帳號:guest(3.136.234.12)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許景智
作者(外文):Hsu, Ching-Chih
論文名稱(中文):根基於激發複合體之高效率燭光有機發光二極體
論文名稱(外文):Exciplex enabling high-efficiency candlelight OLED
指導教授(中文):周卓煇
指導教授(外文):Jou, Jwo-Huei
口試委員(中文):岑尚仁
王欽戊
薛景中
口試委員(外文):Chen, Sun-Zen
Wang, Ching-Wu
Shyue, Jing-Jong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:107031536
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:73
中文關鍵詞:有機發光二極體低色溫燭光激發複合體高效率
外文關鍵詞:OLEDlow color temperaturecandlelightexciplexhigh efficiency
相關次數:
  • 推薦推薦:0
  • 點閱點閱:495
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
照明燈源是現代生活中不可或缺的物品;好的光源不僅要節能,同時也不應對人體的健康造成不良的影響;現今市場上的照明光源多含有大量的藍光,而許多研究證實,夜晚照射藍光會嚴重影響人體褪黑激素的分泌,造成失眠,引發肥胖、二類型糖尿病等疾病;相對地,燭光中藍光的含量非常少,但使用蠟燭的缺點為易產生火災、溫室氣體與懸浮微粒(PM2.5);因此,製作一電力驅動並具有燭光光色的高效率光源,不只可以解決夜晚安全照明的需求,也能減少能量的損耗以及免除PM2.5帶來的危害。
本研究結合供體材料9,9'-Diphenyl-9H,9'H-3,3'-bicarbazole (BCzPh)及受體材料3,6-Bis(N-carbazolyl)-N-phenylcarbazole (3P-T2T)形成一激發複合體共主體,並添加5 wt%綠光客體Tris[2-phenylpyridinato-C2,N]iridium(III) [Ir(ppy)3]與2 wt%紅光客體[(bis(2-(3,5-dimethylphenyl)quinoline)Ir(III)(acetylacetonate)] [Ir(mphq)2acac],製作出一高效率燭光有機發光二極體,其最大能量效率可達50 lm/W,外部量子效率達26.3%,色溫為1726 K,自然光譜相似性指數為81.7%;是目前使用激發複合體製作燭光元件中效率最高的;元件高效率可歸因於以下特點:(1) 供體與受體的 HOMO能階差值與LUMO能階差值足夠大(皆為0.7 eV),使電洞、電子可以同時堆積在同一介面,而有利激發複合體的形成;(2) 良好的元件結構設計,減少電子與電洞注入發光層時所需克服的能障,再加上優良的載子侷限與平衡,可使載子再結合形成激子於發光層中,提升元件效率;(3) 使用電子傳輸層材料作為激發複合體形成的發光層受體,可提升電子遷移率,讓其可以更有效地形成激發複合體激子。
The light sources are indispensable items in modern life. Good light sources not only need to save the energy, but also should not cause the adverse effect on human health. Nowadays, many of the light products in the market contain lots of blue light, and according to many researches, it has a serious impact on melatonin secretion when human exposure the blue light at night, leading to insomnia, Diabetes mellitus type 2 (T2DM) and obesity. Relatively, candlelight contain less blue light, but the disadvantages of using candles are not only causing fire easily, but also producing the greenhouse gases and PM2.5, so making the electrically driven high efficiency light source can not only solve the requirement of safety lighting at night, but also reduce the energy waste and the harm of PM2.5 pollution.
In this study, we combine donor material, 9,9'-Diphenyl-9H,9'H-3,3'-bicarbazole (BCzPh), and host material, 3,6-Bis(N-carbazolyl)-N-phenylcarbazole (3P-T2T), to form as exciplex co-host, doped with 5 wt% green dye, Tris[2-phenylpyridinato-C2,N]iridium(III)[Ir(ppy)3] and 2 wt% red dye, [(bis(2-(3,5-dime-thylphenyl)-quinoline)Ir(III)(acetylacetonate)] [Ir(mphq)2acac], forming a high-efficiency candlelight Organic Light Emitting Diodes (OLED) with the maximum power efficacy of 50 lm/W, maximum external quantum efficiency (EQE) of 26.3%, color temperature of 1726 K, and SRI of 81.7%. To the best of our knowledge, the performance is the best of exciplex candlelight OLED so far. The high-efficiency exciplex can be attributed to: (1) The energy gap from HOMO of host and donor, and LUMO of host and donor are large enough (both of them are 0.7 eV), which causes the holes and electrons can stack on the same interface, and lead to form the exciplex easily; (2) Good design of device structure to reduce the energy barrier required for holes and electrons inject in the emissive layer, and besides, good charge carrier confinement and balance cause the charge carrier recombination to form exciton in emissive layer, improving the device efficiency; (3) use the electron transport material to be the electron donor of the exciplex host, it can enhance the electron mobility and form the excitons more effectively.
摘要 I
Abstract III
致謝 V
目錄 X
表目錄 XIV
圖目錄 XV
壹、 緒論 1
貳、文獻回顧 3
2-1、 OLED的歷史發展 3
2-2、 OLED的基本結構 7
2-3、 OLED的發光原理 8
2-4、 OLED的能量傳遞機制 12
2-5、 OLED的材料之發展 14
2-5-1、 陽極材料 14
2-5-2、 電洞注入材料 15
2-5-3、 電洞傳輸材料 15
2-5-4、 發光層材料 16
2-5-5、 電子傳輸材料 16
2-5-6、 電子注入材料 16
2-5-7、 陰極材料 17
2-6、 光色的定義 17
2-7、燭光有機發光二極體之發展 18
參、理論背景 21
3-1、 視網膜最大可忍受之曝光極限(MPE)計算 21
3-2、 褪黑激素抑制敏感度(MSS)計算 22
3-3、 自然光譜相似性指數(SRI)計算 24
肆、激發複合體有機發光二極體 26
4-1、 激發複合體有機發光二極體介紹 26
4-1-1、 激發複合體形成機制 26
4-1-2、 激發複合體的能量傳遞方式 27
4-2、 激發複合體有機發光二極體重要回顧 28
4-2-1、 燭光激發複合體回顧 30
伍、 實驗方法 33
5-1、 使用之材料 33
5-1-1、 材料之簡稱、全名與功能 33
5-1-2、 材料之化學結構式 35
5-2、 材料特性量測分析 38
5-2-1、 紫外光-可見光吸收光譜(UV-VIS)之量測 38
5-2-2、 光致發光(photoluminescent spectrum)光譜之量測 38
5-2-3、 時間解析光激發光譜(TRPL)之量測 39
5-3、 元件設計與製備 39
5-3-1、 元件電路設計 39
5-3-2、 ITO基板清潔 40
5-3-3、 元件發光層製備 41
5-3-4、 真空熱蒸鍍機裝置 41
5-3-5、 成膜鍍率測定 42
5-3-6、 激發複合體OLED元件製備 43
5-4、 元件之量測及發光效率之計算 43
陸、 結果與討論 46
6-1、元件結構與材料選擇 46
6-2、主體材料之物理特性 49
6-2-1 紫外光-可見光吸收光譜與光激發光譜 49
6-2-2、時間解析光激發光譜 52
6-3、電子供受體濃度對元件的影響 53
6-4、客體濃度對元件的影響 58
柒、 結論 65
捌、 參考資料 67
附錄一、個人著作目錄 72
附錄二、獲獎紀錄 73
[1] G. C. Brainard, B. A. Richardson, T. S. King, and R. J. J. B. r. Reiter, "The influence of different light spectra on the suppression of pineal melatonin content in the Syrian hamster," vol. 294, no. 2, pp. 333-339, 1984.
[2] S. M. J. M. h. Pauley, "Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue," vol. 63, no. 4, pp. 588-596, 2004.
[3] H. Lim et al., "Flexible Organic Electroluminescent Devices Based on Fluorine‐Containing Colorless Polyimide Substrates," vol. 14, no. 18, pp. 1275-1279, 2002.
[4] J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. J. A. P. L. Temple, "Highly flexible transparent electrodes for organic light-emitting diode-based displays," vol. 85, no. 16, pp. 3450-3452, 2004.
[5] J.-H. Jou et al., "Candle Light-Style Organic Light-Emitting Diodes," Advanced Functional Materials, vol. 23, no. 21, pp. 2750-2757, 2013.
[6] X. Liu et al., "Power-efficient solution-processed red organic light-emitting diodes based on an exciplex host and a novel phosphorescent iridium complex," vol. 4, no. 24, pp. 5787-5794, 2016.
[7] P. Vincett, W. Barlow, R. Hann, and G. J. T. s. f. Roberts, "Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films," vol. 94, no. 2, pp. 171-183, 1982.
[8] C. W. Tang, C. H. Chen, and R. Goswami, "Electroluminescent device with modified thin film luminescent zone," ed: Google Patents, 1988.
[9] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Applied Physics Letters, vol. 51, no. 12, pp. 913-915, 1987.
[10] C. W. Tang, S. A. VanSlyke, and C. H. J. J. o. a. p. Chen, "Electroluminescence of doped organic thin films," vol. 65, no. 9, pp. 3610-3616, 1989.
[11] M. Era, C. Adachi, T. Tsutsui, and S. Saito, "Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter," Chemical Physics Letters, vol. 178, no. 5-6, pp. 488-490, 1991.
[12] M. A. Baldo et al., "Highly efficient phosphorescent emission from organic electroluminescent devices," vol. 395, no. 6698, pp. 151-154, 1998.
[13] J.-H. Jou, Y.-S. Chiu, C.-P. Wang, R.-Y. Wang, and H.-C. J. A. p. l. Hu, "Efficient, color-stable fluorescent white organic light-emitting diodes with single emission layer by vapor deposition from solvent premixed deposition source," vol. 88, no. 19, p. 193501, 2006.
[14] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, "Highly efficient organic light-emitting diodes from delayed fluorescence," Nature, vol. 492, no. 7428, pp. 234-8, Dec 13 2012.
[15] J.-H. Jou, OLED Introduction. 2015.
[16] L. G. Thompson and S. J. T. J. o. P. C. Webber, "External heavy atom effect on the phosphorescence spectra of some halonaphthalenes," vol. 76, no. 2, pp. 221-224, 1972.
[17] T. J. A. d. p. Förster, "Zwischenmolekulare energiewanderung und fluoreszenz," vol. 437, no. 1-2, pp. 55-75, 1948.
[18] D. L. J. T. J. o. C. P. Dexter, "A theory of sensitized luminescence in solids," vol. 21, no. 5, pp. 836-850, 1953.
[19] J.-S. Kim et al., "Indium–tin oxide treatments for single-and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance," vol. 84, no. 12, pp. 6859-6870, 1998.
[20] M. G. Mason, L. S. Hung, C. W. Tang, S. Lee, K. W. Wong, and M. J. J. o. A. P. Wang, "Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices," vol. 86, no. 3, pp. 1688-1692, 1999.
[21] M. Ishii, T. Mori, H. Fujikawa, S. Tokito, and Y. J. J. o. L. Taga, "Improvement of organic electroluminescent device performance by in situ plasma treatment of indium–tin-oxide surface," vol. 87, pp. 1165-1167, 2000.
[22] S. A. Van Slyke, C. Chen, and C. W. J. A. p. l. Tang, "Organic electroluminescent devices with improved stability," vol. 69, no. 15, pp. 2160-2162, 1996.
[23] A. Elschner et al., "PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes," vol. 111, pp. 139-143, 2000.
[24] C. Adachi, S. Tokito, T. Tsutsui, and S. J. J. j. o. a. p. Saito, "Organic electroluminescent device with a three-layer structure," vol. 27, no. 4A, p. L713, 1988.
[25] K. A. Higginson, X.-M. Zhang, and F. J. C. o. M. Papadimitrakopoulos, "Thermal and morphological effects on the hydrolytic stability of aluminum tris (8-hydroxyquinoline)(Alq3)," vol. 10, no. 4, pp. 1017-1020, 1998.
[26] N.-X. Hu, S. Xie, Z. D. Popovic, B. Ong, and A.-M. J. S. M. Hor, "Novel high Tg hole-transport molecules based on indolo [3, 2-b] carbazoles for organic light-emitting devices," vol. 111, pp. 421-424, 2000.
[27] P. Borsenberger, L. Pautmeier, R. Richert, and H. J. T. J. o. c. p. Bässler, "Hole transport in 1, 1‐bis (di‐4‐tolylaminophenyl) cyclohexane," vol. 94, no. 12, pp. 8276-8281, 1991.
[28] J. Kido and T. Matsumoto, "Bright organic electroluminescent devices having a metal-doped electron-injecting layer," Applied Physics Letters, vol. 73, no. 20, pp. 2866-2868, 1998.
[29] V. A. Central Bureau of CIE, "Colorimetry (Second Edition)-Publication CIE 15.2," ed, 1986.
[30] J.-H. Jou et al., "Sunlight-style color-temperature tunable organic light-emitting diode," vol. 95, no. 1, p. 184, 2009.
[31] J.-H. Jou et al., "High-efficiency, very-high color rendering white organic light-emitting diode with a high triplet interlayer," vol. 21, no. 46, pp. 18523-18526, 2011.
[32] J.-H. Jou et al., "Organic light-emitting diode-based plausibly physiologically-friendly low color-temperature night light," vol. 13, no. 8, pp. 1349-1355, 2012.
[33] J.-H. Jou et al., "OLEDs with chromaticity tunable between dusk-hue and candle-light," vol. 14, no. 1, pp. 47-54, 2013.
[34] Y. Hu, T. Zhang, J. Chen, D. Ma, and C. H. J. I. J. o. C. Cheng, "Hybrid Organic Light‐Emitting Diodes with Low Color‐Temperature and High Efficiency for Physiologically‐Friendly Night Illumination," vol. 54, no. 7, pp. 979-985, 2014.
[35] J.-H. Jou et al., "Wet-process feasible candlelight OLED," vol. 4, no. 25, pp. 6070-6077, 2016.
[36] M. Lee, D. K. Dubey, Y. C. Lo, and J.-H. Jou, "Solution processed low-color temperature OLED with high efficiency," in 2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2018, pp. 1-3: IEEE.
[37] S.-H. Shih et al., "High efficiency color-temperature tunable organic light-emitting diode," vol. 7, no. 48, pp. 15322-15334, 2019.
[38] V. M. Korshunov et al., "A novel candle light-style OLED with a record low colour temperature," vol. 55, no. 89, pp. 13354-13357, 2019.
[39] "photobiological safety of lamps and lamp systems," 2006.
[40] J.-h. Jou, "Melatonin suppression extent measuring device," ed: Google Patents, 2014.
[41] J. P. Hanifin, K. T. Stewart, P. Smith, R. Tanner, M. Rollag, and G. C. J. C. i. Brainard, "High‐intensity red light suppresses melatonin," vol. 23, no. 1-2, pp. 251-268, 2006.
[42] G. C. Brainard et al., "Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor," vol. 21, no. 16, pp. 6405-6412, 2001.
[43] K. Thapan, J. Arendt, and D. J. J. T. J. o. p. Skene, "An action spectrum for melatonin suppression: evidence for a novel non‐rod, non‐cone photoreceptor system in humans," vol. 535, no. 1, pp. 261-267, 2001.
[44] J.-H. Jou et al., "A universal, easy-to-apply light-quality index based on natural light spectrum resemblance," vol. 104, no. 20, p. 76_1, 2014.
[45] Q. Wang, Q.-S. Tian, Y.-L. Zhang, X. Tang, and L.-S. J. J. o. M. C. C. Liao, "High-efficiency organic light-emitting diodes with exciplex hosts," vol. 7, no. 37, pp. 11329-11360, 2019.
[46] J. H. Lee, S. Lee, S. J. Yoo, K. H. Kim, and J. J. J. A. F. M. Kim, "Langevin and Trap‐Assisted Recombination in Phosphorescent Organic Light Emitting Diodes," vol. 24, no. 29, pp. 4681-4688, 2014.
[47] M. Cai et al., "Unveiling the role of langevin and Trap-Assisted recombination in long lifespan OLEDs employing thermally activated delayed Fluorophores," vol. 11, no. 1, pp. 1096-1108, 2018.
[48] S. A. Jenekhe and J. A. J. S. Osaheni, "Excimers and exciplexes of conjugated polymers," vol. 265, no. 5173, pp. 765-768, 1994.
[49] N. Matsumoto, M. Nishiyama, and C. J. T. J. o. P. C. C. Adachi, "Exciplex formations between tris (8-hydoxyquinolate) aluminum and hole transport materials and their photoluminescence and electroluminescence characteristics," vol. 112, no. 20, pp. 7735-7741, 2008.
[50] K. Goushi and C. J. A. P. L. Adachi, "Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes," vol. 101, no. 2, p. 023306, 2012.
[51] W.-Y. Hung et al., "Highly efficient bilayer interface exciplex for yellow organic light-emitting diode," vol. 5, no. 15, pp. 6826-6831, 2013.
[52] K.-H. Kim et al., "Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes," vol. 5, no. 1, pp. 1-8, 2014.
[53] J. H. Lee et al., "An exciplex forming host for highly efficient blue organic light emitting diodes with low driving voltage," vol. 25, no. 3, pp. 361-366, 2015.
[54] W.-Y. Hung et al., "The first tandem, all-exciplex-based WOLED," vol. 4, p. 5161, 2014.
[55] L. Zhu, K. Xu, Y. Wang, J. Chen, and D. J. F. o. O. Ma, "High efficiency yellow fluorescent organic light emitting diodes based on m-MTDATA/BPhen exciplex," vol. 8, no. 4, pp. 439-444, 2015.
[56] W.-Y. Hung et al., "Balance the carrier mobility to achieve high performance exciplex OLED using a triazine-based acceptor," vol. 8, no. 7, pp. 4811-4818, 2016.
[57] F. Steinbacher, R. Krause, A. Hunze, and A. J. O. E. Winnacker, "Simplified, yellow, organic light emitting diode by co-evaporation of premixed dye molecules," vol. 12, no. 6, pp. 911-915, 2011.
[58] S. Lee, D. Limbach, K.-H. Kim, S.-J. Yoo, Y.-S. Park, and J.-J. J. O. E. Kim, "High efficiency and non-color-changing orange organic light emitting diodes with red and green emitting layers," vol. 14, no. 7, pp. 1856-1860, 2013.
[59] S. Lee, K. H. Kim, D. Limbach, Y. S. Park, and J. J. J. A. F. M. Kim, "Low roll‐off and high efficiency orange organic light emitting diodes with controlled co‐doping of green and red phosphorescent dopants in an exciplex forming co‐host," vol. 23, no. 33, pp. 4105-4110, 2013.
[60] J. Zhao, X. Du, S. Yuan, C. Zheng, H. Lin, and S. J. O. E. Tao, "Highly efficient green and red OLEDs based on a new exciplex system with simple structures," vol. 43, pp. 136-141, 2017.
[61] L. Marcu, P. M. French, and D. S. Elson, Fluorescence lifetime spectroscopy and imaging: principles and applications in biomedical diagnostics. CRC Press, 2014.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *