帳號:guest(3.145.82.39)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳品任
作者(外文):Chen, Pin-Jen
論文名稱(中文):內部光提取結構圖案對有機發光二極體的影響
論文名稱(外文):Internal Light-Extraction Pattern Effect on OLEDs
指導教授(中文):周卓煇
指導教授(外文):Jou, Jwo-Huei
口試委員(中文):岑尚仁
薛景中
呂芳賢
口試委員(外文):Chen, Sun-Zen
Shyue, Jing-Jong
Lu, Fang-Hsien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:107031562
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:63
中文關鍵詞:有機發光二極體光提取內部光提取結構電腦模擬光學圖形
外文關鍵詞:organic light emitting diodelight extractioninternal extraction structuresimulationopticalpattern
相關次數:
  • 推薦推薦:0
  • 點閱點閱:498
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
有機發光二極體 (Organic Light Emitting Diode, OLED)的內部量子效率雖然已可達到100%,但因有機層、陽極、基板及空氣等介面間折射率的不匹配,導致僅有約20%的光子得以進入空氣中,其餘80%的光子,或由元件側面逸散,或是最後以熱能的形式被消耗,這正是OLED元件效率無法更進一步提升的原因;因此,許多研究利用光提取結構,讓光子可以有效地被利用,進而提升元件的整體效率;雖然目前已有許多研究,使用光提取技術提升元件效率,卻沒有針對出光結構與光提取效率的關係,進行系統性的討論;瞭解出光結構與光提取效率間的關係,可減少製作成本,避免使用無效的內出光結構,導致整個元件的浪費,因此,相當有助於設計可實際運用之內出光結構。
本研究使用光學模擬軟-SETFOS,探討在基板和陽極介面間,內出光圖案結構對出光提取效率的影響,控制的參數包括:構成單元形狀,如:方形(square-dot)、圓形(circle-dot)與六邊形(hexagonal-dot),排列方式,如:光柵(grating)、矩陣排列(rectangularly-arranged)與六方排列(hexagonally-arranged)、圖案結構高度與基板折射率;模擬結果顯示:使用邊長50 nm的六角形單元,在週期為100 nm的矩陣排列方式下構成之週期圖案,搭配折射率1.8之基板,相較於未使用內部光提取圖案時,可增加114%的光提取效率,且圖形高度在20~200 nm範圍內不會影響光提取效率,然而使用圓形單元形狀的出光結構,其出光效率則與結構的高度有關。
The internal quantum efficiency of organic light emitting diodes has reached 100%, but due to the mismatch of refractive index between the organic layer, anode, substrate and air, only about 20% of the photons can enter the air. The remaining 80% of the photons either escape from the side of the device or are consumed in the form of heat energy. This is why the efficiency of OLED devices cannot be further improved. Therefore, many research groups utilize light-extraction structures that enable photons to be effectively used to improve the overall efficiency of the device. Although there have been many studies to use light-extraction technologies to improve the device efficiency, there is no systematic analysis about the relation between internal light-extraction pattern parameters and out-coupling efficiency. Understanding the relation between the light-extraction structure and the out-coupling efficiency can reduce the manufacturing cost and avoid the use of invalid internal structures, which leads to the waste of the entire device. Therefore, it is very helpful to design practical internal light-extraction structures.
This study uses optical simulation software-SETFOS to discuss the internal light- extraction pattern effect on the out-coupling efficiency between the substrate and the anode interface. The control parameters include: the shape of the unit, such as: square-dot, circle-dot and hexagonal-dot, the arrangement, such as: grating, rectangular arrangement and hexagonal arrangement, pattern height and refractive index of substrate. The result shows that using periodic pattern composed of rectangularly-arranged hexagonal-dot whose side length is 50 nm with a period of 100 nm, along with a substrate with refractive index 1.8 can increase the out-coupling efficiency by 114% compared with the conventional device without light-extraction. Besides, the out-coupling efficiency will not be affected by the pattern height in the range of 20 ~ 200 nm.
摘要 I
Abstract II
致謝 IV
目錄 VIII
圖目錄 XII
表目錄 XVI
壹、緒論 1
貳、文獻回顧 3
2-1、有機發光二極體的發光原理 3
2-1-1、OLED的放光方式 3
2-1-2、OLED的發光機制 5
2-2、有機發光二極體的能量轉移機制 8
2-3、有機發光二極體的基本結構 11
2-4、OLED的元件效率 12
參、有機發光二極體的光提取 14
3-1、有機發光二極體的光損耗種類及機制 14
3-1-1、輻射模式(radiation mode) 14
3-1-2、基板模式(substrate mode) 14
3-1-3、ITO/有機層光波導模式(ITO/ Organic waveguide mode) 15
3-1-4、表面電漿子模式(Surface plasmon polaritons mode) 15
3-2、有機發光二極體光提取 17
3-2-1、內部光提取結構 17
3-2-1-1、添加低折射率層 17
3-2-1-2、添加散射層 18
3-2-1-3、使用圖案化電極 21
3-2-1-4、光子晶體 22
3-2-1-5、表面電漿子耦合 24
3-2-2、外部光提取結構 26
3-2-2-1、表面粗化處理 26
3-2-2-2、微透鏡陣列 27
肆、有機發光二極體光學電腦模擬 31
4-1、模擬軟體 31
4-2、使用材料 32
4-2-1、本研究使用有機材料之功能、全名及簡稱 32
4-2-2、本研究使用有機材料之化學結構式 33
4-3、模擬參數與檔案輸入 35
4-3-1、客體材料光激發光譜 (photoluminescent spectrum) 35
4-3-2、內部光提取圖案 35
4-3-3、有機材料折射率 35
4-4、內部光提取圖案的建立 36
4-4-1光柵狀週期圖案 36
4-4-2矩陣排列週期圖案 37
4-4-3六方排列週期圖案 39
4-5、光提取效率的計算 40
伍、結果與討論 42
5-1、元件材料折射率、厚度及光提取效率 42
5-2、光柵狀內部光提取圖案 43
5-2-1、寬度對光提取效率的影響 44
5-2-2、高度對光提取效率的影響 45
5-2-3、基板折射率對光提取效率的影響 46
5-3、矩陣排列之內部光提取圖案 46
5-3-1、邊長對光提取效率的影響 48
5-3-2、高度對光提取效率的影響 50
5-3-3、基板折射率對光提取效率的影響 52
5-4、六方排列之內部光提取圖案 52
5-4-1、邊長、直徑對光提取效率的影響 53
5-4-2、高度對光提取效率的影響 55
5-4-3、基板折射率對光提取效率的影響 57
陸、結論 58
柒、參考文獻 60
附錄、個人著作目錄 63
(A) 期刊論文 63
(B) 研討會論文 63
(C) 得獎紀錄 63

[1] A. R. Duggal, J. Shiang, C. M. Heller, and D. F. Foust, "Organic light-emitting devices for illumination quality white light," Applied physics letters, vol. 80, no. 19, pp. 3470-3472, 2002.
[2] H. Lim et al., "Flexible Organic Electroluminescent Devices Based on Fluorine‐Containing Colorless Polyimide Substrates," Advanced Materials, vol. 14, no. 18, pp. 1275-1279, 2002.
[3] J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. Temple, "Highly flexible transparent electrodes for organic light-emitting diode-based displays," Applied Physics Letters, vol. 85, no. 16, pp. 3450-3452, 2004.
[4] M. C. Gather and S. Reineke, "Recent advances in light outcoupling from white organic light-emitting diodes," Journal of Photonics for Energy, vol. 5, no. 1, p. 057607, 2015.
[5] K. Saxena, V. Jain, and D. S. Mehta, "A review on the light extraction techniques in organic electroluminescent devices," Optical Materials, vol. 32, no. 1, pp. 221-233, 2009.
[6] K. Hong and J.-L. Lee, "Recent developments in light extraction technologies of organic light emitting diodes," Electronic Materials Letters, vol. 7, no. 2, pp. 77-91, 2011.
[7] W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, "Device efficiency of organic light‐emitting diodes: Progress by improved light outcoupling," physica status solidi (a), vol. 210, no. 1, pp. 44-65, 2013.
[8] J.-H. Jou, "OLED Introduction," 2015.
[9] M. A. Baldo et al., "Highly efficient phosphorescent emission from organic electroluminescent devices," vol. 395, no. 6698, p. 151, 1998.
[10] L. G. Thompson and S. Webber, "External heavy atom effect on the phosphorescence spectra of some halonaphthalenes," The Journal of Physical Chemistry, vol. 76, no. 2, pp. 221-224, 1972.
[11] T. Förster, "Zwischenmolekulare energiewanderung und fluoreszenz," Annalen der physik, vol. 437, no. 1-2, pp. 55-75, 1948.
[12] D. L. Dexter, "A theory of sensitized luminescence in solids," The Journal of Chemical Physics, vol. 21, no. 5, pp. 836-850, 1953.
[13] R. Srivastava, M. Kamalasanan, G. Chauhan, A. Kumar, P. Tyagi, and A. Kumar, "Organic light emitting diodes for white light emission," in Organic Light Emitting Diode: IntechOpen, 2010.
[14] D. S. Mehta and K. Saxena, "Light out-coupling strategies in organic light emitting devices," in Proc. ASID, 2006, vol. 6, no. 2, pp. 198-201.
[15] Y. S. Park, S. Lee, K. H. Kim, S. Y. Kim, J. H. Lee, and J. J. Kim, "Exciplex‐forming co‐host for organic light‐emitting diodes with ultimate efficiency," Advanced Functional Materials, vol. 23, no. 39, pp. 4914-4920, 2013.
[16] J. Feng, Y. F. Liu, Y. G. Bi, and H. B. Sun, "Light manipulation in organic light‐emitting devices by integrating micro/nano patterns," Laser & Photonics Reviews, vol. 11, no. 2, p. 1600145, 2017.
[17] T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, "Doubling coupling‐out efficiency in organic light‐emitting devices using a thin silica aerogel layer," Advanced Materials, vol. 13, no. 15, pp. 1149-1152, 2001.
[18] Y. Sun and S. R. Forrest, "Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids," Nature photonics, vol. 2, no. 8, pp. 483-487, 2008.
[19] B. Riedel et al., "Tailored Highly Transparent Composite Hole‐Injection Layer Consisting of Pedot: PSS and SiO2 Nanoparticles for Efficient Polymer Light‐Emitting Diodes," Advanced Materials, vol. 23, no. 6, pp. 740-745, 2011.
[20] J. W. Huh et al., "A randomly nano-structured scattering layer for transparent organic light emitting diodes," Nanoscale, vol. 6, no. 18, pp. 10727-10733, 2014.
[21] Y. H. Kim et al., "We Want Our Photons Back: Simple Nanostructures for White Organic Light‐Emitting Diode Outcoupling," Advanced Functional Materials, vol. 24, no. 17, pp. 2553-2559, 2014.
[22] L. Zhou, J. Zhuang, M. Song, W. Su, and Z. Cui, "Enhanced performance for organic light-emitting diodes by embedding an aerosol jet printed conductive grid," Journal of Physics D: Applied Physics, vol. 47, no. 11, p. 115504, 2014.
[23] C. Y. Chen, W. K. Lee, Y. J. Chen, C. Y. Lu, H. Y. Lin, and C. C. Wu, "Enhancing Optical Out-Coupling of Organic Light-Emitting Devices with Nanostructured Composite Electrodes Consisting of Indium Tin Oxide Nanomesh and Conducting Polymer," Adv Mater, vol. 27, no. 33, pp. 4883-8, Sep 2 2015, doi: 10.1002/adma.201502516.
[24] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Physical review letters, vol. 58, no. 23, p. 2486, 1987.
[25] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Physical review letters, vol. 58, no. 20, p. 2059, 1987.
[26] Y. R. Do et al., "Enhanced Light Extraction from Organic Light-Emitting Diodes with 2D SiO2/SiNx Photonic Crystals," Advanced Materials, vol. 15, no. 14, pp. 1214-1218, 2003, doi: 10.1002/adma.200304857.
[27] K. Ishihara et al., "Organic light-emitting diodes with photonic crystals on glass substrate fabricated by nanoimprint lithography," Applied Physics Letters, vol. 90, no. 11, 2007, doi: 10.1063/1.2713237.
[28] D. Kim et al., "Enhanced light outcoupling of polymer light-emitting diodes with a solution-processed, -flattening photonic-crystal underlayer," Journal of Information Display, vol. 17, no. 4, pp. 143-150, 2016, doi: 10.1080/15980316.2016.1219404.
[29] Y. Jin et al., "Solving Efficiency–Stability Tradeoff in Top‐Emitting Organic Light‐Emitting Devices by Employing Periodically Corrugated Metallic Cathode," Advanced Materials, vol. 24, no. 9, pp. 1187-1191, 2012.
[30] Y. Xiao et al., "Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles," Applied Physics Letters, vol. 100, no. 1, 2012, doi: 10.1063/1.3675970.
[31] S. Chen and H. S. Kwok, "Light extraction from organic light-emitting diodes for lighting applications by sand-blasting substrates," Optics express, vol. 18, no. 1, pp. 37-42, 2010.
[32] I. Lee, J. Y. Park, S. Gim, J. Ham, J. H. Son, and J. L. Lee, "Spontaneously Formed Nanopatterns on Polymer Films for Flexible Organic Light-Emitting Diodes," Small, vol. 11, no. 35, pp. 4480-4, Sep 16 2015, doi: 10.1002/smll.201500821.
[33] S. Möller and S. Forrest, "Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," Journal of Applied Physics, vol. 91, no. 5, pp. 3324-3327, 2002.
[34] M.-K. Wei and I.-L. Su, "Method to evaluate the enhancement of luminance efficiency in planar OLED light emitting devices for microlens array," Optics express, vol. 12, no. 23, pp. 5777-5782, 2004.
[35] S. Reineke et al., "White organic light-emitting diodes with fluorescent tube efficiency," Nature, vol. 459, no. 7244, pp. 234-238, 2009.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *