帳號:guest(52.14.205.138)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):田維揚
作者(外文):Tien, Wei-Yang
論文名稱(中文):金屬氧化物介電層之介電常數與厚度對其所組成之奈米雷射之表現探討
論文名稱(外文):Effects of Dielectric Constants and Thickness of Metal Oxide Dielectric Layers on the Performance of Surface Plasmon Polariton Laser
指導教授(中文):陳力俊
指導教授(外文):Chen, Lih-Juann
口試委員(中文):果尚志
吳文偉
口試委員(外文):Gwo, Shan-Gjr
Wu, Wen-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:107031572
出版年(民國):109
畢業學年度:109
語文別:英文
論文頁數:74
中文關鍵詞:表面電漿奈米雷射介電層
外文關鍵詞:surface plasmonnanolaserdielectric layer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:284
  • 評分評分:*****
  • 下載下載:50
  • 收藏收藏:0
雷射,因其高能量集中、近單色光及高度同調的特性,成為用途相當廣泛的應用元件。而將雷射的尺寸微縮至奈米等級,則能更進一步將其與積體電路整合,形成「積體光路」。
本實驗藉由金屬-氧化物-半導體(MOS)結構之奈米雷射以表面電漿共振方式突破繞射限制。氧化鋅奈米線作為半導體材料有著寬能隙與極大的激子束縛能,使其成為室溫下優良的增益介質;原子級平坦的鋁基板提供較低的能量損耗;高介電係數之氧化物的引入則可以大幅度降低雷射閥值。
藉由不同種類的氧化物進行結構上的更替可以發現氧化物介電係數越高,伴隨著更高強度的侷限住金屬及氧化物介面所激發的表面電漿,能有效降低雷射閥值。除此之外,因表面電漿在垂直介面上的傳遞機制,使在一定尺寸下,體積越小的共振腔能更有效的將能量傳遞給增益介質,同樣使雷射閥值降低。
綜合上述氧化物種類及厚度的不同所帶來的閥值改變,將提供奈米雷射更好的效率與更多可能。
Lasers in nanoscale have been found to be a useful device in nano-science and nano-technology. Compared with conventional lasers, it transmits signal in a faster and more efficient way. Accompanied by the improvement of nanolasers, it is promising to integrate with IC circuits. Thus, not only the delivering speed but the amount of data for digital age will rise to a higher level.
In the present study, we demonstrate Surface plasmon polariton (SPP) nanolasers consisting of ZnO nanowires coupled with single-crystalline aluminum film and high dielectric constant interlayer. High quality ZnO nanowires synthesized in a three-zone horizontal furnace acted as gain media to operate lasing at room temperature. Single-crystalline aluminum film grown with molecular beam epitaxy is critical to decrease plasmonic losses. Dielectric layers (SiO2, TiO2, Y2O3, HfO2 and ZrO2) deposited by E-beam evaporator were inserted between ZnO nanowires and Al film to lower the lasing threshold.
The thresholds for lasing were measured to be considerably low with the addition of dielectric layer. Such suppression is attributed to dielectric layer mediating strong confinement of optical field in the subwavelength regime. The threshold value for lasing was found to decrease with increasing dielectric constant for different dielectric layers. It is attributed to the reduction in the volume of resonant cavity leading to the increase in the transfer energy for lasing. The results provide crucial information for the development of efficient and practical nanolaser in nanodevices.
目錄
Contents 1
Abstract 4
摘要 5
誌謝 6
1. Introduction 7
1.1. Motivation 7
1.2. Overview of Nanotechnology 8
1.2.1. One-Dimensional Nanostructures 9
1.3. Theoretical Background of Electromagnetism 11
1.3.1. Electromagnetism in Dielectrics 11
1.3.2. Electromagnetism in Metals 14
1.3.3. Mechanism for Surface Plasmon Polaritons 15
1.3.4. Surface Plasmon Polaritons in Nanolasers 18
1.4. Metal/ Oxide/ Semiconductor Structure Nanolaser 19
1.4.1. Aluminum Substrate for Metal Layer 20
1.4.2. Promising application of Aluminum films in quantum computing 21
1.4.3. Dielectric materials 21
1.4.4. ZnO Nanowires for Semiconductor 25
2. Experimental Procedures 26
2.1. Synthesis of ZnO nanowires 27
2.1.1. Preparation of Substrate 27
2.1.2. Growth in a Horizontal Tube Furnace 28
2.2. Epitaxial Aluminum Growth by Molecular Beam Epitaxy (MBE) 29
2.3. Preparation of Dielectric layers 30
2.4. Fabrication of Nanolaser 30
2.5. Scanning Electron Microscope (SEM) Observation 30
2.6. Transmission Electron Microscope (TEM) Observation 32
2.7. Atomic Force Microscope (AFM) Observation 33
2.8. X-ray Diffractometer Measurement 34
2.9. Electron Probe MicroAnalyzer (EPMA) measurement 35
2.10. Spectroscopic Ellipsometer Measurement 36
2.11. Micro-Photoluminescence (µ-PL) Measurement 37
3. Results and Discussion 38
3.1. ZnO Nanowires 38
3.2. Epitaxial Aluminum Film 42
3.3. Dielectric Layers 43
3.3.1. Silicon Dioxide (SiO2) 44
3.3.2. Titanium Dioxide (TiO2) 45
3.3.3. Yttrium oxide (Y2O3) 46
3.3.4. Hafnium Dioxide (HfO2) 47
3.3.5. Zirconium Dioxide (ZrO2) 49
3.4. Metal/ Oxide/ Semiconductor Structured Nanolaser 50
3.5. Effects of Different Dielectric Layers on Lasing Performance 50
3.5.1. 5 nm SiO2 50
3.5.2. 5 nm TiO2 52
3.5.3. 5 nm Y2O3 53
3.5.4. 5 nm HfO2 55
3.5.5. 5 nm ZrO2 56
3.5.6. Comparison of Different Dielectric Layers on Lasing Performance 57
3.6. Effects of Dielectric Layer Thickness on Lasing Performance 59
3.6.1. 5 nm TiO2 60
3.6.2. 10 nm TiO2 60
3.6.3. 15 nm TiO2 62
3.6.4. Comparison of Different Thickness on Lasing Performance 63
3.6.5. Comparison on Lasing Performance with other Relevant Works 64
4. Summary and Conclusions 66
5. Future Prospects 67
5.1. Quantitative analysis for cavity loss 67
5.2. Surface plasmon polariton nanolasers based on graphene 68
6. References 70


[1] D. Uttamchandani and I. Preface By-Andonovic, Principles of Modern Optical Systems. Artech House, Inc., 1992.
[2] J. Ion, Laser processing of engineering materials: principles, procedure and industrial application. Elsevier, 2005.
[3] E. Mester, A. F. Mester, and A. Mester, "The biomedical effects of laser application," Lasers in surgery and medicine, vol. 5, no. 1, pp. 31-39, 1985.
[4] F. K. Hopkins, "Military laser applications: providing focus to nonlinear optics R&D," Optics and Photonics News, vol. 9, no. 2, p. 32, 1998.
[5] A. Uchida, Optical communication with chaotic lasers: applications of nonlinear dynamics and synchronization. John Wiley & Sons, 2012.
[6] R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics, vol. 2, no. 8, pp. 496-500, 2008.
[7] R. P. Feynman, "There's plenty of room at the bottom," California Institute of Technology, Engineering and Science magazine, 1960.
[8] W. Andreoni, The physics of fullerene-based and fullerene-related materials. Springer Science & Business Media, 2000.
[9] J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, "Gold nanorods: synthesis, characterization and applications," Coordination chemistry reviews, vol. 249, no. 17-18, pp. 1870-1901, 2005.
[10] W. Lu and C. M. Lieber, "Semiconductor nanowires," Journal of Physics D: Applied Physics, vol. 39, no. 21, p. R387, 2006.
[11] Z. L. Wang, "ZnO nanowire and nanobelt platform for nanotechnology," Materials Science and Engineering: R: Reports, vol. 64, no. 3-4, pp. 33-71, 2009.
[12] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, no. 6348, pp. 56-58, 1991.
[13] A. P. Alivisatos, "Semiconductor clusters, nanocrystals, and quantum dots," Science, vol. 271, no. 5251, pp. 933-937, 1996.
[14] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, "Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth," Science, vol. 270, no. 5243, pp. 1791-1794, 1995.
[15] S. Peng et al., "Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications," ACS Nano, vol. 9, no. 2, pp. 1945-1954, 2015.
[16] L. Wen, Z. Wang, Y. Mi, R. Xu, S. H. Yu, and Y. Lei, "Designing heterogeneous 1D nanostructure arrays based on AAO templates for energy applications," Small, vol. 11, no. 28, pp. 3408-3428, 2015.
[17] R. Wagner and W. Ellis, "Vapor‐liquid‐solid mechanism of single crystal growth," Appl. Phys. Lett. vol. 4, no. 5, pp. 89-90, 1964.
[18] J. Westwater, D. Gosain, S. Tomiya, S. Usui, and H. Ruda, "Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 15, no. 3, pp. 554-557, 1997.
[19] R. Ghosh and P. Giri, "Silicon nanowire heterostructures: growth strategies, novel properties and emerging applications." (??)
[20] R. S. Anwar, H. Ning, and L. Mao, "Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes," Digital Communications and Networks, vol. 4, no. 4, pp. 244-257, 2018.
[21] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, no. 6950, pp. 824-830, 2003.
[22] S. A. Maier, Plasmonics: fundamentals and applications. Springer Science & Business Media, 2007.
[23] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik A Hadrons and Nuclei, vol. 216, no. 4, pp. 398-410, 1968.
[24] R. H. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, "Surface-plasmon resonance effect in grating diffraction," Phys. Rev. Lett. vol. 21, no. 22, p. 1530, 1968.
[25] J. Sambles, G. Bradbery, and F. Yang, "Optical excitation of surface plasmons: an introduction," Contemporary Physics, vol. 32, no. 3, pp. 173-183, 1991.
[26] R. N. Hall, G. E. Fenner, J. Kingsley, T. Soltys, and R. Carlson, "Coherent light emission from GaAs junctions," Phys. Rev. Lett. vol. 9, no. 9, p. 366, 1962.
[27] S. Gwo and C.-K. Shih, "Semiconductor plasmonic nanolasers: current status and perspectives," Reports on Progress in Physics, vol. 79, no. 8, p. 086501, 2016.
[28] R. F. Oulton et al., "Plasmon lasers at deep subwavelength scale," Nature, vol. 461, no. 7264, pp. 629-632, 2009.
[29] Y.-J. Lu et al., "Plasmonic nanolaser using epitaxially grown silver film," Science, vol. 337, no. 6093, pp. 450-453, 2012.
[30] Q. Zhang et al., "A room temperature low-threshold ultraviolet plasmonic nanolaser," Nature Commun. vol. 5, no. 1, pp. 1-9, 2014.
[31] Y.-J. Lu et al., "All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing," Nano letters, vol. 14, no. 8, pp. 4381-4388, 2014.
[32] D. Gérard and S. K. Gray, "Aluminium plasmonics," Journal of Physics D: Applied Physics, vol. 48, no. 18, p. 184001, 2014.
[33] D. Buchanan and S. Lo, "Growth, characterization and the limits of ultrathin SiO2-based dielectrics for future CMOS applications," The physics and chemistry of SiO2 and Si-SiO2 Interface-3. Pennington: the Electrochem. Soc. pp. 3-14, 1996.
[34] R. H. Austin and S.-f. Lim, "The Sackler Colloquium on promises and perils in nanotechnology for medicine," Proceedings of the National Academy of Sciences, vol. 105, no. 45, pp. 17217-17221, 2008.
[35] V. Mudavakkat, V. Atuchin, V. Kruchinin, A. Kayani, and C. Ramana, "Structure, morphology and optical properties of nanocrystalline yttrium oxide (Y2O3) thin films," Optical Materials, vol. 34, no. 5, pp. 893-900, 2012.
[36] Y. Han and J. Zhu, "Surface science studies on the zirconia-based model catalysts," Topics in Catalysis, vol. 56, no. 15-17, pp. 1525-1541, 2013.
[37] M. A. Hameed, R. K. Jamal, K. A. Aadim, and S. S. Al-Awadi, "Preparation and Characterization of Al2O3 Nanostructures by Pulsed-Laser Deposition," J. Optoelectron., vol. 6, pp. 43-46, 2015.
[38] A. Laturia, M. L. Van de Put, and W. G. Vandenberghe, "Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk," npj 2D Materials and Applications, vol. 2, no. 1, pp. 1-7, 2018.
[39] Han Huang, ZnO nanolaser with h-BN insulator on epitaxially grown aluminum substrate, Hsinchu, National Tsing Hua University, 2019.
[40] Y.-J. Liao et al., "Low threshold room-temperature UV surface plasmon polariton lasers with ZnO nanowires on single-crystal aluminum films with Al 2 O 3 interlayers," RSC advances, vol. 9, no. 24, pp. 13600-13607, 2019.
[41] S.-L. Wang, S. Wang, X.-K. Man, and R.-M. Ma, "Loss and gain in a plasmonic nanolaser," Nanophotonics, vol. 1, no. ahead-of-print, 2020.
[42] L. Xu, F. Li, S. Liu, F. Yao, and Y. Liu, "Low threshold plasmonic nanolaser based on graphene," Applied Sciences, vol. 8, no. 11, p. 2186, 2018.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *