帳號:guest(3.135.187.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):薛宇翔
作者(外文):Hsueh, Yu-Hsiang
論文名稱(中文):臨場觀測疊差對銀奈米線於電遷移的影響
論文名稱(外文):In-situ TEM observations of the effects of stacking faults on the electromigration of Ag nanowires
指導教授(中文):呂明諺
指導教授(外文):Lu, Ming-Yen
口試委員(中文):吳文偉
呂明霈
口試委員(外文):Wu, Wen-Wei
Lu, Ming-Pei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:107031525
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:64
中文關鍵詞:臨場觀測銀奈米線電遷移疊差
外文關鍵詞:in-situsilver nanowireelectromigrationstacking fault
相關次數:
  • 推薦推薦:0
  • 點閱點閱:510
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
銀奈米線近年來因為其高導電性與化學穩定性,而在透明導電電極市場上視為可取代ITO的最佳材料選擇,故需要可大量生產與降低成本的合成法;同時,因為電遷移所導致的孔洞生成與頸縮現象,將大幅減少元件壽命。
本研究利用伽凡尼置換法成功合成銀奈米線,具備成本低廉與量產的潛力,同時,透過調控硝酸銀濃度,可分別成長出無缺陷、雙晶與含有疊差的銀奈米線,後續將探討疊差對於電遷移的影響。首先,利用電子束穿透顯微鏡分析後,得出含有高密度疊差的銀奈米線含有本質型與外質型疊差,且平行排列於{111}平面。 後續將銀奈米線鍍上電極進行臨場觀測,觀察銀奈米線電遷移現象。相比於單晶無缺陷銀奈米線內的空洞擴散於表面,造成小幅度電阻的下降,我們發現在含有疊差的結構中,孔洞傾向被困在銀奈米線內,產生電阻大幅下降的現象,而此結果我們推測是由疊差所造成接觸退火與自我修復區程度的不同。同時,頸縮與孔洞成長面積會因疊差而大幅下降,實驗中發現是由排列於{111}平面的疊差所阻擋,造成原子遷移速度減緩。後續統計後發現含有疊差的奈米線,可承受高達80 MA/cm2,此結果顯示相比於其他增加元件壽命的方法:增加覆蓋層或是其他較複雜的製程,伽凡尼置換法產生含有疊差的銀奈米線,可提供簡易製程及有效提升元件壽命。
Silver nanowires (AgNWs) have drawn significant attention in transparent electrodes and interconnects of integrated circuit in recent years due to their extraordinary chemical stability and high electric conductivity. Therefore, a simple and cost-effective method is on demand and attractive. On top of that, failure of the device caused by charge transport such as voids or necking behavior has severe influence on the lifetime of devices.
This study provides a potential in mass production method to obtain silver nanowires called galvanic displacement reaction (GDR). By tuning concentration of silver ions, we produces single crystalline nanowires without defect, with twins and stacking faults (SFs). After that, we aim to investigate the influences of planar defects in on the electromigration. According to the TEM analysis, the AgNWs obtained from GDR are with high density of SFs including intrinsic extrinsic type, and the SFs tend to facet parallel to the {111} plane.
In-situ TEM observation of electromigration in single crystal AgNWs reveals that void tends to be trapped in SFs-riched AgNWs, causing higher resistance drops. This behavior is due difference extent in contact annealing and self-healing. Furthermore, compared to isotropical void growth in AgNW without SFs, the void formation in AgNWs with SFs is anisotropy and hindered at [111] atom migration direction, resulting in 135 times void growth rate slower than AgNWs without SFs. The experimental statistics show that AgNWs with SFs can sustain higher current density up to 80 MA/cm2. These results present the potential possibilities to prolong the lifetime of nanowires instead of adding capping layer or fabricating by complex procedure.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 IV
表目錄 VI
第一章 緒論與文獻探討 1
1.1 一維奈米結構 1
1.2 銀奈米線 2
1.2.1 優點與應用 2
1.2.2 合成法 4
1.2.3 平面缺陷研究 7
1.3 臨場電子顯微鏡觀察技術 9
1.4 電遷移 10
1.5 研究動機 12
第二章 實驗方法與儀器 13
2.1 實驗架構與步驟 13
2.1.1 實驗架構 13
2.1.2 銀奈米線製備–伽凡尼置換法 14
2.1.3 TEM臨場觀測用氮化矽薄膜基板的製備 15
2.1.4 臨場觀測樣品製備 16
2.2 儀器介紹 18
2.2.1 X光繞射分析儀 (X-Ray Diffractometer, XRD) 18
2.2.2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 19
2.2.3 電子束微影系統 (Electron beam lithography system) 20
2.2.4 電子束蒸鍍系統 (E-Gun Evaporation System) 21
2.2.5 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 22
2.2.6 電子顯微鏡臨場通電系統 (In-situ biasing system) 24
2.2.7 能量色散X-射線光譜儀 (Energy-Dispersive X-Ray Spectroscopy, EDS) 25
第三章 結果與討論 26
3.1 伽凡尼置換法銀奈米線分析 26
3.1.1 銀奈米線形貌與結構分析 26
3.1.2 硝酸銀濃度參數影響 28
3.1.3 疊差分析 – X-ray 疊差機率計算 29
3.1.4 疊差分析 - TEM晶軸選擇 31
3.1.5 疊差分析 - [011]晶軸TEM分析 32
3.2 臨場通電觀測 – 疊差於孔洞移動影響 34
3.2.1 無疊差奈米線 – 空缺移動 35
3.2.2 有疊差奈米線 – 空缺移動 39
3.2.3 缺陷對於孔洞移動與電性影響 45
3.3 臨場通電觀測 – 疊差對於元件失效影響 49
3.3.1 疊差對於頸縮速率改變之探討 49
3.3.2 疊差對於孔洞成長速率改變之探討 51
3.4 疊差影響銀奈米線承受電遷移能力 55
第四章 結論 58
第五章 未來展望 59
參考文獻 60

1. Iijima S. Helical microtubules of graphitic carbon. Nature 354, 56-58 (1991).
2. Zhang C, et al. In situ fabrication and optoelectronic analysis of axial CdS/p-Si nanowire heterojunctions in a high-resolution transmission electron microscope. Nanotechnology 26, 154001 (2015).
3. Xiang J, Lu W, Hu Y, Wu Y, Yan H, Lieber CM. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489-493 (2006).
4. Liu X, Zhu J, Jin C, Peng LM, Tang D, Cheng H. In situ electrical measurements of polytypic silver nanowires. Nanotechnology 19, 085711 (2008).
5. Li Y, Guo S, Yang H, Chao Y, Jiang S, Wang C. One-step synthesis of ultra-long silver nanowires of over 100 μm and their application in flexible transparent conductive films. RSC Advances 8, 8057-8063 (2018).
6. Tseng SH, Lyu LM, Hsiao KY, Ho WH, Lu MY. Surfactant-free synthesis of ultralong silver nanowires for durable transparent conducting electrodes. Chemical Communications 56, 5593-5596 (2020).
7. Kim D-J, Hwang DY, Park J-Y, Kim H-K. Liquid crystal–Based flexible smart windows on roll-to-roll slot die–Coated Ag nanowire network films. Journal of Alloys and Compounds 765, 1090-1098 (2018).
8. Siow KS. Are sintered silver joints ready for use as interconnect material in microelectronic packaging? Journal of Electronic Materials 43, 947-961 (2014).
9. Hu LB, Kim HS, Lee JY, Peumans P, Cui Y. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 4, 2955-2963 (2010).
10. Lian L, Xi X, Dong D, He GF. Highly conductive silver nanowire transparent electrode by selective welding for organic light emitting diode. Org. Electron. 60, 9-15 (2018).
11. Ye N, et al. High-performance bendable organic solar cells with silver nanowire-graphene hybrid electrode. IEEE Journal of Photovoltaics 9, 214-219 (2018).
12. Feng YY, et al. Uniform Large-Area Free-Standing Silver Nanowire Arrays on Transparent Conducting Substrates. J. Electrochem. Soc. 163, D447-D452 (2016).
13. Chan T-C, Lin Y-M, Tsai H-W, Wang ZM, Liao C-N, Chueh Y-L. Growth of large-scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance. Nanoscale 6, 7332-7338 (2014).
14. Sun YG, Yin YD, Mayers BT, Herricks T, Xia YN. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 14, 4736-4745 (2002).
15. Lin JY, Hsueh YL, Huang JJ, Wu JR. Effect of silver nitrate concentration of silver nanowires synthesized using a polyol method and their application as transparent conductive films. Thin Solid Films 584, 243-247 (2015).
16. Lin JY, Hsueh YL, Huang JJ. The concentration effect of capping agent for synthesis of silver nanowire by using the polyol method. Journal of Solid State Chemistry 214, 2-6 (2014).
17. Lee J, Lee I, Kim TS, Lee JY. Efficient welding of silver nanowire networks without post‐processing. Small 9, 2887-2894 (2013).
18. Yang SJ, Liu QM. Guided Growth of Ag Nanowires by Galvanic Replacement on a Flexible Substrate. Langmuir 33, 11851-11856 (2017).
19. Li RH, et al. Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches. J. Phys-Condes. Matter 28, 10 (2016).
20. Chen KC, Wu WW, Liao CN, Chen LJ, Tu KN. Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 321, 1066-1069 (2008).
21. Mrad K, et al. Control of the crystal habit and magnetic properties of Co nanoparticles through the stirring rate. CrystEngComm 19, 3476-3484 (2017).
22. Thummavichai K, Wang NN, Xu F, Rance G, Xia YD, Zhu YQ. In situ investigations of the phase change behaviour of tungsten oxide nanostructures. R. Soc. Open Sci. 5, 10 (2018).
23. Wang SC, et al. Complete Replacement of Metal in Metal Oxide Nanowires via Atomic Diffusion: In/ZnO Case Study. Nano Lett. 14, 3241-3246 (2014).
24. Oshima Y, Kurui Y. In situ TEM observation of controlled gold contact failure under electric bias. Phys. Rev. B 87, 5 (2013).
25. Ghodsi SM, Megaridis CM, Shahbazian-Yassar R, Shokuhfar T. Advances in Graphene-Based Liquid Cell Electron Microscopy: Working Principles, Opportunities, and Challenges. Small Methods 3, (2019).

26. Wang Y, et al. Dynamic deformability of individual PbSe nanocrystals during superlattice phase transitions. Sci. Adv. 5, 7 (2019).
27. Ghodsi SM, Megaridis CM, Shahbazian-Yassar R, Shokuhfar T. Advances in Graphene-Based Liquid Cell Electron Microscopy: Working Principles, Opportunities, and Challenges. Small Methods 3, 16 (2019).
28. Wang C-M, Schreiber DK, Olszta MJ, Baer DR, Bruemmer SM. Direct in situ TEM observation of modification of oxidation by the injected vacancies for Ni–4Al alloy using a microfabricated nanopost. ACS Appl. Mater. Interfaces 7, 17272-17277 (2015).
29. Dai S, Zhang S, Katz MB, Graham GW, Pan X. In situ observation of Rh-CaTiO3 catalysts during reduction and oxidation treatments by transmission electron microscopy. ACS Catalysis 7, 1579-1582 (2017).
30. Lienig J. Electromigration and its impact on physical design in future technologies. In: Proceedings of the 2013 ACM International symposium on Physical Design (2013).
31. Tu K-N, Mayer JW, Feldman L. Electronic thin film science for electrical engineers and materials scientists. Macmillan (1992).
32. Hoffmann-Vogel R. Electromigration and the structure of metallic nanocontacts. Appl. Phys. Rev. 4, (2017).
33. Heersche HB, Lientschnig G, O’Neill K, van der Zant HS, Zandbergen HW. In situ imaging of electromigration-induced nanogap formation by transmission electron microscopy. Applied Physics Letters 91, 072107 (2007).
34. Vanstreels K, et al. In-situ scanning electron microscope observation of electromigration-induced void growth in 30 nm ½ pitch Cu interconnect structures. J. Appl. Phys. 115, 074305 (2014).
35. Westover T, Jones R, Huang J, Wang G, Lai E, Talin AA. Photoluminescence, thermal transport, and breakdown in Joule-heated GaN nanowires. Nano Lett. 9, 257-263 (2009).
36. Zhao J, Sun H, Dai S, Wang Y, Zhu J. Electrical breakdown of nanowires. Nano Lett. 11, 4647-4651 (2011).
37. Ramasamy P, Seo DM, Kim SH, Kim J. Effects of TiO2 shells on optical and thermal properties of silver nanowires. Journal of Materials Chemistry 22, 11651-11657 (2012).
38. Khan A, et al. Stability Enhancement of Silver Nanowire Networks with Conformal ZnO Coatings Deposited by Atmospheric Pressure Spatial Atomic Layer Deposition. ACS Appl. Mater. Interfaces 10, 19208-19217 (2018).
39. Abe E. Electron microscopy of quasicrystals–where are the atoms? Chemical Society Reviews 41, 6787-6798 (2012).
40. Wang DH, Wang DQ, Hao YJ, Jin GQ, Guo XY, Tu KN. Periodically twinned SiC nanowires. Nanotechnology 19, 7 (2008).
41. Wilson P, Vijayan S, Prabhakaran K. Microcellular SiC foams containing in situ grown nanowires for electromagnetic interference shielding. Journal of Industrial and Engineering Chemistry 80, 401-410 (2019).
42. Asadabad MA, Eskandari MJ. Electron diffraction. Modern Electron Microscopy in Physical and Life Sciences, 3-24 (2016).
43. Lopez FJ, Hemesath ER, Lauhon LJ. Ordered stacking fault arrays in silicon nanowires. Nano Lett. 9, 2774-2779 (2009).
44. Koizumi Y, et al. Strain-induced martensitic transformation near twin boundaries in a biomedical Co-Cr-Mo alloy with negative stacking fault energy. Acta Mater. 61, 1648-1661 (2013).
45. Schramm R, Reed R. Stacking fault energies of seven commercial austenitic stainless steels. Metallurgical Transactions A 6, 1345 (1975).
46. Yang B, et al. Zn-dopant dependent defect evolution in GaN nanowires. Nanoscale 7, 16237-16245 (2015).
47. Wang B, Fei GT, Zhou Y, Wu B, Zhu X, Zhang L. Controlled growth and phase transition of silver nanowires with dense lengthwise twins and stacking faults. Crystal Growth and Design 8, 3073-3076 (2008).
48. Tian M, Wang J, Kurtz J, Mallouk TE, Chan MH-W. Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett. 3, 919-923 (2003).
49. Song M, et al. Oriented attachment induces fivefold twins by forming and decomposing high-energy grain boundaries. Science 367, 40-45 (2020).
50. Howe JM. Structure, composition and energy of solid–solid interfaces. In: Physical Metallurgy. Elsevier (2014).
51. Chatterjee A, Bai T, Edler F, Tegenkamp C, Weide-Zaage K, Pfnür H. Electromigration and morphological changes in Ag nanostructures. Journal of Physics: Condensed Matter 30, 084002 (2018).
52. Liu X, Zhu J, Jin C, Peng L-M, Tang D, Cheng H. In situ electrical measurements of polytypic silver nanowires. Nanotechnology 19, 085711 (2008).
53. Batra NM, Syed A, Costa P. Current-induced restructuring in bent silver nanowires. Nanoscale 11, 3606-3618 (2019).
54. Lovell A. The electrical conductivity of thin metallic films I—rubidium on pyrex glass surfaces. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences 157, 311-330 (1936).
55. Dingle R. The electrical conductivity of thin wires. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences 201, 545-560 (1950).
56. Choi W, Yeh E, Tu K-N. Mean-time-to-failure study of flip chip solder joints on Cu/Ni (V)/Al thin-film under-bump-metallization. J Appl. Phys. 94, 5665-5671 (2003).
57. de Leeuw NH, Nelson CJ. A computer modeling study of perfect and defective silver (111) surfaces. J. Phys. Chem. B 107, 3528-3534 (2003).
58. Langley D, et al. Metallic nanowire networks: effects of thermal annealing on electrical resistance. Nanoscale 6, 13535-13543 (2014).
59. Vafaei A, Hu A, Goldthorpe IA. Joining of individual silver nanowires via electrical current. Nano-Micro Letters 6, 293-300 (2014).
60. Wiley BJ, Wang Z, Wei J, Yin Y, Cobden DH, Xia Y. Synthesis and electrical characterization of silver nanobeams. Nano Lett. 6, 2273-2278 (2006).
61. Faridi B, Crocker A. Migration of vacancies near twin boundaries and stacking faults in face-centred-cubic metals. Philosophical Magazine A 41, 137-141 (1980).


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *