帳號:guest(3.145.57.187)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):温則名
作者(外文):Wen, Tse-Ming
論文名稱(中文):鈷碳複合材作為鋰硫電池添加劑之電性改善探討
論文名稱(外文):Improving Polysulfide Redox Reactions in Lithium Sulfur Batteries by Cobalt-Carbon Composites
指導教授(中文):蔡哲正
指導教授(外文):Tsai, Cho-Jen
口試委員(中文):林居南
游萃蓉
口試委員(外文):Yew, Tri-Rung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:107031583
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:75
中文關鍵詞:鋰硫電池硫梭效應鈷金屬含氟電解液催化效應
外文關鍵詞:Lithium-sulfur batterycatalytic effectcobaltfluorine-containing electrolyteshuttle-effect
相關次數:
  • 推薦推薦:0
  • 點閱點閱:598
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在新興電池系統中,鋰硫電池因為其高電容量和價格低廉而相當具有發展潛力。但儘管擁有上述作為良好電池系統的優點,卻仍存在些許致命性的問題如硫的絕緣性,及多硫化物流失於電解液中的硫梭效應,因此如何解決上述問題成為目前研究的主要方向。
近年來,許多研究團隊提出許多不同的方式減緩硫梭效應以期提升鋰硫電池的電性表現及循環壽命,目前最主流的方式為透過催化效應減緩長鍊多硫化物溶於電解液中,如此可降低在充放電過程中的活物損失,提升庫倫效率,達到延長電池壽命以及良好的電性表現。
本篇文獻主要透過鈷金屬原子對多硫化物的催化效應,合成鈷和導電碳的複合材料作為添加劑,鈷金屬除了能改善硫的導電性問題外,其催化效應也可幫助鋰硫電池有更好的電性表現。除此之外,鈷金屬與含氟電解液在充放電時有助於促進在極片上生成氟化鋰,氟化鋰也同樣具有抑制硫梭效應的功能,並且同時可幫助鋰離子傳導。經過此複合材料改質後在高速率充放電(5 C)無論在電容量及循環壽命上皆有相當優異的結果。
Among the candidates to the next-generation energy storage system, Li-S batteries exhibit lots of advantages, such as high theoretical specific energy and low cost. However, their practical applications are prohibited by the low conductivity of sulfur and the shuttle effect of lithium polysulfide.
Recently, studies on Li-S batteries have widely focused on the initial Sulfur (S8) - soluble polysulfide – Li2S conversion reaction, which contributes to above the 50 % of the theoretical capacity of Li-S batteries. Nonetheless, the slow conversion kinetics between the intermediate product (lithium polysulfide) and the final product (Li2S) leads to lots of active materials loss, which cause low columbic efficiency, low sulfur utilization, and low discharge capacity.
To overcome the aforementioned problems, a readily available cobalt embedded carbon composite is investigated. The cobalt deposited on carbon composite is synthesized by a chemical nucleation method. This new designed composite is shown to promote the electron and ion conductivity, which mitigates the dissolution of polysulfide that causes shuttle effect. Furthermore, cobalt will also react with fluorine-containing electrolyte to form lithium fluoride in the cathode during the charging and discharging process, which enhances the high c-rate performance of the battery. The battery with cobalt-carbon composites delivers about 580 mA h g-1 at 5 C, and remains at 543 mA h g-1 after 200 cycles.
Abstract...2
摘要...4
致謝...5
第一章 緒論...11
1.1 能源技術與鋰離子電池之發展...11
第二章 文獻回顧...17
2.1 鋰硫電池及硫複合材...17
2.2 吸附與催化材料與硫複合材...22
2.2-1 過度金屬化合物及其應用...23
2.2-2 金屬有機網絡材料( MOFs)及其應用...25
2.2-3 單質金屬催化效應及其應用...26
2.3 含氟電解液與氟化鋰於鋰硫電池之應用...32
第三章 實驗步驟...35
3.1 實驗藥品...35
3.2 材料製備...36
3.2-1 硫-科琴黑(KBS)碳硫複合材之合成...36
3.2-2 導電碳官能化實驗...37
3.2-3 鈷碳複合材製備實驗...37
3.3 電極片製備...38
3.4 鈕扣電池組裝製程...39
3.5 材料分析與電性檢測儀器...41
3.5-1 X光粉末繞射儀...41
3.5-2場發式掃描電子顯微鏡...41
3.5-4 循環伏安法( Cyclic voltammetry, CV )...42
3.5-6 電池充放電循環壽命測試...43
第四章 結果與討論...44
4.1 碳硫複合材 Ketjen Black-S Composite (KBS)...44
4.1-1碳硫複合材顯微結構分析...44
4.1-2 碳硫複合材硫含量與X-ray分析...45
4.2 鈷碳複合材(Acidic-Super P-Co)製備與分析...48
4.2-1鈷碳複合材之還原溫度...48
4.3 鋰硫電池以鈷碳複合材進行取代之電性討論...52
4.3-1極片於充放電前之表面形貌...52
4.3-2循環壽命測試...54
4.3-3交流阻抗測試...58
4.3-4循環伏安法測試...60
4.3-5循環後極片表面分析...61
第五章 結論...67
第六章 未來展望...68
第七章 參考資料...69
1. portlandGeneral.com
2. J. Liang, Zhen-Hua Sun, Feng Li, Hui-Ming Cheng, Carbon materials for Li–S batteries: Functional evolution and performance improvement. Energy Storage Materials, 2016. 2: pp. 76-106.
3. X. Ji, K.T. Lee, and L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater, 2009. 8(6): pp. 500-506.
4. S. Dorfler, M. Hagen, H. Althues, J. Tubke, S. Kaskel, M. J. Hoffmann, High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium-sulfur batteries. Chem Commun (Camb), 2012. 48(34): pp. 4097-4099.
5. H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett, 2011. 11(7): pp. 2644-2647.
6. Z. Wang , Y. Dong, H. Li, Z. Zhao, H. B. Wu, C. Hao, S. Liu, J. Qiu, X. W. Lou, , Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun, 2014. 5: pp. 5002.
7. H. Chen, C. Wang, W. Dong, W. Lu, Z. Du, L. Chen, Monodispersed sulfur nanoparticles for lithium-sulfur batteries with theoretical performance. Nano Lett, 2015. 15(1): pp. 798-802.
8. J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, L. F. Nazar, Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew Chem Int Ed Engl, 2012. 51(15): pp. 3591-3595.
9. N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed Engl, 2011. 50(26): pp. 5904-5908.
10. co., L.S.C., KETJENBLACK Highly Electro-Conductive
Carbon Black.
11. Céline Barchasz, F.M., Jean Dijon, Jean-Claude Leprêtre,
Sébastien Patoux , Fannie Alloin, Novel positive electrode
architecture for rechargeable lithium/sulfur batteries.
Journal of Power Source, 2012. 211: pp. 19-26.

12. A. Jozwiuk, Heino Sommer, Jürgen Janek, Torsten Brezesinski, Fair performance comparison of different carbon blacks in lithium–sulfur batteries with practical mass loadings – Simple design competes with complex cathode architecture. Journal of Power Sources, 2015. 296: pp. 454-461.
13. H. Ye, and J.Y. Lee, Solid Additives for Improving the Performance of Sulfur Cathodes in Lithium–Sulfur Batteries—Adsorbents, Mediators, and Catalysts. Small Methods, 2020. 4(6): pp. 408-424.
14. S. Evers, , T. Yim, and L.F. Nazar, Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li–S Battery. The Journal of Physical Chemistry C, 2012. 116(37): pp. 19653-19658.
15. Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P. C. Hsu, Y. Cui, Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat Commun, 2013. 4: pp. 1331.
16. Q. Pang, D. Kundu, M. Cuisinier, L. F. Nazar, , Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun, 2014. 5: p. 4759.
17. X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L. F. Nazar, A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat Commun, 2015. 6: pp. 5682-5688.
18. C.J. Hart, M. Cuisinier, X. Liang, D. Kundu, A. Garsuch, L. F. Nazar, Rational design of sulphur host materials for Li-S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss. Chem Commun (Camb), 2015. 51(12): pp. 2308-2311.
19. X. Yang, X. Gao, Q. Sun, S. P. Jand, Y. Yu, Y. Zhao, X. Li, K. Adair, L. Y. Kuo, J. Rohrer, J. Liang, X. Lin, M. N. Banis, Y. Hu, H. Zhang, X. Li, R. Li, H. Zhang, P. Kaghazchi, T. K. Sham, X. Sun, Promoting the Transformation of Li2 S2 to Li2 S: Significantly Increasing Utilization of Active Materials for High-Sulfur-Loading Li-S Batteries. Adv Mater, 2019. 31(25): pp. 256-263.
20. Z. Yuan, H. J. Peng, T. Z. Hou, J. Q. Huang, C. M. Chen, D. W. Wang, X. B. Cheng, F. Wei, Q. Zhang, Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts. Nano Lett, 2016. 16(1): pp. 519-527.
21. H. Al Salem, G. Babu, C. V. Rao, L. M. Arava, Electrocatalytic Polysulfide Traps for Controlling Redox Shuttle Process of Li-S Batteries. J Am Chem Soc, 2015. 137(36): pp. 11542-115645.
22. Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie, A. Hu, W. Yan, X. Kong, X. Wu, H. Ji, L. J. Wan, Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries. J Am Chem Soc, 2019. 141(9): pp. 3977-3985.
23. S. Li, Xue Chen, Fei Hu, Rui Zeng, Yun-hui Huang, Li-xia Yuan, Jia Xie, Cobalt-embedded carbon nanofiber as electrocatalyst for polysulfide redox reaction in lithium sulfur batteries. Electrochimica Acta, 2019. 304: pp. 11-19.
24. W.G. Lim, S. Kim, C. Jo, J. Lee, A Comprehensive Review of Materials with Catalytic Effects in Li-S Batteries: Enhanced Redox Kinetics. Angew Chem Int Ed Engl, 2019. 58(52): pp. 18746-18757.
25. S. Choudhury, and L.A. Archer, Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities. Advanced Electronic Materials, 2016. 2(2): pp.342-356.
26. X. Ni, Tao Qian, Xue-jun Liu, Na Xu, Jie Liu, Cheng-lin Yan, High Lithium Ion Conductivity LiF/GO Solid Electrolyte Interphase Inhibiting the Shuttle of Lithium Polysulfides in Long-Life Li-S Batteries. Advanced Functional Materials, 2018. 28(13): pp. 456-462
27. L. Luo, and A. Manthiram, An Artificial Protective Coating toward Dendrite‐Free Lithium‐Metal Anodes for Lithium–Sulfur Batteries. Energy Technology, 2020. 8(7): pp. 567-573.
28. J. Tan, Li Liu, Sheng-ping Guo, Hai Hu, Zi-chao Yan, Qian Zhou, Zhi-feng Huang, Hong-bo Shu, Xiu-kang Yang, Xian-you Wang, The electrochemical performance and mechanism of cobalt (II) fluoride as anode material for lithium and sodium ion batteries. Electrochimica Acta, 2015. 168: pp. 225-233
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *