帳號:guest(18.116.86.60)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪儀恩
作者(外文):Hung, Yi-En
論文名稱(中文):Cu2O奈米線陣列製備與分析及其在光電催化水分解之應用
論文名稱(外文):Preparation and characterization of Cu2O nanowire array for solar water splitting applications
指導教授(中文):廖建能
指導教授(外文):Liao, Chien-Neng
口試委員(中文):林鶴南
胡啟章
口試委員(外文):Lin, Heh-Nan
Hu, Chi-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:107031529
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:52
中文關鍵詞:氧化亞銅光電催化奈米線水分解
外文關鍵詞:Cu2Ophotoelectrochemical catalystnanowirewater splitting
相關次數:
  • 推薦推薦:0
  • 點閱點閱:398
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
太陽能可以光電催化水分解的方式產氫,而奈米材料像是奈米線、奈米顆粒等,因為有較大表面積及豐富的反應位置被視為很好的光電催化材料。氧化亞銅是一種具發展性的光電催化材料,但其光激發載子的高再結合率和自身氧化還原的光腐蝕效應是實際水分解應用中必須解決的難題。本研究中,以濺鍍銅膜通過電化學陽極處理的方式生成氫氧化銅奈米線陣列,並在高溫下退火使其轉化成氧化亞銅奈米線陣列。為生成氧化亞銅/氧化銅的核殼結構,本實驗以端點偵測法控制銅在FTO導電玻璃上的剩餘量。氧化亞銅/氧化銅的能帶排列結構有利於將氧化亞銅中產生的光激發電子導向氧化銅/溶液界面以進行水分解。在1M Na2SO4溶液中以AM 1.5G的模擬太陽光照射,Cu2O/CuO核殼奈米線陣列有5.3 mA/cm2的高光電流值。然而,在光電催化的測試過程中,隨著照光時間的增長,光電流值逐漸下降。因此本研究也針對影響Cu2O/CuO核殼奈米線陣列光電流及穩定性的原因做進一步探討。
Solar energy can be used to produce hydrogen fuel by splitting water through photoelectrochemical reaction. Nanomaterials including nanoparticles and nanowires that possess large surface area and abundant reactive sites are inherently good photocatalytic materials. Although cuprous oxide (Cu2O) is known as a promising photocathode material in a photoelectrochemical cell, its high electron-hole recombination rate and self-oxidation/reduction have been the major concerns for practical water-splitting applications. In this study, a Cu2O nanowire array was prepared by growing Cu(OH)2 nanowires on sputtered Cu film through electrochemical anodization, followed by thermal treatment at elevated temperature. An end-point detection method was used to monitor the amount of residual Cu on the fluorine doped tin oxide (FTO) substrate in order to control the morphology of Cu2O/CuO core-shell structure. The band alignment of the Cu2O/CuO core-shell structure helps covey photoelectrons generated in Cu2O to the CuO/solution interface for water splitting. The Cu2O/CuO core-shell nanowire array demonstrates a high photocurrent of 5.3 mA/cm2 in a 1M Na2SO4 solution under AM 1.5G illumination. However, the photocurrent gradually decreased with light exposure time during the photoelectrochemical testing. The factors affecting the photocurrent and stability of the Cu2O/CuO core-shell nanowire array are discussed in this study.
目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第1章 緒論 1
1.1 前言 1
1.2 研究動機 2
第2章 文獻回顧 3
2.1 光電催化產氫 3
2.1.1 產氫技術 3
2.1.2 光催化水分解(photocatalytic water splitting) 4
2.1.3 光電催化水分解(Photoelectrochemical water splitting) 5
2.2 Cu2O作為光電催化材料 7
2.2.1 Cu2O做為光電催化材料之瓶頸 7
2.2.2 能帶排列對光電催化性質之助益 9
2.3 Cu2O奈米線於光電催化應用 10
2.3.1 奈米線光學性質 10
2.3.2 奈米線光觸媒特性 11
第3章 實驗步驟 12
3.1 實驗設計與流程 12
3.1.1 實驗藥品 12
3.1.2 Cu2O奈米線製備 12
3.2 陽極處理Cu(OH)2及其退火後Cu2O奈米線分析 15
3.2.1 X光結晶繞射分析(XRD)分析 15
3.2.2 掃描式電子顯微鏡(SEM) 分析 15
3.2.3 穿透式電子顯微鏡(TEM) 分析 16
3.2.4 X光光電子能譜儀(XPS)分析 16
3.2.5 光電催化性質分析 16
3.2.6 電化學阻抗測量 17
3.2.7 Mott-Schottky半導體性質分析 18
3.2.8 電化學表面積測量-雙電層電容法 19
3.3 實驗設備與儀器 20
第4章 結果討論 21
4.1 端點偵測(End-point Detection)處理對Cu(OH)2轉換之Cu2O奈米線影響 21
4.1.1 Cu(OH)2奈米線的成核機制 21
4.1.2 Cu(OH)2退火後之Cu2O奈米線微結構分析 22
4.1.3 Cu(OH)2退火後Cu2O奈米線X射線繞射光譜分析(XRD) 24
4.1.4 端點偵測法生成之奈米線穿透式電子顯微鏡(TEM)分析 25
4.1.5 Cu2O/CuO核殼奈米線光電催化性質分析 26
4.1.6 相異殘餘銅量與Cu2O/CuO核殼結構對光電催化性質影響 27
4.1.7 端點偵測法之Cu2O/CuO核殼奈米線光腐蝕路徑 29
4.2 陽極處理電流密度對Cu(OH)2及其退火Cu2O/CuO核殼奈米線之影響 30
4.2.1 Cu(OH)2及其退火後Cu2O/CuO核殼奈米線微結構分析 30
4.2.2 Cu(OH)2及其退火後Cu2O奈米線X射線繞射光譜分析(XRD) 34
4.2.3 相異電流密度生成之Cu2O/CuO核殼奈米線反應位置分析 35
4.2.4 Cu2O/CuO核殼奈米線光電催化性質分析 37
4.3 電洞傳導層Cu2Te對奈米線性質影響 39
4.3.1 濺鍍Cu2Te成分與性質分析 40
4.3.2 不同厚度Cu2Te層之Cu2O/CuO核殼奈米線陣列結構電化學阻抗測量結果 42
4.3.3 不同厚度Cu2Te對Cu2O/CuO核殼奈米線的光電催化性質影響 44
4.4 施加偏壓對光電催化穩定性的影響 46
第5章 結論 48
第6章 參考文獻 49

[1] A. F. Ambrose, A. Q. Al-Amin, R. Rasiah, R. Saidur, Prospects for introducing hydrogen fuel cell vehicles in Malaysia. International Journal of Hydrogen Energy 42, 9125-9134 (2017).
[2] E. M. A. Mokheimer, M. Ibrar Hussain, S. Ahmed, M. A. Habib, A. A. Al-Qutub, On the modeling of steam methane reforming. Journal of Energy Resources Technology 137, 012001 (2014).
[3] J. A. Turner, A realizable renewable energy future. Science 285, 687 (1999).
[4] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37-38 (1972).
[5] M. Ahmed, G. Xinxin, A review of metal oxynitrides for photocatalysis. Inorganic Chemistry Frontiers 3, 578-590 (2016).
[6] S. Harrison, Exploring and exploiting charge-carrier confinement in semiconductor nanostructures heterodimensionality in sub-monolayer InAs in GaAs and photoelectrolysis using type-II heterojunctions. Lancaster University, (2016).
[7] X. Zhang, Y. L. Chen, R.-S. Liu, D. P. Tsai, Plasmonic photocatalysis. Reports on Progress in Physics 76, 046401 (2013).
[8] C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, J. Tang, Photoelectrochemical devices for solar water splitting - materials and challenges. Chemical Society Reviews 46, 4645-4660 (2017).
[9] S. K. Baek, K. R. Lee, H. K. Cho, Oxide pn heterojunction of Cu2O/ZnO nanowires and their photovoltaic performance. Journal of Nanomaterials 2013, 1-7 (2013).
[10] M. Ahamed, M. M. Khan, M. J. Akhtar, H. A. Alhadlaq, A. Alshamsan, Ag-doping regulates the cytotoxicity of TiO2 nanoparticles via oxidative stress in human cancer cells. Scientific Reports 7, 1-14 (2017).
[11] J. Low, J. Yu, M. Jaroniec, S. Wageh, A. A. Al‐Ghamdi, Heterojunction photocatalysts. Advanced Materials 29, 1601694 (2017).
[12] S. Y. Jeong, K. S. Choi, H.-M. Shin, T. L. Kim, J. Song, S. Yoon, H. W. Jang, M.-H. Yoon, C. Jeon, J. i. Lee, Enhanced photocatalytic performance depending on morphology of bismuth vanadate thin film synthesized by pulsed laser deposition. ACS Applied Materials Interfaces 9, 505-512 (2017).
[13] M. Chhetri, C. Rao, Photoelectrochemical hydrogen generation employing a Cu2O-based photocathode with improved stability and activity by using NixPy as the cocatalyst. Physical Chemistry Chemical Physics 20, 15300-15306 (2018).
[14] S. Ishizuka, T. Maruyama, K. Akimoto, Thin-film deposition of Cu2O by reactive radio-frequency magnetron sputtering. Japanese Journal of Applied Physics 39, L786 (2000).
[15] L. Olsen, F. Addis, W. Miller, Experimental and theoretical studies of Cu2O solar cells. Solar Cells 7, 247-279 (1982).
[16] W. Ching, Y.-N. Xu, K. Wong, Ground-state and optical properties of Cu2O and CuO crystals. Physical Review B 40, 7684 (1989).
[17] M. Bohm, I. Holmér, H. Nilsson, O. Norén, Thermal effect of glazing in driver's cabs.: Evaluation of the impact of different types of glazing on the thermal comfort. Environmental Science 305, 1-82 (2002).
[18] A. Paracchino, J. C. Brauer, J.-E. Moser, E. Thimsen, M. Graetzel, Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy. The Journal of Physical Chemistry C 116, 7341-7350 (2012).
[19] J. L. Sculfort, D. Guyomard, M. Herlem, Photoelectrochemical characterization of the p-Cu2O-non aqueous electrolyte junction. Electrochimica Acta 29, 459-465 (1984).
[20] Y. Yang, J. Han, X. Ning, J. Su, J. Shi, W. Cao, W. Xu, Photoelectrochemical stability improvement of cuprous oxide (Cu2O) thin films in aqueous solution. International Journal of Energy Research 40, 112-123 (2016).
[21] C. Y. Toe, Z. Zheng, H. Wu, J. Scott, R. Amal, Y. H. Ng, Photocorrosion of cuprous oxide in hydrogen production: rationalising self-oxidation or self-reduction. Angewandte Chemie International Edition 57, 13613-13617 (2018).
[22] Y. Yang, D. Xu, Q. Wu, P. Diao, Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Scientific Reports 6, 35158 (2016).
[23] X. Wang, X. Wu, L. Yuan, K. Huang, S. Feng, Ultra-low reflection CuO nanowire array in-situ grown on copper sheet. Materials Design 113, 297-304 (2017).
[24] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Solar water splitting cells. Chemical Reviews 110, 6446-6473 (2010).
[25] J. Luo, L. Steier, M.-K. Son, M. Schreier, M. T. Mayer, M. Grätzel, Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Letters 16, 1848-1857 (2016).
[26] I. Udachyan, R. Vishwanath, C. P. Kumara, S. Kandaiah, Potential dependent growth of Cu(OH)2 nanostructures on Cu and their thermal conversion to mixed-valent copper oxides p-type photoelectrode. International Journal of Hydrogen Energy 44, 7181-7193 (2019).
[27] J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Facile and scalable fabrication of three-dimensional Cu(OH)2 nanoporous nanorods for solid-state supercapacitors. Journal of Materials Chemistry A 3, 17385-17391 (2015).
[28] J. S. Kim, S. W. Cho, N. G. Deshpande, Y. B. Kim, Y. D. Yun, S. H. Jung, D. S. Kim, H. K. Cho, Toward robust photoelectrochemical operation of cuprous oxide nanowire photocathodes using a strategically designed solution-processed titanium oxide passivation coating. ACS Applied Materials & Interfaces 11, 14840-14847 (2019).
[29] D. V. Ribeiro, J. C. C. Abrantes, Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach. Construction and Building Materials 111, 98-104 (2016).
[30] H. Zhang, Y. Li, G. Zhang, T. Xu, P. Wan, X. Sun, A metallic CoS2 nanopyramid array grown on 3D carbon fiber paper as an excellent electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A 3, 6306-6310 (2015).
[31] S. S. Wilson, J. P. Bosco, Y. Tolstova, D. O. Scanlon, G. W. Watson, H. A. Atwater, Interface stoichiometry control to improve device voltage and modify band alignment in ZnO/Cu2O heterojunction solar cells. Energy Environmental Science 7, 3606-3610 (2014).
[32] A. A. Dubale, C.-J. Pan, A. G. Tamirat, H.-M. Chen, W.-N. Su, C.-H. Chen, J. Rick, D. W. Ayele, B. A. Aragaw, J.-F. Lee, Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction. Journal of Materials Chemistry A 3, 12482-12499 (2015).
[33] J. Bai, Y. Li, R. Wang, K. Huang, Q. Zeng, J. Li, B. Zhou, A novel 3D ZnO/Cu2O nanowire photocathode material with highly efficient photoelectrocatalytic performance. Journal of Materials Chemistry A 3, 22996-23002 (2015).
[34] Y.-C. Chen, Y.-C. Chang, Y.-K. Hsu, Facile synthesis of ZnO nanoparticles on carol-like Cu2O nanowires for photoelectrochemical hydrogen generation. Journal of Alloys Compounds 729, 507-512 (2017).
[35] Y. Wang, Z. Lou, W. Niu, Z. Ye, L. Zhu, Optimization of photoelectrochemical performance in Pt-modified p-Cu2O/n-Cu2O nanocomposite. Nanotechnology 29, 145402 (2018).
[36] A. Klein, Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy. Journal of Physics: Condensed Matter 27, 134201 (2015).
[37] S. Mostafa, S. Selim, S. Soliman, E. Gadalla, Electrochemical investigations of a copper-tellurium system and determination of the band gap for α-Cu2Te. Electrochimica Acta 38, 1699-1703 (1993).
[38] M. A. Matin, M. U. Tomal, A. M. Robin, Copper telluride as a nobel BSF material for high performance ultra thin CdTe PV cell. 2013 International Conference on Informatics, Electronics and Vision (ICIEV), 1-5 (2013).
[39] M. Santamaria, G. Conigliaro, F. Di Franco, F. Di Quarto, Photoelectrochemical evidence of Cu2O/TiO2 nanotubes hetero-junctions formation and their physicochemical characterization. Electrochimica Acta 144, 315-323 (2014).
[40] J. Pan, X. Li, Q. Zhao, T. Li, M. Tade, S. Liu, Construction of Mn0.5Zn0.5Fe2O4 modified TiO2 nanotube array nanocomposite electrodes and their photoelectrocatalytic performance in the degradation of 2, 4-DCP. Journal of Materials Chemistry C 3, 6025-6034 (2015).
[41] Y. Duan, S. Zhou, Z. Chen, J. Luo, M. Zhang, F. Wang, T. Xu, C. Wang, Hierarchical TiO2 nanowire/microflower photoanode modified with Au nanoparticles for efficient photoelectrochemical water splitting. Catalysis Science Technology 8, 1395-1403 (2018).
[42] W. Xu, H. Li, J.-B. Xu, L. Wang, Recent advances of solution-processed metal oxide thin-film transistors. ACS Applied Materials Interfaces 10, 25878-25901 (2018).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *