帳號:guest(3.143.4.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王宇翔
作者(外文):Wang, Yu-Hsiang
論文名稱(中文):一階段濺鍍法製備具表面硫化之銅銦鎵硒太陽能電池
論文名稱(外文):Surface Sulfurization of Cu(In, Ga)Se2 Solar Cell by One-step Sputtering Process
指導教授(中文):賴志煌
指導教授(外文):Lai, Chih-Huang
口試委員(中文):甘炯耀
柯志忠
口試委員(外文):Gan, Jon-Yiew
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:107031563
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:67
中文關鍵詞:銅銦鎵硒太陽能電池硫化濺鍍
外文關鍵詞:CIGSsolar cellsulfurization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:863
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
銅銦鎵硒薄膜太陽能電池已有數十年的發展,在眾多吸收層製備的製程中,一階段濺鍍製程以其在大面積製程的均勻性及無需硒化等優點,在近年有持續的研究與突破。在使效率進一步提升的諸多方法中,硫化製程針對前端緩衝層/吸收層介面的改質與能帶工程極具發展潛力,已被許多文獻探討,而在一階段濺鍍製程中則少有研究,本實驗以一階段濺鍍製程為基礎,進一步提供一種無毒氣氛的硫化途徑,方法為利用將單一四元靶材與硫化銦靶材於吸收層最後階段進行共濺鍍,以調控功率及時間的方式探討其效應,並以各種分析了解表面CIGSSe生成之材料特性。在硫化鈍化缺陷與介面並提升表面能隙的效應下,使效率成功由12.5%提升至13.8%,然而於分析中發現之介面分相若能改善,將有機會使效率進一步提升。
The research of Cu(In, Ga)Se¬2 (CIGSe) thin film solar cells have been proposed for decades. Among the process of absorber fabrication, CIGSe prepared by one-step sputtering process without post-selenization has been demonstrated to be a way to avoid toxic H2Se and with advantage of large-area uniformity. To achieve higher efficiency, sulfurization is known as a promising method to modify the interface of CdS/CIGSe. In this work, an alternative way of surface sulfurization without using H2S by co-sputtering the quaternary CIGSe target with In2S3 target in the last stage has been studied through the influence of co-sputtering time and power. The formation of Cu(In, Ga)(S,Se) (CIGSS) on the surface was observed and well-studied with various analysis. Solar cells with improved conversion efficiency from 12.5% to 13.8% can be obtained without toxic gas atmosphere. The improvement comes from the passivation of the interface and enlargement of surface bandgap. Further understanding of the phase separation can be a potential way to acheive better performance.
圖目錄 6
表目錄 9
第一章 緒論 10
1.1研究動機 10
1.2銅銦鎵硒(CIGSe)太陽能電池 10
第二章 文獻回顧 12
2.1太陽能元件原理 12
2.2電壓-電流特性 13
2.2.1短路電流(short circuit current, JSC) 13
2.2.2開路電壓(open circuit voltage, VOC) 14
2.2.3填充因子(fill factor, FF) 14
2.2.4寄生電阻(parasitic resistance) 15
2.2.5光電轉換效率(efficiency) 15
2.2.6量子轉換效率(quantum efficiency) 15
2.3銅銦鎵硒太陽能元件 16
2.3.1元件結構介紹 16
2.3.2基板 17
2.3.3背電極 17
2.3.4吸收層 19
2.3.5緩衝層 21
2.3.6窗口層 22
2.4製程發展 22
2.4.1共蒸鍍製程 22
2.4.2連續製程(硒化/硒硫化) 23
2.4.3一階段濺鍍製程(one step process) 24
2.6能帶與表面工程 29
2.6.1鎵梯度(Ga grading) 29
2.6.2硫化(Sulfur grading) 31
2.6.3表面反轉(type inversion) 36
2.7 鹼金屬後處理 (Alkali element post-deposition Treatment, PDT) 39
第三章 實驗方法與分析技術 41
3.1 主要實驗設備、試片製備與實驗設計 41
3.1.1 主要實驗設備 41
Solar 0 system 41
Apollo system 41
Herli system 41
3.1.2 試片製備與實驗設計 41
基板 41
背電極 41
吸收層 41
緩衝層 42
窗口層 42
上電極 42
3.2 分析儀器及原理 42
半導體分析系統 42
外部量子效率量測儀 (External Quantum Efficiency, EQE) 42
拉曼光譜儀 (Raman Spectroscopy) 42
光致螢光及時間解析光致螢光 (Photoluminescence & Time-resolved Photoluminescence, PL & TRPL) 43
X射線螢光光譜儀 (X-ray Fluorescence Spectrometer, XRF) 43
化學分析電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 43
X光繞射儀 (X-ray Diffractometer, XRD) 43
冷場發射掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 44
第四章 結果與討論 45
第一部分 共濺鍍功率之影響 45
4.1.1材料分析 45
表面形貌 45
XPS縱深分析 46
拉曼光譜分析 48
低掠角XRD分析 (Grazing Incidence X-ray Diffraction, GIXRD) 50
材料分析總結 51
元件表現 51
第二部分 共濺鍍時間之影響 54
4.2 材料分析 55
表面形貌 55
XPS縱深分析 56
拉曼光譜分析 57
低掠角XRD分析 (GIXRD) 57
材料分析總結 58
元件表現 59
第五章 結論 62
參考文獻 63

1. 太陽能分類. https://sites.google.com/site/ensatptd/tai-yang-guang-dian-fa-dian.
2. PVEducation. https://www.pveducation.org/.
3. Ramanujam, J.; Singh, U. P., Copper indium gallium selenide based solar cells – a review. Energy & Environmental Science 2017, 10 (6), 1306-1319.
4. Lin, T.-Y.; Chen, C.-H.; Wang, L.-W.; Huang, W.-C.; Jheng, Y.-W.; Lai, C.-H., Engineering Na-transport to achieve high efficiency in ultrathin Cu(In,Ga)Se2 solar cells with controlled preferred orientation. Nano Energy 2017, 41, 697-705.
5. Park, J. S.; Dong, Z.; Kim, S.; Perepezko, J. H. J. J. o. A. P., CuInSe 2 phase formation during Cu 2 Se/In 2 Se 3 interdiffusion reaction. 2000, 87 (8), 3683-3690.
6. Rau, U.; Schock, H.-W. J. A. P. A., Electronic properties of Cu (In, Ga) Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges. 1999, 69 (2), 131-147.
7. Romeo, A.; Terheggen, M.; Abou-Ras, D.; Bätzner, D. L.; Haug, F. J.; Kälin, M.; Rudmann, D.; Tiwari, A. N., Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications 2004, 12 (23), 93-111.
8. Niki, S.; Contreras, M.; Repins, I.; Powalla, M.; Kushiya, K.; Ishizuka, S.; Matsubara, K., CIGS absorbers and processes. Progress in Photovoltaics: Research and Applications 2010, 18 (6), 453-466.
9. Nakamura, M.; Yamaguchi, K.; Kimoto, Y.; Yasaki, Y.; Kato, T.; Sugimoto, H. J. I. J. o. P., Cd-free Cu (In, Ga)(Se, S) 2 thin-film solar cell with record efficiency of 23.35%. 2019, 9 (6), 1863-1867.
10. Frantz, J. A.; Myers, J. D.; Bekele, R. Y.; Nguyen, V. Q.; Sadowski, B. M.; Maximenko, S. I.; Lumb, M. P.; Walters, R. J.; Sanghera, J. S., Quaternary Sputtered Cu(In,Ga)Se2Absorbers for Photovoltaics: A Review. IEEE Journal of Photovoltaics 2016, 6 (4), 1036-1050.
11. Piekoszewski, J.; Loferski, J.; Beaulieu, R.; Beall, J.; Roessler, B.; Shewchun, J. J. S. E. M., RF-sputtered CuInSe2 thin films. 1980, 2 (3), 363-372.
12. Shi, J. H.; Li, Z. Q.; Zhang, D. W.; Liu, Q. Q.; Sun, Z.; Huang, S. M., Fabrication of Cu(In, Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target. Progress in Photovoltaics: Research and Applications 2011, 19 (2), 160-164.
13. Ouyang, L.; Zhuang, D.; Zhao, M.; Zhang, N.; Li, X.; Guo, L.; Sun, R.; Cao, M., Cu(In,Ga)Se2solar cell with 16.7% active-area efficiency achieved by sputtering from a quaternary target. physica status solidi (a) 2015, 212 (8), 1774-1778.
14. Chen, C.-H.; Lin, T.-Y.; Hsu, C.-H.; Wei, S.-Y.; Lai, C.-H., Comprehensive characterization of Cu-rich Cu(In,Ga)Se2 absorbers prepared by one-step sputtering process. Thin Solid Films 2013, 535, 122-126.
15. Chen, C.-H.; Shih, W.-C.; Chien, C.-Y.; Hsu, C.-H.; Wu, Y.-H.; Lai, C.-H., A promising sputtering route for one-step fabrication of chalcopyrite phase Cu(In,Ga)Se2 absorbers without extra Se supply. Solar Energy Materials and Solar Cells 2012, 103, 25-29.
16. Hsu, C.-H.; Su, Y.-S.; Wei, S.-Y.; Chen, C.-H.; Ho, W.-H.; Chang, C.; Wu, Y.-H.; Lin, C.-J.; Lai, C.-H., Na-induced efficiency boost for Se-deficient Cu(In,Ga)Se2solar cells. Progress in Photovoltaics: Research and Applications 2015, 23 (11), 1621-1629.
17. Hsu, C.-H.; Ho, W.-H.; Wei, S.-Y.; Lai, C.-H., Over 14% Efficiency of Directly Sputtered Cu(In,Ga)Se2
Absorbers without Postselenization by Post-Treatment of Alkali Metals. Advanced Energy Materials 2017, 7 (13).
18. Tuttle, J.; Contreras, M.; Gabor, A.; Ramanathan, K.; Tennant, A.; Albin, D.; Keane, J.; Noufi, R. J. P. i. P. R.; Applications, Perspective on High‐efficiency Cu (In, Ga) Se2‐based Thin‐film Solar Cells Fabricated by Simple, Scalable Processes. 1995, 3 (6), 383-391.
19. Wei, S.-H.; Zhang, S. B.; Zunger, A., Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties. Applied Physics Letters 1998, 72 (24), 3199-3201.
20. Jung, S.; Ahn, S.; Yun, J. H.; Gwak, J.; Kim, D.; Yoon, K., Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique. Current Applied Physics 2010, 10 (4), 990-996.
21. Lundberg, O.; Edoff, M.; Stolt, L., The effect of Ga-grading in CIGS thin film solar cells. Thin Solid Films 2005, 480-481, 520-525.
22. <2001-bandgap grading.pdf>.
23. Lin, T.-Y.; Lai, C.-H. In Ga-Grading CIGS solar cell by one-step sputtering from a quaternary target without post-selenization, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), IEEE: 2015; pp 1-4.
24. <2015-Ga-Grading CIGS Solar Cell by One-Step Sputtering from a Quaternary.pdf>.
25. Dullweber, T.; Rau, U.; Schock, H. J. S. E. M.; Cells, S., A new approach to high-efficiency solar cells by band gap grading in Cu (In, Ga) Se2 chalcopyrite semiconductors. 2001, 67 (1-4), 145-150.
26. Nagoya, Y.; Kushiya, K.; Tachiyuki, M.; Yamase, O. J. S. e. m.; cells, s., Role of incorporated sulfur into the surface of Cu (InGa) Se2 thin-film absorber. 2001, 67 (1-4), 247-253.
27. Jehl Li Kao, Z.; Kobayashi, T.; Nakada, T., Modeling of the surface sulfurization of CIGSe-based solar cells. Solar Energy 2014, 110, 50-55.
28. Kobayashi, T.; Yamaguchi, H.; Jehl Li Kao, Z.; Sugimoto, H.; Kato, T.; Hakuma, H.; Nakada, T., Impacts of surface sulfurization on Cu(In1−x,Gax)Se2thin-film solar cells. Progress in Photovoltaics: Research and Applications 2015, 23 (10), 1367-1374.
29. Larsen, J. K.; Keller, J.; Lundberg, O.; Jarmar, T.; Riekehr, L.; Scragg, J. J. S.; Platzer-Bjorkman, C., Sulfurization of Co-Evaporated Cu(In,Ga)Se2 as a Postdeposition Treatment. IEEE Journal of Photovoltaics 2018, 8 (2), 604-610.
30. Keller, J.; Bilousov, O. V.; Wallin, E.; Lundberg, O.; Neerken, J.; Heise, S.; Riekehr, L.; Edoff, M.; Platzer-Björkman, C., Effect of Cu Content on Post‐Sulfurization of Cu(In,Ga)Se
2
Films and Corresponding Solar Cell Performance. physica status solidi (a) 2019, 216 (20).
31. <2012-modeling S incorporate.pdf>.
32. Khatri, I.; Matsuyama, I.; Yamaguchi, H.; Fukai, H.; Nakada, T., Surface sulfurization on MBE-grown Cu(In1−x,Gax)Se2thin films and devices. Japanese Journal of Applied Physics 2015, 54 (8S1).
33. Kato, T., Cu(In,Ga)(Se,S)2solar cell research in Solar Frontier: Progress and current status. Japanese Journal of Applied Physics 2017, 56 (4S).
34. Lyu, X.; Zhuang, D.; Zhao, M.; Zhang, N.; Wei, Y.; Wu, Y.; Ren, G.; Wang, C.; Hu, L.; Wei, J., Influences of sulfurization on performances of Cu(In,Ga)(Se,S)2 cells fabricated based on the method of sputtering CIGSe quaternary target. Journal of Alloys and Compounds 2019, 791, 1193-1199.
35. <2001-RoleofS.pdf>.
36. Ohashi, D.; Nakada, T.; Kunioka, A. J. S. e. m.; cells, s., Improved CIGS thin-film solar cells by surface sulfurization using In2S3 and sulfur vapor. 2001, 67 (1-4), 261-265.
37. Lin, Y. C.; Yen, W. T.; Chen, Y. L.; Wang, L. Q.; Jih, F. W., Influence of annealing temperature on properties of Cu(In,Ga)(Se,S)2 thin films prepared by co-sputtering from quaternary alloy and In2S3 targets. Physica B: Condensed Matter 2011, 406 (4), 824-830.
38. Lin, Y. C.; Ke, J. H.; Yen, W. T.; Liang, S. C.; Wu, C. H.; Chiang, C. T., Preparation and characterization of Cu(In,Ga)(Se,S)2 films without selenization by co-sputtering from Cu(In,Ga)Se2 quaternary and In2S3 targets. Applied Surface Science 2011, 257 (9), 4278-4284.
39. Nishimura, T.; Sugiura, H.; Nakada, K.; Yamada, A. J. P. i. P. R.; Applications, Accurate control and characterization of Cu depletion layer for highly efficient Cu (In, Ga) Se2 solar cells. 2019, 27 (2), 171-178.
40. Carron, R.; Nishiwaki, S.; Feurer, T.; Hertwig, R.; Avancini, E.; Löckinger, J.; Yang, S. C.; Buecheler, S.; Tiwari, A. N., Advanced Alkali Treatments for High‐Efficiency Cu(In,Ga)Se
2
Solar Cells on Flexible Substrates. Advanced Energy Materials 2019, 9 (24).
41. Sun, Y.; Lin, S.; Li, W.; Cheng, S.; Zhang, Y.; Liu, Y.; Liu, W., Review on Alkali Element Doping in Cu(In,Ga)Se 2 Thin Films and Solar Cells. Engineering 2017, 3 (4), 452-459.
42. Chirila, A.; Reinhard, P.; Pianezzi, F.; Bloesch, P.; Uhl, A. R.; Fella, C.; Kranz, L.; Keller, D.; Gretener, C.; Hagendorfer, H.; Jaeger, D.; Erni, R.; Nishiwaki, S.; Buecheler, S.; Tiwari, A. N., Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nat Mater 2013, 12 (12), 1107-11.
43. Kronik, L.; Cahen, D.; Schock, H. W. J. A. M., Effects of sodium on polycrystalline Cu (In, Ga) Se2 and its solar cell performance. 1998, 10 (1), 31-36.
44. Kronik, L.; Rau, U.; Guillemoles, J.-F.; Braunger, D.; Schock, H.-W.; Cahen, D. J. T. S. F., Interface redox engineering of Cu (In, Ga) Se2–based solar cells: oxygen, sodium, and chemical bath effects. 2000, 361, 353-359.
45. Niles, D. W.; Ramanathan, K.; Hasoon, F.; Noufi, R.; Tielsch, B. J.; Fulghum, J. E. J. J. o. V. S.; Technology A: Vacuum, S.; Films, Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy. 1997, 15 (6), 3044-3049.
46. Rudmann, D.; Bilger, G.; Kaelin, M.; Haug, F.-J.; Zogg, H.; Tiwari, A. J. T. S. F., Effects of NaF coevaporation on structural properties of Cu (In, Ga) Se2 thin films. 2003, 431, 37-40.
47. Handick, E.; Reinhard, P.; Wilks, R. G.; Pianezzi, F.; Félix, R.; Gorgoi, M.; Kunze, T.; Buecheler, S.; Tiwari, A. N.; Bär, M. In NaF/KF post-deposition treatments and their influence on the structure of Cu (In, Ga) Se 2 absorber surfaces, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), IEEE: 2016; pp 0017-0021.
48. Reinhard, P.; Bissig, B.; Pianezzi, F.; Avancini, E.; Hagendorfer, H.; Keller, D.; Fuchs, P.; Döbeli, M.; Vigo, C.; Crivelli, P.; Nishiwaki, S.; Buecheler, S.; Tiwari, A. N., Features of KF and NaF Postdeposition Treatments of Cu(In,Ga)Se2 Absorbers for High Efficiency Thin Film Solar Cells. Chemistry of Materials 2015, 27 (16), 5755-5764.
49. Abou-Ras, D.; Kostorz, G.; Strohm, A.; Schock, H.-W.; Tiwari, A. J. J. o. a. p., Interfacial layer formations between Cu (In, Ga) Se 2 and In x S y layers. 2005, 98 (12), 123512.
50. Bär, M.; Barreau, N.; Couzinié-Devy, F. o.; Weinhardt, L.; Wilks, R. G.; Kessler, J.; Heske, C. J. A. a. m.; interfaces, Impact of Annealing-Induced Intermixing on the Electronic Level Alignment at the In2S3/Cu (In, Ga) Se2 Thin-Film Solar Cell Interface. 2016, 8 (3), 2120-2124.
51. Guillot-Deudon, C.; Harel, S.; Mokrani, A.; Lafond, A.; Barreau, N.; Fernandez, V.; Kessler, J. J. P. R. B., Electronic structure of Na x Cu 1− x In 5 S 8 compounds: X-ray photoemission spectroscopy study and band structure calculations. 2008, 78 (23), 235201.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *