 2003, 115 (26), 3139-3142. 42. Hu, Z.; Oskam, G.; Searson, P. C., Influence of solvent on the growth of ZnO nanoparticles. J. Colloid Interface Sci. 2003, 263 (2), 454-460. 43. Ashfold, M. N. R.; Doherty, R. P.; Ndifor-Angwafor, N. G.; Riley, D. J.; Sun, Y., The kinetics of the hydrothermal growth of ZnO nanostructures. Thin Solid Films 2007, 515 (24), 8679-8683. 44. Govender, K.; Boyle, D. S.; Kenway, P. B.; O'Brien, P., Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 2004, 14 (16), 2575-2591. 45. Sugunan, A.; Warad, H. C.; Boman, M.; Dutta, J., Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine. J. Sol-Gel Sci. Technol. 2006, 39 (1), 49-56. 46. Ahn, C. H.; Kim, Y. Y.; Kim, D. C.; Mohanta, S. K.; Cho, H. K., A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys. 2009, 105 (1), 013502. 47. Schmidt-Mende, L.; MacManus-Driscoll, J. L., ZnO – nanostructures, defects, and devices. Mater. Today 2007, 10 (5), 40-48. 48. Linsebigler, A. L.; Lu, G.; Yates, J. T., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95 (3), 735-758. 49. Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238 (5358), 37-38. 50. Mills, A.; Le Hunte, S., An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A 1997, 108 (1), 1-35. 51. Zhang, Z.; Wang, C.-C.; Zakaria, R.; Ying, J. Y., Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. J. Phys. Chem. B 1998, 102 (52), 10871-10878. 52. Maira, A. J.; Yeung, K. L.; Soria, J.; Coronado, J. M.; Belver, C.; Lee, C. Y.; Augugliaro, V., Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts. Appl. Catal. B 2001, 29 (4), 327-336. 53. Yang, L.; Liu, Z.; Shi, J.; Zhang, Y.; Hu, H.; Shangguan, W., Degradation of indoor gaseous formaldehyde by hybrid VUV and TiO2/UV processes. Sep. Purif. Technol. 2007, 54 (2), 204-211. 54. Obuchi, E.; Sakamoto, T.; Nakano, K.; Shiraishi, F., Photocatalytic decomposition of acetaldehyde over TiO2/SiO2 catalyst. Chem. Eng. Sci. 1999, 54 (10), 1525-1530. 55. Obee, T. N.; Brown, R. T., TiO2 Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene. Environ. Sci. Technol. 1995, 29 (5), 1223-1231. 56. Peral, J.; Ollis, D., Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation. J. Catal. 1992, 136 (2), 554-565. 57. Jacoby, W. A.; Blake, D. M.; Noble, R. D.; Koval, C. A., Kinetics of the Oxidation of Trichloroethylene in Air via Heterogeneous Photocatalysis. J. Catal. 1995, 157 (1), 87-96. 58. Fernando, C. A. N.; de Silva, P. H. C.; Wethasinha, S. K.; Dharmadasa, I. M.; Delsol, T.; Simmonds, M. C., Investigation of n-type Cu2O layers prepared by a low cost chemical method for use in photo-voltaic thin film solar cells. Renew. Energy 2002, 26 (4), 521-529. 59. Kim, J.; Kim, W.; Yong, K., CuO/ZnO Heterostructured Nanorods: Photochemical Synthesis and the Mechanism of H2S Gas Sensing. J. Phys. Chem. C 2012, 116 (29), 15682-15691. 60. Gratzel, M., Photoelectrochemical cells. Nature 2001, 414 (6861), 338-344. 61. Konaka, R.; Kasahara, E.; Dunlap, W. C.; Yamamoto, Y.; Chien, K. C.; Inoue, M., Irradiation of titanium dioxide generates both singlet oxygen and superoxide anion. Free Radical Biol. Med. 1999, 27 (3-4), 294-300. 62. Yang, J. J.; Li, D. X.; Zhang, Z. J.; Li, Q. L.; Wang, H. Q., A study of the photocatalytic oxidation of formaldehyde on Pt/Fe2O3/TiO2. J. Photochem. Photobiol. A 2000, 137 (2-3), 197-202. 63. Sun, S.; Ding, J.; Bao, J.; Gao, C.; Qi, Z.; Li, C., Photocatalytic Oxidation of Gaseous Formaldehyde on TiO2: An In Situ DRIFTS Study. Catal. Letters 2010, 137 (3-4), 239-246. 64. Xiao, G.; Huang, A.; Su, H.; Tan, T., The activity of acrylic-silicon/nano-TiO2 films for the visible-light degradation of formaldehyde and NO2. Build. Environ. 2013, 65, 215-221. 65. Wang, M. Y.; Lu, Y. W.; Wu, F.; Zhang, X. J.; Yang, C. X., Photocatalytic Decomposition of Formaldehyde by Combination of Ozone and AC Network with UV365nm, UV254nm and UV254+185nm. Procedia Eng. 2015, 121, 521-527. 66. Liu, R.; Wang, J.; Zhang, J.; Xie, S.; Wang, X.; Ji, Z., Honeycomb-like micro-mesoporous structure TiO2/sepiolite composite for combined chemisorption and photocatalytic elimination of formaldehyde. Microporous Mesoporous Mater. 2017, 248, 234-245. 67. Liao, Y.; Xie, C.; Liu, Y.; Huang, Q., Enhancement of photocatalytic property of ZnO for gaseous formaldehyde degradation by modifying morphology and crystal defect. J. Alloys Compd. 2013, 550, 190-197. 68. Liang, W.; Li, J.; Jin, Y., Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV. Build. Environ. 2012, 51, 345-350. 69. Laciste, M. T.; de Luna, M. D. G.; Tolosa, N. C.; Lu, M. C., Degradation of gaseous formaldehyde via visible light photocatalysis using multi-element doped titania nanoparticles. Chemosphere 2017, 182, 174-182. 70. Jiang, X.; Xu, W.; Yu, L., Photocatalytic Decomposition of Gaseous HCHO over Ag Modified TiO2 Nanosheets at Ambient Temperature. Nanomaterials 2019, 9 (3), 338. 71. Huang, Y.; Xu, H.; Yang, H.; Lin, Y.; Liu, H.; Tong, Y., Efficient Charges Separation Using Advanced BiOI-Based Hollow Spheres Decorated with Palladium and Manganese Dioxide Nanoparticles. ACS Sustain. Chem. Eng. 2018, 6 (2), 2751-2757. 72. Huang, Y.; Long, B.; Tang, M.; Rui, Z.; Balogun, M.-S.; Tong, Y.; Ji, H., Bifunctional catalytic material: An ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Appl. Catal. B 2016, 181, 779-787. 73. Huang, Q.; Ma, W.; Yan, X.; Chen, Y.; Zhu, S.; Shen, S., Photocatalytic decomposition of gaseous HCHO by ZrxTi1−xO2 catalysts under UV–vis light irradiation with an energy-saving lamp. J. Mol. Catal. A Chem. 2013, 366, 261-265. 74. Barnes, W. L.; Dereux, A.; Ebbesen, T. W., Surface plasmon subwavelength optics. Nature 2003, 424 (6950), 824-830. 75. Hutter, E.; Fendler, J. H., Exploitation of Localized Surface Plasmon Resonance. Adv. Mater. 2004, 16 (19), 1685-1706. 76. Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J., Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 2013, 13 (1), 240-247. 77. Brongersma, M. L.; Halas, N. J.; Nordlander, P., Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10 (1), 25-34. 78. Kortüm, G.; Braun, W.; Herzog, G., Principles and Techniques of Diffuse-Reflectance Spectroscopy. Angew. Chem. Int. Ed. 1963, 2 (7), 333-341. 79. Tauc, J.; Grigorovici, R.; Vancu, A., Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B 1966, 15 (2), 627-637. 80. Heinemann, M.; Eifert, B.; Heiliger, C., Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3. Phys. Rev. B 2013, 87 (11), 115111. 81. Yu, J.; Wang, S.; Low, J.; Xiao, W., Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15 (39), 16883-16890. |