帳號:guest(18.191.200.108)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):宋姵勳
作者(外文):Sung, Pei-Hsun
論文名稱(中文):ZIF-67衍生碳/二氧化鈦複合材料應用於氣相光催化二氧化碳還原生成C2-C3含氧化合物之研究
論文名稱(外文):Gas-Phase Photocatalytic CO2 Reduction to C2-C3 Oxygenates on ZIF-67 Derived Carbon/TiO2
指導教授(中文):廖建能
指導教授(外文):Liao, Chien-Neng
口試委員(中文):林麗瓊
鍾博文
王誠佑
口試委員(外文):Chen, Li-Chyong
Chung, Po-Wen
Wang, Cheng-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:107031521
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:93
中文關鍵詞:二氧化碳還原光催化多碳數產物動力學三重活性位置
外文關鍵詞:CO2-reductionphotocatalysismulti-carbonkineticstriple-active-sites
相關次數:
  • 推薦推薦:0
  • 點閱點閱:232
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
以水作為還原劑的光催化二氧化碳還原反應,也稱為人工光合作用,被視為能同時解決氣候變遷及能源短缺問題的有效方法。本研究中,我們首先利用不同的碳化溫度生成ZIF-67衍生碳(ZIF-67 derived carbon, ZDC),將其應用為氣相二氧化碳還原的光催化材料,並成功以高選擇性(> 80%)生成C2產物乙醛。在研究的第二部份,我們合成ZIF-67/TiO2的複合材料,並利用真空加溫的碳化製程使其中的二氧化鈦生成有助於C=O鍵解離的氧缺陷。隨著二氧化鈦含量的增加,二氧化碳還原的主要產物逐漸由乙醛(C2)轉變為丙酮(C3),其選擇性高達52%且量子效率提升為ZDC的兩倍以上(0.248%)。根據多種分析,我們發現更高溫的碳化製程雖然能增加ZDC中的Co-N鍵解離,卻同時促使鈷奈米顆粒的團聚以及氮的揮發,因而使效能下降。透過二氧化鈦的添加,除了引入氧缺陷之外,能在維持同樣鈷奈米粒子大小以及氮含量的前提下減少Co-N鍵結,為效能提升的可能原因。總結來說,此研究合成了新穎的二氧化碳還原光催化材料,並成功的以高選擇性產出多碳數產物(C2-C3)。除此之外,根據還原產物的轉變,我們提出ZDC以及ZDC/TiO2 複合材料 (ZDC/Ts) 在光催化二氧化碳還原中生成多碳產物的可能機制以及反應路徑。
Photoreduction of CO2 using H2O as a reducing agent, namely artificial photosynthesis, is believed to be an appealing solution to tackle the issues of climate change and energy crisis simultaneously. In this work, we conducted pyrolysis of zeolite imidazolate framework (ZIF-67) at different temperatures, and adopted the resulting ZIF-67 derived carbon (ZDC) as a photocatalyst to reduce gas-phase CO2 into acetaldehyde (CH3CHO) with high selectivity (> 80%). Furthermore, we synthesized ZDC/TiO2 composites (ZDC/Ts) in the second part of the research, and successfully introduced oxygen vacancies in TiO2, which are beneficial for C=O dissociation, during pyrolysis of ZIF-67/TiO2 composite. Intriguingly, the major CO2 derivates becomes C3 (CH3COCH3) with a selectivity of up to 52% and apparent quantum efficiency (AQE) of 0.248%, ~2 times higher than that of pristine ZDC. Our analyses suggest that the pyrolysis process performed at elevated temperature not only reduces the Co-N coordination but also causes cobalt nanoparticle aggregation and nitrogen loss, and thereby degrades the photocatalytic performance. Nevertheless, with the addition of TiO2, the coordination bonds between N and Co atoms were found to decrease without changing Co particle size and dissociation of nitrogen notably, leading to superior photocatalytic CO2 reduction performance. In conclusion, we have synthesized novel photocatalysts for multi-carbon (C2-C3) products with high selectivity, and provided a plausible mechanism to illustrate the formation process of multi-carbon products during photoreduction of CO2.
摘要................................................................I
Abstract..........................................................II
致謝..............................................................III
Contents...........................................................V
Lists of Figures................................................VIII
Lists of Tables..................................................XII
Chapter 1 Introduction.............................................1
1.1 Background information on CO2 reduction........................1
1.1.1 Thermodynamics of photocatalytic CO2 reduction...............4
1.1.2 Kinetics of photocatalytic CO2 reduction.....................6
1.1.3 Different measuring systems of photocatalytic CO2 reduction..8
1.1.4 Calculation of apparent quantum efficiency (AQE)............10
1.2 Motivation....................................................12
Chapter 2 Literature Review.......................................13
2.1 TiO2-based photocatalysts for CO2 reduction...................13
2.1.1 Common ways to modify TiO2 as photocatalysts................13
2.1.2 Self-modification: black TiO2 as photocatalysts.............17
2.2 N-doped carbon applied in CO2 reduction.......................21
2.2.1 Identification of active sites in N-doped carbon for CO2 reduction.........................................................22
2.2.2 Synergistic effects with metal nanoparticles in CO2 reduction ..................................................................26
2.3 MOF-derived carbon for CO2 conversion.........................30
2.3.1 Introduction of MOF-derived carbon..........................30
2.3.2. ZIF-67 derived carbon applied in CO2 conversion............33
Chapter 3 Experimental Procedure..................................36
3.1 Synthesis of ZIF-derived carbon/TiO2 (ZDC/Ts).................36
3.1.1 Synthesis of ZIF-67 and ZIF-derived carbon (ZDC)............36
3.1.2 Synthesis and vacuum annealing of anatase TiO2 nanoparticles ..................................................................36
3.1.3 Experimental process flow for ZIF-67/TiO2 composites (ZIF/Ts) ..................................................................37
3.1.4 Synthesis of ZDC/Ts.........................................38
3.2 Experimental reagents and apparatuses.........................39
3.2.1 Chemicals and reagents......................................39
3.2.2 Experimental apparatuses....................................39
3.3 Characterization..............................................40
3.3.1 Electron microscopy analysis (SEM/TEM)......................40
3.3.2 X-ray diffraction analysis (XRD)............................40
3.3.3 Thermal gravimetric analysis (TGA)..........................40
3.3.4 Surface chemical composition analysis (HRXPS)...............41
3.3.5 UV-vis diffuse reflectance spectroscopy analysis (DRS)......41
3.3.6 Raman spectroscopy analysis.................................42
3.3.7 Gas adsorption analysis.....................................44
3.3.8 Gas-phase CO2 photoreduction measurement....................44
Chapter 4 Results and Discussion..................................46
4.1 ZDCs prepared at different temperature........................46
4.1.1 Microstructure of ZDCs......................................46
4.1.2 Surface chemical composition of ZDCs........................50
4.1.3 Optical properties of ZDCs..................................54
4.1.4 Gas adsorption analysis.....................................57
4.1.5 Photocatalytic CO2 reduction measurement....................59
4.2 Characterization and analysis of ZDC/Ts.......................61
4.2.1 Synthesis of ZIF/Ts.........................................61
4.2.2 Microstructure and surface composition of ZIF/Ts and ZDC/Ts.62
4.2.3 Surface chemical composition analysis of ZDC/Ts.............65
4.2.4 Optical properties analysis.................................70
4.2.5 Gas adsorption analysis.....................................72
4.2.6 Photocatalytic CO2 reduction measurement....................74
4.3 Proposition of CO2 photoreduction mechanism...................77
4.3.1 Dual active sites within ZDCs...............................77
4.3.2 Further enhancement with black TiO2.........................78
4.3.3 Proposed CO2 reduction pathway..............................80
Chapter 5 Conclusions.............................................82
References........................................................83
[1] M. Ghoussoub, M. Xia, P. N. Duchesne, D. Segal, G. Ozin, Principles of photothermal gas-phase heterogeneous CO2 catalysis. Energy Environ. Sci. 12, 1122-1142 (2019).
[2] J. Albero, Y. Peng, H. Garcia, Photocatalytic CO2 reduction to C2+ products. ACS Catalysis 10, 5734–5749 (2020).
[3] X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962-4179 (2019).
[4] X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603-2636 (2016).
[5] P. M. Wood, The potential diagram for oxygen at pH 7. Biochem. J. 253, 287 (1988).
[6] H. Zhang, Z. Xing, Y. Zhang, Z. Li, X. Wu, C. Liu, Q. Zhu, W. Zhou, Ni2+ and Ti3+ co-doped porous black anatase TiO2 with unprecedented-high visible-light-driven photocatalytic degradation performance. RSC Adv. 5, 107150-107157 (2015).
[7] Y. Zhao, X. Jia, G. I. Waterhouse, L. Z. Wu, C. H. Tung, D. O'Hare, T. Zhang, Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv. Energy Mater. 6, 1501974 (2016).
[8] J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 32, 222-243 (2020).
[9] X. Zhang, L. Wang, Q. Du, Z. Wang, S. Ma, M. Yu, Photocatalytic CO2 reduction over B4C/C3N4 with internal electric field under visible light irradiation. J. Colloid Interface Sci. 464, 89-95 (2016).
[10] J. Wu, R. M. Yadav, M. Liu, P. P. Sharma, C. S. Tiwary, L. Ma, X. Zou, X.-D. Zhou, B. I. Yakobson, J. Lou, Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano 9, 5364-5371 (2015).
[11] H. Cheng, B. Huang, Y. Liu, Z. Wang, X. Qin, X. Zhang, Y. Dai, An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol. ChemComm 48, 9729-9731 (2012).
[12] H. W. N. Slamet, Ezza Purnama, Effect of copper species in a photocatalytic synthesis of methanol from carbon dioxide over copper-doped titania catalysts. World Appl. Sci. J. 6, 112-122 (2009).
[13] H. Wang, D. Wu, C. Yang, H. Lu, Z. Gao, F. Xu, K. Jiang, Multi-functional amorphous TiO2 layer on ZIF-67 for enhanced CO2 photoreduction performances under visible light. J. CO2 Util. 34, 411-421 (2019).
[14] J. Qin, S. Wang, X. Wang, Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl. Catal. B 209, 476-482 (2017).
[15] P. V. Kamat, S. Jin, Semiconductor photocatalysis:“tell us the complete story!”. ACS Energy Lett. 3, 622–623 (2018).
[16] C. Genovese, C. Ampelli, S. Perathoner, G. Centi, A gas-phase electrochemical reactor for carbon dioxide reduction back to liquid fuels. AIDIC Conference Series 11, 151-160 (2013).
[17] S. Ali, M. C. Flores, A. Razzaq, S. Sorcar, C. B. Hiragond, H. R. Kim, Y. H. Park, Y. Hwang, H. S. Kim, H. Kim, E. H. Gong, J. Lee, D. Kim, S.-I. In, Gas phase photocatalytic CO2 reduction, “A brief overview for benchmarking”. Catalysts 9, 727 (2019).
[18] J. Albero, E. Dominguez, A. Corma, H. García, Continuous flow photoassisted CO2 methanation. Sustain. Energy Fuels 1, 1303-1307 (2017).
[19] I. Shown, S. Samireddi, Y.-C. Chang, R. Putikam, P.-H. Chang, A. Sabbah, F.-Y. Fu, W.-F. Chen, C.-I. Wu, T.-Y. Yu, Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nat. Commun 9, 1-10 (2018).
[20] L. Lin, C. Hou, X. Zhang, Y. Wang, Y. Chen, T. He, Highly efficient visible-light driven photocatalytic reduction of CO2 over g-C3N4 nanosheets/tetra (4-carboxyphenyl) porphyrin iron (III) chloride heterogeneous catalysts. Appl. Catal. B 221, 312-319 (2018).
[21] H. R. Kim, A. Razzaq, C. A. Grimes, S.-I. In, Heterojunction pnp Cu2O/S-TiO2/CuO: Synthesis and application to photocatalytic conversion of CO2 to methane. J. CO2 Util. 20, 91-96 (2017).
[22] Z. Xiong, Y. Luo, Y. Zhao, J. Zhang, C. Zheng, J. C. Wu, Synthesis, characterization and enhanced photocatalytic CO2 reduction activity of graphene supported TiO2 nanocrystals with coexposed {001} and {101} facets. Phys. Chem. Chem. Phys. 18, 13186-13195 (2016).
[23] S. Wang, X. Wang, Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework. Appl. Catal. B 162, 494-500 (2015).
[24] A. Aijaz, N. Fujiwara, Q. Xu, From metal–organic framework to nitrogen-decorated nanoporous carbons: high CO2 uptake and efficient catalytic oxygen reduction. J. Am. Chem. Soc. 136, 6790-6793 (2014).
[25] D. Li, T. Liu, Z. Yan, L. Zhen, J. Liu, J. Wu, Y. Feng, MOF-derived Cu2O/Cu nanospheres anchored in nitrogen-doped hollow porous carbon framework for increasing the selectivity and activity of electrochemical CO2-to-formate conversion. ACS Appl. Mater. Interfaces 12, 7030–7037 (2020).
[26] J. Zhang, P. Zhou, J. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16, 20382-20386 (2014).
[27] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO2 films. Sci. Rep. 4, 1-8 (2014).
[28] R. J. Tayade, P. K. Surolia, R. G. Kulkarni, R. V. Jasra, Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci. Technol. Adv. Mat. 8, 455 (2007).
[29] C. Günnemann, C. Haisch, M. Fleisch, J. Schneider, A. V. Emeline, D. W. Bahnemann, Insights into different photocatalytic oxidation activities of anatase, brookite, and rutile single-crystal facets. ACS Catal. 9, 1001-1012 (2018).
[30] M. M. Gui, S.-P. Chai, B.-Q. Xu, A. R. Mohamed, Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane. Sol. Energy Mater. Sol. Cells 122, 183-189 (2014).
[31] J. O. Olowoyo, M. Kumar, S. L. Jain, J. O. Babalola, A. V. Vorontsov, U. Kumar, Insights into reinforced photocatalytic activity of the CNT–TiO2 nanocomposite for CO2 reduction and water splitting. J. Phys. Chem. Lett. 123, 367-378 (2018).
[32] S. C. Cui, X. Z. Sun, J. G. Liu, Photo‐reduction of CO2 using a rhenium complex covalently supported on a graphene/TiO2 composite. ChemSusChem 9, 1698-1703 (2016).
[33] J. Low, B. Cheng, J. Yu, Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl. Surf. Sci. 392, 658-686 (2017).
[34] S. Xie, Y. Wang, Q. Zhang, W. Deng, Y. Wang, MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal. 4, 3644-3653 (2014).
[35] Y. Liao, S. W. Cao, Y. Yuan, Q. Gu, Z. Zhang, C. Xue, Efficient CO2 capture and photoreduction by amine-functionalized TiO2. Chemistry 20, 10220-10222 (2014).
[36] D. R. Lide, CRC handbook of chemistry and physics (CRC press, 2004), vol. 85.
[37] F. Yu, C. Wang, H. Ma, M. Song, D. Li, Y. Li, S. Li, X. Zhang, Y. Liu, Revisiting Pt/TiO2 photocatalyst in the thermally assisted photocatalytic reduction of CO2. Nanoscale 12, 7000-7010 (2020).
[38] V. Vaiano, G. Iervolino, D. Sannino, J. J. Murcia, M. C. Hidalgo, P. Ciambelli, J. A. Navío, Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts. Appl. Catal. B 188, 134-146 (2016).
[39] Y. Zhao, Y. Wei, X. Wu, H. Zheng, Z. Zhao, J. Liu, J. Li, Graphene-wrapped Pt/TiO2 photocatalysts with enhanced photogenerated charges separation and reactant adsorption for high selective photoreduction of CO2 to CH4. Appl. Catal. B 226, 360-372 (2018).
[40] Z. Yang, J. Lu, W. Ye, C. Yu, Y. Chang, Preparation of Pt/TiO2 hollow nanofibers with highly visible light photocatalytic activity. Appl. Surf. Sci. 392, 472-480 (2017).
[41] A. T. Montoya, E. G. Gillan, Enhanced photocatalytic hydrogen evolution from transition-metal surface-modified TiO2. ACS Omega 3, 2947-2955 (2018).
[42] T. Billo, F. Y. Fu, P. Raghunath, I. Shown, W. F. Chen, H. T. Lien, T. H. Shen, J. F. Lee, T. S. Chan, K. Y. Huang, C. I. Wu, M. C. Lin, J. S. Hwang, C. H. Lee, L. C. Chen, K. H. Chen, Ni-nanocluster modified black TiO2 with dual active sites for selective photocatalytic CO2 reduction. Small 14, 1702928 (2018).
[43] F. Gonell, A. V. Puga, B. Julián-López, H. García, A. Corma, Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide. Appl. Catal. B 180, 263-270 (2016).
[44] D. Li, F. Chen, D. Jiang, W. Shi, W. Zheng, Enhanced photocatalytic activity of N-doped TiO2 nanocrystals with exposed {001} facets. Appl. Surf. Sci. 390, 689-695 (2016).
[45] J. Xu, F. Wang, W. Liu, W. Cao, Nanocrystalline N-doped powders: mild hydrothermal synthesis and photocatalytic degradation of phenol under visible light irradiation. Int. J. Photoenergy 2013, 616139 (2013).
[46] K. Li, H. Wang, C. Pan, J. Wei, R. Xiong, J. Shi, Enhanced photoactivity of Fe+N codoped anatase-rutile TiO2 nanowire film under visible light irradiation. Int. J. Photoenergy 2012, 398508 (2012).
[47] X. Chen, L. Liu, Y. Y. Peter, S. S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746-750 (2011).
[48] W. Wei, N. Yaru, L. Chunhua, X. Zhongzi, Hydrogenation of TiO2 nanosheets with exposed {001} facets for enhanced photocatalytc activity. RSC Adv. 2, 8286-8288 (2012).
[49] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026-3033 (2011).
[50] Z. Zheng, B. Huang, J. Lu, Z. Wang, X. Qin, X. Zhang, Y. Dai, M.-H. Whangbo, Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity. ChemComm 48, 5733-5735 (2012).
[51] S. G. Ullattil, S. B. Narendranath, S. C. Pillai, P. Periyat, Black TiO2 nanomaterials: a review of recent advances. Chem. Eng. J. 343, 708-736 (2018).
[52] S. Chen, Y. Xiao, Y. Wang, Z. Hu, H. Zhao, W. Xie, A facile approach to prepare black TiO2 with oxygen vacancy for enhancing photocatalytic activity. Nanomaterials 8, 245 (2018).
[53] R. Katal, M. Salehi, M. H. Davood Abadi Farahani, S. Masudy-Panah, S. L. Ong, J. Hu, Preparation of a new type of black TiO2 under a vacuum atmosphere for sunlight photocatalysis. ACS Appl. Mater. Interfaces 10, 35316-35326 (2018).
[54] M. N. Shaddad, D. Cardenas-Morcoso, M. García-Tecedor, F. Fabregat-Santiago, J. Bisquert, A. M. Al-Mayouf, S. Gimenez, TiO2 nanotubes for solar water splitting: vacuum annealing and Zr doping enhance water oxidation kinetics. ACS Omega 4, 16095-16102 (2019).
[55] K. K. Paul, P. Giri, Enhanced visible light photocatalysis by fluorine doped faceted TiO2 nanoflowers hierarchically designed with vacancy-rich TiO2 nanocrystals grown by vacuum annealing, AIP Conference Proceedings, (2019).
[56] B. Bharti, S. Kumar, H.-N. Lee, R. Kumar, Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 6, 32355 (2016).
[57] J. Lee, D. C. Sorescu, X. Deng, Electron-induced dissociation of CO2 on TiO2 (110). J. Am. Chem. Soc. 133, 10066-10069 (2011).
[58] P.-J. Yen, C.-C. Ting, Y.-C. Chiu, T.-Y. Tseng, Y.-J. Hsu, W.-W. Wu, K.-H. Wei, Facile production of graphene nanosheets comprising nitrogen-doping through in situ cathodic plasma formation during electrochemical exfoliation. J. Mater. Chem. C 5, 2597-2602 (2017).
[59] P. Rani, V. K. Jindal, Designing band gap of graphene by B and N dopant atoms. RSC Adv. 3, 802-812 (2013).
[60] M. Sevilla, P. Valle‐Vigón, A. B. Fuertes, N‐doped polypyrrole‐based porous carbons for CO2 capture. Adv. Funct. Mater. 21, 2781-2787 (2011).
[61] L.-Y. Lin, Y. Nie, S. Kavadiya, T. Soundappan, P. Biswas, N-doped reduced graphene oxide promoted nano TiO2 as a bifunctional adsorbent/photocatalyst for CO2 photoreduction: Effect of N species. Chem. Eng. J. 316, 449-460 (2017).
[62] C. Bie, B. Zhu, F. Xu, L. Zhang, J. Yu, In situ grown monolayer N‐doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction. Adv. Mater. 31, 1902868 (2019).
[63] D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361-365 (2016).
[64] T. Sharifi, G. Hu, X. Jia, T. Wagberg, Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano 6, 8904-8912 (2012).
[65] X. Sun, X. Kang, Q. Zhu, J. Ma, G. Yang, Z. Liu, B. Han, Very highly efficient reduction of CO2 to CH4 using metal-free N-doped carbon electrodes. Chem. Sci. 7, 2883-2887 (2016).
[66] M. Inagaki, M. Toyoda, Y. Soneda, T. Morishita, Nitrogen-doped carbon materials. Carbon 132, 104-140 (2018).
[67] J. Wu, M. Liu, P. P. Sharma, R. M. Yadav, L. Ma, Y. Yang, X. Zou, X.-D. Zhou, R. Vajtai, B. I. Yakobson, Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett. 16, 466-470 (2016).
[68] H. Li, N. Xiao, M. Hao, X. Song, Y. Wang, Y. Ji, C. Liu, C. Li, Z. Guo, F. Zhang, Efficient CO2 electroreduction over pyridinic-N active sites highly exposed on wrinkled porous carbon nanosheets. Chem. Eng. J. 351, 613-621 (2018).
[69] S. Liu, H. Yang, X. Huang, L. Liu, W. Cai, J. Gao, X. Li, T. Zhang, Y. Huang, B. Liu, Identifying active sites of nitrogen‐doped carbon materials for the CO2 reduction reaction. Adv. Funct. Mater. 28, 1800499 (2018).
[70] X. H. Li, M. Antonietti, Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis. Chem. Soc. Rev. 42, 6593-6604 (2013).
[71] K. Lv, Y. Fan, Y. Zhu, Y. Yuan, J. Wang, Q. Zhang, Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol. J. Mater. Chem. A 6, 5025-5031 (2018).
[72] Y. Song, R. Peng, D. K. Hensley, P. V. Bonnesen, L. Liang, Z. Wu, H. M. Meyer, M. Chi, C. Ma, B. G. Sumpter, A. J. Rondinone, High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N-Doped graphene electrode. ChemistrySelect 1, 6055-6061 (2016).
[73] Q. Li, W. Zhu, J. Fu, H. Zhang, G. Wu, S. Sun, Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy 24, 1-9 (2016).
[74] Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, S.-Z. Qiao, Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141, 7646-7659 (2019).
[75] J. D. Goodpaster, A. T. Bell, M. Head-Gordon, Identification of possible pathways for C–C bond formation during electrochemical reduction of CO2: new theoretical insights from an improved electrochemical model. J. Phys. Chem. Lett. 7, 1471-1477 (2016).
[76] J. H. Montoya, A. A. Peterson, J. K. Nørskov, Insights into C-C Coupling in CO2 Electroreduction on Copper Electrodes. ChemCatChem 5, 737-742 (2013).
[77] Q.-L. Zhu, Q. Xu, Metal–organic framework composites. Chem. Soc. Rev. 43, 5468-5512 (2014).
[78] K. Shen, X. Chen, J. Chen, Y. Li, Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 6, 5887-5903 (2016).
[79] M. H. Yap, K. L. Fow, G. Z. Chen, Synthesis and applications of MOF-derived porous nanostructures. Green Energy Environ. 2, 218-245 (2017).
[80] M. Jiang, X. Cao, D. Zhu, Y. Duan, J. Zhang, Hierarchically porous N-doped carbon derived from ZIF-8 nanocomposites for electrochemical applications. Electrochim. Acta 196, 699-707 (2016).
[81] J. L. Zhuang, D. Ceglarek, S. Pethuraj, A. Terfort, Rapid room‐temperature synthesis of metal–organic framework HKUST‐1 crystals in bulk and as oriented and patterned thin films. Adv. Funct. Mater. 21, 1442-1447 (2011).
[82] R. Das, P. Pachfule, R. Banerjee, P. Poddar, Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides. Nanoscale 4, 591-599 (2012).
[83] F. A. Bahos, A. Sainz-Vidal, C. Sánchez-Pérez, J. M. Saniger, I. Gràcia, M. M. Saniger-Alba, D. Matatagui, ZIF nanocrystal-based surface acoustic wave (SAW) electronic nose to detect diabetes in human breath. Biosensors 9, 4 (2019).
[84] Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W.-C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, Core–shell ZIF-8@ ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140, 2610-2618 (2018).
[85] W. Li, A. Zhang, X. Jiang, C. Chen, Z. Liu, C. Song, X. Guo, Low temperature CO2 methanation: ZIF-67-derived Co-based porous carbon catalysts with controlled crystal morphology and size. ACS Sustain. Chem. Eng. 5, 7824-7831 (2017).
[86] Q. Mu, W. Zhu, G. Yan, Y. Lian, Y. Yao, Q. Li, Y. Tian, P. Zhang, Z. Deng, Y. Peng, Activity and selectivity regulation through varying the size of cobalt active sites in photocatalytic CO2 reduction. J. Mater. Chem. A 6, 21110-21119 (2018).
[87] A. A. B. Yurii V. Kolen’ko, Synthesis of nanocrystalline TiO2 powders from aqueous TiOSO4 solutions under hydrothermal conditions. Mater. Lett. 57, 1124-1129 (2003).
[88] H. T. Kwon, H.-K. Jeong, A. S. Lee, H. S. An, J. S. Lee, Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. J. Am. Chem. Soc. 137, 12304-12311 (2015).
[89] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data (Perkin-Elmer Corporation, 1992).
[90] B. Wells, Bandgap measurements of nonspecular materials using a bifurcated fiber optic method of diffuse reflectance, Oregon State University, Physics, (2015).
[91] A. Escobedo-Morales, I. Ruiz-López, M. d. Ruiz-Peralta, L. Tepech-Carrillo, M. Sánchez-Cantú, J. Moreno-Orea, Automated method for the determination of the band gap energy of pure and mixed powder samples using diffuse reflectance spectroscopy. Heliyon 5, e01505 (2019).
[92] J. R. Ferraro, Introductory raman spectroscopy (Elsevier, 2003).
[93] A. C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).
[94] G. F. Nataf, New approaches to understand conductive and polar domain walls by Raman spectroscopy and low energy electron microscopy, Université Paris-Saclay, Materials Science, (2016).
[95] L. Czepirski, J. JagieŁŁo, Virial-type thermal equation of gas—solid adsorption. Chem. Eng. Sci. 44, 797-801 (1989).
[96] J. Qian, F. Sun, L. Qin, Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 82, 220-223 (2012).
[97] S. Gadipelli, Z. X. Guo, Tuning of ZIF-derived carbon with high activity, nitrogen functionality, and yield - A case for superior CO2 capture. ChemSusChem 8, 2123-2132 (2015).
[98] K. Zhao, S. Zhao, C. Gao, J. Qi, H. Yin, D. Wei, M. F. Mideksa, X. Wang, Y. Gao, Z. Tang, R. Yu, Metallic cobalt-carbon composite as recyclable and robust magnetic photocatalyst for efficient CO2 reduction. Small 14, 1800762 (2018).
[99] W. Kong, J. Li, Y. Chen, Y. Ren, Y. Guo, S. Niu, Y. Yang, ZIF-67-derived hollow nanocages with layered double oxides shell as high-Efficiency catalysts for CO oxidation. Appl. Surf. Sci. 437, 161-168 (2018).
[100] S. Xie, Y. Liu, J. Deng, J. Yang, X. Zhao, Z. Han, K. Zhang, H. Dai, Insights into the active sites of ordered mesoporous cobalt oxide catalysts for the total oxidation of o-xylene. J. Catal. 352, 282-292 (2017).
[101] S. S. Park, S.-W. Chu, C. Xue, D. Zhao, C.-S. Ha, Facile synthesis of mesoporous carbon nitrides using the incipient wetness method and the application as hydrogen adsorbent. J. Mater. Chem. 21, 10801-10807 (2011).
[102] Q. Mo, N. Chen, M. Deng, L. Yang, Q. Gao, Metallic cobalt@ nitrogen-doped carbon nanocomposites: carbon-shell regulation toward efficient bi-functional electrocatalysis. ACS Appl. Mater. Interfaces 9, 37721-37730 (2017).
[103] X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen, R. You, C. Zhao, G. Wu, J. Wang, W. Huang, Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew. Chem. Int. Ed. 57, 1944-1948 (2018).
[104] H. Su, K.-X. Zhang, B. Zhang, H.-H. Wang, Q.-Y. Yu, X.-H. Li, M. Antonietti, J.-S. Chen, Activating cobalt nanoparticles via the Mott–Schottky effect in nitrogen-rich carbon shells for base-free aerobic oxidation of alcohols to esters. J. Am. Chem. Soc. 139, 811-818 (2017).
[105] L. Qin, L. Wang, C. Wang, X. Yang, B. Lv, Enhanced role of graphitic-N on nitrogen-doped porous carbon ball for direct dehydrogenation of ethylbenzene. Mol. Catal. 462, 61-68 (2019).
[106] S. Dou, C. L. Dong, Z. Hu, Y. C. Huang, J. l. Chen, L. Tao, D. Yan, D. Chen, S. Shen, S. Chou, Atomic‐scale CoOx species in metal–organic frameworks for oxygen evolution reaction. Adv. Funct. Mater. 27, 1702546 (2017).
[107] H. Park, D. A. Reddy, Y. Kim, R. Ma, J. Choi, T. K. Kim, K.-S. Lee, Zeolitic imidazolate framework-67 (ZIF-67) rhombic dodecahedrons as full-spectrum light harvesting photocatalyst for environmental remediation. Solid State Sci. 62, 82-89 (2016).
[108] J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, J. Yu, Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 13, 1603938 (2017).
[109] M. Shimoyama, T. Ninomiya, Y. Ozaki, Nondestructive discrimination of ivories and prediction of their specific gravity by Fourier-transform Raman spectroscopy and chemometrics. Analyst 128, 950-953 (2003).
[110] J. Liu, Q. Li, Y. Zou, Q. Qian, Y. Jin, G. Li, K. Jiang, S. Fan, The dependence of graphene Raman D-band on carrier density. Nano Lett. 13, 6170-6175 (2013).
[111] M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051-1069 (2015).
[112] S. Zhong, C. Zhan, D. Cao, Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials. Carbon 85, 51-59 (2015).
[113] H. X. Zhong, J. Wang, Y. W. Zhang, W. L. Xu, W. Xing, D. Xu, Y. F. Zhang, X. B. Zhang, ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew Chem Int Ed Engl 53, 14235-14239 (2014).
[114] X. Wang, J. Zhou, H. Fu, W. Li, X. Fan, G. Xin, J. Zheng, X. Li, MOF derived catalysts for electrochemical oxygen reduction. J. Mater. Chem. A 2, 14064-14070 (2014).
[115] X. Feng, M. A. Carreon, Kinetics of transformation on ZIF-67 crystals. J. Cryst. Growth 418, 158-162 (2015).
[116] B. Xia, H. Huang, Y. Xie, Heat treatment on TiO2 nanoparticles prepared by vapor-phase hydrolysis. Mater. Sci. Eng. B 57, 150-154 (1999).
[117] L. Wu, D. Bresser, D. Buchholz, G. A. Giffin, C. R. Castro, A. Ochel, S. Passerini, Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 5, 1401142 (2015).
[118] D. He, Y. Li, J. Wang, Y. Yang, Q. An, Tunable nanostructure of TiO2/reduced graphene oxide composite for high photocatalysis. Appl. 46, 37-44 (2016).
[119] N. C. Martins, J. Ângelo, A. V. Girão, T. Trindade, L. Andrade, A. Mendes, N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. Appl. Catal. B 193, 67-74 (2016).
[120] H. Yamashita, H. Li, Nanostructured photocatalysts (Springer, 2016).
[121] M. Xing, F. Shen, B. Qiu, J. Zhang, Highly-dispersed boron-doped graphene nanosheets loaded with TiO2 nanoparticles for enhancing CO2 photoreduction. Sci. Rep. 4, 6341 (2014).
[122] C. B. Xiaobo Chen, Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J. Phys. Chem. B 108, 15446-15449 (2004).
[123] Z. Zhang, R. Hongzheng, Z. Yaping, S. Wei, S. Yan, Z. Li, A research note on the adsorption of CO2 and N2. Chin. J. Chem. Eng. 19, 733-737 (2011).
[124] B. Guo, C. Wu, Q. Su, Z. Liu, X. Li, G. Li, Q. Wu, A Zn-salen based covalent triazine framework as a promising candidate for CO2 capture. Mater. Lett. 221, 236-239 (2018).
[125] L.-L. Tan, W.-J. Ong, S.-P. Chai, A. R. Mohamed, Photocatalytic reduction of CO2 with H2O over graphene oxide-supported oxygen-rich TiO2 hybrid photocatalyst under visible light irradiation: process and kinetic studies. Chem. Eng. J. 308, 248-255 (2017).
[126] A. Brunetti, F. R. Pomilla, G. Marcì, E. I. Garcia-Lopez, E. Fontananova, L. Palmisano, G. Barbieri, CO2 reduction by C3N4-TiO2 Nafion photocatalytic membrane reactor as a promising environmental pathway to solar fuels. Appl. Catal. B 255, 117779 (2019).
[127] S. Bai, J. Jiang, Q. Zhang, Y. Xiong, Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 44, 2893-2939 (2015).
[128] J. Huang, X. Guo, G. Yue, Q. Hu, L. Wang, Boosting CH3OH production in electrocatalytic CO2 reduction over partially oxidized 5 nm cobalt nanoparticles dispersed on single-layer nitrogen-doped graphene. ACS Appl. Mater. Interfaces 10, 44403-44414 (2018).
[129] Q. Fan, M. Zhang, M. Jia, S. Liu, J. Qiu, Z. Sun, Electrochemical CO2 reduction to C2+ species: heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater. Today Energy 10, 280-301 (2018).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *