|
1. Iijima S. Helical microtubules of graphitic carbon. Nature 354, 56-58 (1991). 2. Zhang C, et al. In situ fabrication and optoelectronic analysis of axial CdS/p-Si nanowire heterojunctions in a high-resolution transmission electron microscope. Nanotechnology 26, 154001 (2015). 3. Xiang J, Lu W, Hu Y, Wu Y, Yan H, Lieber CM. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489-493 (2006). 4. Liu X, Zhu J, Jin C, Peng LM, Tang D, Cheng H. In situ electrical measurements of polytypic silver nanowires. Nanotechnology 19, 085711 (2008). 5. Li Y, Guo S, Yang H, Chao Y, Jiang S, Wang C. One-step synthesis of ultra-long silver nanowires of over 100 μm and their application in flexible transparent conductive films. RSC Advances 8, 8057-8063 (2018). 6. Tseng SH, Lyu LM, Hsiao KY, Ho WH, Lu MY. Surfactant-free synthesis of ultralong silver nanowires for durable transparent conducting electrodes. Chemical Communications 56, 5593-5596 (2020). 7. Kim D-J, Hwang DY, Park J-Y, Kim H-K. Liquid crystal–Based flexible smart windows on roll-to-roll slot die–Coated Ag nanowire network films. Journal of Alloys and Compounds 765, 1090-1098 (2018). 8. Siow KS. Are sintered silver joints ready for use as interconnect material in microelectronic packaging? Journal of Electronic Materials 43, 947-961 (2014). 9. Hu LB, Kim HS, Lee JY, Peumans P, Cui Y. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 4, 2955-2963 (2010). 10. Lian L, Xi X, Dong D, He GF. Highly conductive silver nanowire transparent electrode by selective welding for organic light emitting diode. Org. Electron. 60, 9-15 (2018). 11. Ye N, et al. High-performance bendable organic solar cells with silver nanowire-graphene hybrid electrode. IEEE Journal of Photovoltaics 9, 214-219 (2018). 12. Feng YY, et al. Uniform Large-Area Free-Standing Silver Nanowire Arrays on Transparent Conducting Substrates. J. Electrochem. Soc. 163, D447-D452 (2016). 13. Chan T-C, Lin Y-M, Tsai H-W, Wang ZM, Liao C-N, Chueh Y-L. Growth of large-scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance. Nanoscale 6, 7332-7338 (2014). 14. Sun YG, Yin YD, Mayers BT, Herricks T, Xia YN. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 14, 4736-4745 (2002). 15. Lin JY, Hsueh YL, Huang JJ, Wu JR. Effect of silver nitrate concentration of silver nanowires synthesized using a polyol method and their application as transparent conductive films. Thin Solid Films 584, 243-247 (2015). 16. Lin JY, Hsueh YL, Huang JJ. The concentration effect of capping agent for synthesis of silver nanowire by using the polyol method. Journal of Solid State Chemistry 214, 2-6 (2014). 17. Lee J, Lee I, Kim TS, Lee JY. Efficient welding of silver nanowire networks without post‐processing. Small 9, 2887-2894 (2013). 18. Yang SJ, Liu QM. Guided Growth of Ag Nanowires by Galvanic Replacement on a Flexible Substrate. Langmuir 33, 11851-11856 (2017). 19. Li RH, et al. Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches. J. Phys-Condes. Matter 28, 10 (2016). 20. Chen KC, Wu WW, Liao CN, Chen LJ, Tu KN. Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 321, 1066-1069 (2008). 21. Mrad K, et al. Control of the crystal habit and magnetic properties of Co nanoparticles through the stirring rate. CrystEngComm 19, 3476-3484 (2017). 22. Thummavichai K, Wang NN, Xu F, Rance G, Xia YD, Zhu YQ. In situ investigations of the phase change behaviour of tungsten oxide nanostructures. R. Soc. Open Sci. 5, 10 (2018). 23. Wang SC, et al. Complete Replacement of Metal in Metal Oxide Nanowires via Atomic Diffusion: In/ZnO Case Study. Nano Lett. 14, 3241-3246 (2014). 24. Oshima Y, Kurui Y. In situ TEM observation of controlled gold contact failure under electric bias. Phys. Rev. B 87, 5 (2013). 25. Ghodsi SM, Megaridis CM, Shahbazian-Yassar R, Shokuhfar T. Advances in Graphene-Based Liquid Cell Electron Microscopy: Working Principles, Opportunities, and Challenges. Small Methods 3, (2019).
26. Wang Y, et al. Dynamic deformability of individual PbSe nanocrystals during superlattice phase transitions. Sci. Adv. 5, 7 (2019). 27. Ghodsi SM, Megaridis CM, Shahbazian-Yassar R, Shokuhfar T. Advances in Graphene-Based Liquid Cell Electron Microscopy: Working Principles, Opportunities, and Challenges. Small Methods 3, 16 (2019). 28. Wang C-M, Schreiber DK, Olszta MJ, Baer DR, Bruemmer SM. Direct in situ TEM observation of modification of oxidation by the injected vacancies for Ni–4Al alloy using a microfabricated nanopost. ACS Appl. Mater. Interfaces 7, 17272-17277 (2015). 29. Dai S, Zhang S, Katz MB, Graham GW, Pan X. In situ observation of Rh-CaTiO3 catalysts during reduction and oxidation treatments by transmission electron microscopy. ACS Catalysis 7, 1579-1582 (2017). 30. Lienig J. Electromigration and its impact on physical design in future technologies. In: Proceedings of the 2013 ACM International symposium on Physical Design (2013). 31. Tu K-N, Mayer JW, Feldman L. Electronic thin film science for electrical engineers and materials scientists. Macmillan (1992). 32. Hoffmann-Vogel R. Electromigration and the structure of metallic nanocontacts. Appl. Phys. Rev. 4, (2017). 33. Heersche HB, Lientschnig G, O’Neill K, van der Zant HS, Zandbergen HW. In situ imaging of electromigration-induced nanogap formation by transmission electron microscopy. Applied Physics Letters 91, 072107 (2007). 34. Vanstreels K, et al. In-situ scanning electron microscope observation of electromigration-induced void growth in 30 nm ½ pitch Cu interconnect structures. J. Appl. Phys. 115, 074305 (2014). 35. Westover T, Jones R, Huang J, Wang G, Lai E, Talin AA. Photoluminescence, thermal transport, and breakdown in Joule-heated GaN nanowires. Nano Lett. 9, 257-263 (2009). 36. Zhao J, Sun H, Dai S, Wang Y, Zhu J. Electrical breakdown of nanowires. Nano Lett. 11, 4647-4651 (2011). 37. Ramasamy P, Seo DM, Kim SH, Kim J. Effects of TiO2 shells on optical and thermal properties of silver nanowires. Journal of Materials Chemistry 22, 11651-11657 (2012). 38. Khan A, et al. Stability Enhancement of Silver Nanowire Networks with Conformal ZnO Coatings Deposited by Atmospheric Pressure Spatial Atomic Layer Deposition. ACS Appl. Mater. Interfaces 10, 19208-19217 (2018). 39. Abe E. Electron microscopy of quasicrystals–where are the atoms? Chemical Society Reviews 41, 6787-6798 (2012). 40. Wang DH, Wang DQ, Hao YJ, Jin GQ, Guo XY, Tu KN. Periodically twinned SiC nanowires. Nanotechnology 19, 7 (2008). 41. Wilson P, Vijayan S, Prabhakaran K. Microcellular SiC foams containing in situ grown nanowires for electromagnetic interference shielding. Journal of Industrial and Engineering Chemistry 80, 401-410 (2019). 42. Asadabad MA, Eskandari MJ. Electron diffraction. Modern Electron Microscopy in Physical and Life Sciences, 3-24 (2016). 43. Lopez FJ, Hemesath ER, Lauhon LJ. Ordered stacking fault arrays in silicon nanowires. Nano Lett. 9, 2774-2779 (2009). 44. Koizumi Y, et al. Strain-induced martensitic transformation near twin boundaries in a biomedical Co-Cr-Mo alloy with negative stacking fault energy. Acta Mater. 61, 1648-1661 (2013). 45. Schramm R, Reed R. Stacking fault energies of seven commercial austenitic stainless steels. Metallurgical Transactions A 6, 1345 (1975). 46. Yang B, et al. Zn-dopant dependent defect evolution in GaN nanowires. Nanoscale 7, 16237-16245 (2015). 47. Wang B, Fei GT, Zhou Y, Wu B, Zhu X, Zhang L. Controlled growth and phase transition of silver nanowires with dense lengthwise twins and stacking faults. Crystal Growth and Design 8, 3073-3076 (2008). 48. Tian M, Wang J, Kurtz J, Mallouk TE, Chan MH-W. Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett. 3, 919-923 (2003). 49. Song M, et al. Oriented attachment induces fivefold twins by forming and decomposing high-energy grain boundaries. Science 367, 40-45 (2020). 50. Howe JM. Structure, composition and energy of solid–solid interfaces. In: Physical Metallurgy. Elsevier (2014). 51. Chatterjee A, Bai T, Edler F, Tegenkamp C, Weide-Zaage K, Pfnür H. Electromigration and morphological changes in Ag nanostructures. Journal of Physics: Condensed Matter 30, 084002 (2018). 52. Liu X, Zhu J, Jin C, Peng L-M, Tang D, Cheng H. In situ electrical measurements of polytypic silver nanowires. Nanotechnology 19, 085711 (2008). 53. Batra NM, Syed A, Costa P. Current-induced restructuring in bent silver nanowires. Nanoscale 11, 3606-3618 (2019). 54. Lovell A. The electrical conductivity of thin metallic films I—rubidium on pyrex glass surfaces. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences 157, 311-330 (1936). 55. Dingle R. The electrical conductivity of thin wires. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences 201, 545-560 (1950). 56. Choi W, Yeh E, Tu K-N. Mean-time-to-failure study of flip chip solder joints on Cu/Ni (V)/Al thin-film under-bump-metallization. J Appl. Phys. 94, 5665-5671 (2003). 57. de Leeuw NH, Nelson CJ. A computer modeling study of perfect and defective silver (111) surfaces. J. Phys. Chem. B 107, 3528-3534 (2003). 58. Langley D, et al. Metallic nanowire networks: effects of thermal annealing on electrical resistance. Nanoscale 6, 13535-13543 (2014). 59. Vafaei A, Hu A, Goldthorpe IA. Joining of individual silver nanowires via electrical current. Nano-Micro Letters 6, 293-300 (2014). 60. Wiley BJ, Wang Z, Wei J, Yin Y, Cobden DH, Xia Y. Synthesis and electrical characterization of silver nanobeams. Nano Lett. 6, 2273-2278 (2006). 61. Faridi B, Crocker A. Migration of vacancies near twin boundaries and stacking faults in face-centred-cubic metals. Philosophical Magazine A 41, 137-141 (1980).
|