|
1. R.P. Feynman. There’s plenty of room at the bottom. Engineering and Science, 1960, 23, 22-36. 2. N. Taniguchi. On the basic concept of nanotechnology. Proceeding of the ICPE, 1974, 18-23. 3. M.-C. Daniel and D. Astruc. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 2004, 104, 293-346. 4. C. Koch. Top-down synthesis of nanostructured materials: Mechanical and thermal processing methods. Reviews on Advanced Materials Science, 2003, 5, 91-99. 5. W. Lu and C.M. Lieber, Nanoelectronics from the bottom up, in Nanoscience And Technology: A Collection of Reviews from Nature Journals. 2010, World Scientific. p. pp. 137-146. 6. P. Khanna, A. Kaur, and D. Goyal. Algae-based metallic nanoparticles: Synthesis, characterization and applications. J Microbiol Methods, 2019, 163, 105656. 7. C. Guozhong, Nanostructures and nanomaterials: synthesis, properties and applications. 2004: World Scientific. 8. F. Yuan, T. Yuan, L. Sui, Z. Wang, Z. Xi, Y. Li, X. Li, L. Fan, Z.a. Tan, and A. Chen. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nature Communications, 2018, 9, 1-11. 9. C.H. Lee, S. Qin, M.A. Savaikar, J. Wang, B. Hao, D. Zhang, D. Banyai, J.A. Jaszczak, K.W. Clark, and J.C. Idrobo. Room‐Temperature Tunneling Behavior of Boron Nitride Nanotubes Functionalized with Gold Quantum Dots. Advanced Materials, 2013, 25, 4544-4548. 10. C. Hu, D. Dong, X. Yang, K. Qiao, D. Yang, H. Deng, S. Yuan, J. Khan, Y. Lan, and H. Song. Synergistic effect of hybrid PbS quantum dots/2D‐WSe2 toward high performance and broadband phototransistors. Advanced Functional Materials, 2017, 27, 1603605. 11. Z. Zhang, C. Gao, Z. Wu, W. Han, Y. Wang, W. Fu, X. Li, and E. Xie. Toward efficient photoelectrochemical water-splitting by using screw-like SnO2 nanostructures as photoanode after being decorated with CdS quantum dots. Nano Energy, 2016, 19, 318-327. 12. H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L.S. Li, H. Shen, and F. Teng. High‐Efficiency Green InP Quantum Dot‐Based Electroluminescent Device Comprising Thick‐Shell Quantum Dots. Advanced Optical Materials, 2019, 7, 1801602. 13. R.W. Crisp, N. Kirkwood, G. Grimaldi, S. Kinge, L.D. Siebbeles, and A.J. Houtepen. Highly photoconductive InP quantum dots films and solar cells. ACS Applied Energy Materials, 2018, 1, 6569-6576. 14. M. Gong, Q. Liu, B. Cook, B. Kattel, T. Wang, W.-L. Chan, D. Ewing, M. Casper, A. Stramel, and J.Z. Wu. All-printable ZnO quantum dots/graphene van der Waals heterostructures for ultrasensitive detection of ultraviolet light. ACS Nano, 2017, 11, 4114-4123. 15. A. Litvin, I. Martynenko, F. Purcell-Milton, A. Baranov, A. Fedorov, and Y. Gun'Ko. Colloidal quantum dots for optoelectronics. Journal of Materials Chemistry A, 2017, 5, 13252-13275. 16. A. Valizadeh, H. Mikaeili, M. Samiei, S.M. Farkhani, N. Zarghami, A. Akbarzadeh, and S. Davaran. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Research Letters, 2012, 7, 480-493. 17. K. Alchalabi, D. Zimin, G. Kostorz, and H. Zogg. Self-assembled semiconductor quantum dots with nearly uniform sizes. Physical Review Letters, 2003, 90, 026104. 18. L. Spanhel and M.A. Anderson. Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. Journal of the American Chemical Society, 1991, 113, 2826-2833. 19. M.T. Swihart. Vapor-phase synthesis of nanoparticles. Current Opinion in Colloid & Interface Science, 2003, 8, 127-133. 20. C. Murray, D.J. Norris, and M.G. Bawendi. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115, 8706-8715. 21. S.G. Kwon and T. Hyeon. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small, 2011, 7, 2685-702. 22. X. Peng, J. Wickham, and A. Alivisatos. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth:“focusing” of size distributions. Journal of the American Chemical Society, 1998, 120, 5343-5344. 23. G.R. Patzke, F. Krumeich, and R. Nesper. Oxidic nanotubes and nanorods—anisotropic modules for a future nanotechnology. Angewandte Chemie International Edition, 2002, 41, 2446-2461. 24. Z. Chen, D. Cummins, B.N. Reinecke, E. Clark, M.K. Sunkara, and T.F. Jaramillo. Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Letters, 2011, 11, 4168-4175. 25. Y.P. Ivanov, A. Alfadhel, M. Alnassar, J.E. Perez, M. Vazquez, A. Chuvilin, and J. Kosel. Tunable magnetic nanowires for biomedical and harsh environment applications. Scientific Reports, 2016, 6, 24189. 26. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan. One‐dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials, 2003, 15, 353-389. 27. Z. Wang, Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. 2000, ACS Publications. 28. Y. Sun and Y. Xia. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298, 2176-2179. 29. Y. Jiang, W.J. Zhang, J.S. Jie, X.M. Meng, X. Fan, and S.T. Lee. Photoresponse properties of CdSe single‐nanoribbon photodetectors. Advanced Functional Materials, 2007, 17, 1795-1800. 30. M. Razeghi and A. Rogalski. Semiconductor ultraviolet detectors. Journal of Applied Physics, 1996, 79, 7433-7473. 31. G.M. Williams. Optimization of eyesafe avalanche photodiode lidar for automobile safety and autonomous navigation systems. Optical Engineering, 2017, 56, 031224. 32. H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang, C. Wang, B.R. Ecker, Y. Gao, M.A. Loi, and L. Cao. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nature Photonics, 2016, 10, 333-339. 33. L. Dou, Y.M. Yang, J. You, Z. Hong, W.-H. Chang, G. Li, and Y. Yang. Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 2014, 5, 1-6. 34. L. Dou, A.B. Wong, Y. Yu, M. Lai, N. Kornienko, S.W. Eaton, A. Fu, C.G. Bischak, J. Ma, and T. Ding. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349, 1518-1521. 35. A. Pan and X. Zhu, Optoelectronic properties of semiconductor nanowires, in Semiconductor Nanowires. 2015, Elsevier. p. pp. 327-363. 36. R.L. Petritz. Theory of photoconductivity in semiconductor films. Physical Review, 1956, 104, 1508. 37. Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H.K. Tsang, H.P. Ho, and J.B. Xu. High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode. Advanced Optical Materials, 2015, 3, 1207-1214. 38. M. Ahmadi, T. Wu, and B. Hu. A Review on Organic-Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics. Adv Mater, 2017, 29, 1605242. 39. H.D. Jahromi, M. Sheikhi, and M. Yousefi. Investigation of the quantum dot infrared photodetectors dark current. Optics & Laser Technology, 2011, 43, 1020-1025. 40. Z. Fan, S.N. Mohammad, W. Kim, Ö. Aktas, A.E. Botchkarev, and H. Morkoç. Very low resistance multilayer Ohmic contact to n‐GaN. Applied Physics Letters, 1996, 68, 1672-1674. 41. S. Cheung and N. Cheung. Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied Physics Letters, 1986, 49, 85-87. 42. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen. ZnO Schottky ultraviolet photodetectors. Journal of Crystal Growth, 2001, 225, 110-113. 43. N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, and J.M. Hartmann. Advanced GeSn/SiGeSn group IV heterostructure lasers. Advanced Science, 2018, 5, 1700955. 44. J. Ran, W. Guo, H. Wang, B. Zhu, J. Yu, and S.Z. Qiao. Metal‐free 2D/2D phosphorene/g‐C3N4 Van der Waals heterojunction for highly enhanced visible‐light photocatalytic H2 production. Advanced Materials, 2018, 30, 1800128. 45. Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, and Z. Wang. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano, 2016, 10, 573-580. 46. Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, and J. He. Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale, 2013, 5, 8326-8339. 47. H. Raether, Surface plasmons on smooth surfaces, in Surface plasmons on smooth and rough surfaces and on gratings. 1988, Springer. p. pp. 4-39. 48. C.H. Chou and F.C. Chen. Plasmonic nanostructures for light trapping in organic photovoltaic devices. Nanoscale, 2014, 6, 8444-8458. 49. X. Liu and M.T. Swihart. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chemical Society Reviews, 2014, 43, 3908-3920. 50. S. Peiris, J. McMurtrie, and H.-Y. Zhu. Metal nanoparticle photocatalysts: emerging processes for green organic synthesis. Catalysis Science & Technology, 2016, 6, 320-338. 51. L. Vigderman, B.P. Khanal, and E.R. Zubarev. Functional gold nanorods: synthesis, self‐assembly, and sensing applications. Advanced Materials, 2012, 24, 4811-4841. 52. Y.-C. Chen, Y.-S. Huang, H. Huang, P.-J. Su, T.-P. Perng, and L.-J. Chen. Photocatalytic enhancement of hydrogen production in water splitting under simulated solar light by band gap engineering and localized surface plasmon resonance of ZnxCd1-xS nanowires decorated by Au nanoparticles. Nano Energy, 2020, 67, 104225. 53. B. Sepúlveda, P.C. Angelomé, L.M. Lechuga, and L.M. Liz-Marzán. LSPR-based nanobiosensors. Nano Today, 2009, 4, 244-251. 54. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C.E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, and X. Qiu. Plasmonic nanolaser using epitaxially grown silver film. Science, 2012, 337, 450-453. 55. N. Gogurla, A.K. Sinha, S. Santra, S. Manna, and S.K. Ray. Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Sci Rep, 2014, 4, 6483. 56. J. Wu, P. Yu, A.S. Susha, K.A. Sablon, H. Chen, Z. Zhou, H. Li, H. Ji, X. Niu, and A.O. Govorov. Broadband efficiency enhancement in quantum dot solar cells coupled with multispiked plasmonic nanostars. Nano Energy, 2015, 13, 827-835. 57. G.V. Naik, V.M. Shalaev, and A. Boltasseva. Alternative plasmonic materials: beyond gold and silver. Advanced Materials, 2013, 25, 3264-3294. 58. M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, and Y. Xia. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chemical Reviews, 2011, 111, 3669-3712. 59. W. Li and J. Valentine. Metamaterial perfect absorber based hot electron photodetection. Nano Letters, 2014, 14, 3510-3514. 60. D. Lin, H. Wu, W. Zhang, H. Li, and W. Pan. Enhanced UV photoresponse from heterostructured Ag–ZnO nanowires. Applied Physics Letters, 2009, 94, 172103. 61. H.A. Atwater and A. Polman. Plasmonics for improved photovoltaic devices. Nat Mater, 2010, 9, 205-213. 62. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131, 6050-6051. 63. Q. Zeng, X. Zhang, C. Liu, T. Feng, Z. Chen, W. Zhang, W. Zheng, H. Zhang, and B. Yang. Inorganic CsPbI2Br perovskite solar cells: the progress and perspective. Solar RRL, 2019, 3, 1800239. 64. L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, and M.V. Kovalenko. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett, 2015, 15, 3692-3696. 65. S. Dastidar, S. Li, S.Y. Smolin, J.B. Baxter, and A.T. Fafarman. Slow electron–hole recombination in lead iodide perovskites does not require a molecular dipole. ACS Energy Letters, 2017, 2, 2239-2244. 66. H. Zhu, M.T. Trinh, J. Wang, Y. Fu, P.P. Joshi, K. Miyata, S. Jin, and X.Y. Zhu. Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites. Advanced Materials, 2017, 29, 1603072. 67. M. Shoaib, X. Zhang, X. Wang, H. Zhou, T. Xu, X. Wang, X. Hu, H. Liu, X. Fan, and W. Zheng. Directional growth of ultralong CsPbBr3 perovskite nanowires for high-performance photodetectors. Journal of the American Chemical Society, 2017, 139, 15592-15595. 68. B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, and L. Yin. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nature communications, 2018, 9, 1-8. 69. X. Zhang, W. Wang, B. Xu, S. Liu, H. Dai, D. Bian, S. Chen, K. Wang, and X.W. Sun. Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering. Nano Energy, 2017, 37, 40-45. 70. A. Marronnier, G. Roma, S. Boyer-Richard, L. Pedesseau, J.-M. Jancu, Y. Bonnassieux, C. Katan, C.C. Stoumpos, M.G. Kanatzidis, and J. Even. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano, 2018, 12, 3477-3486. 71. J. Zhang, G. Hodes, Z. Jin, and S.F. Liu. All-Inorganic CsPbX3 Perovskite Solar Cells: Progress and Prospects. Angew Chem Int Ed Engl, 2019, 58, 15596-15618. 72. J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han, and H. Zeng. 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control. Adv Mater, 2017, 29, 1603885. 73. T. Yang, Y. Zheng, Z. Du, W. Liu, Z. Yang, F. Gao, L. Wang, K.C. Chou, X. Hou, and W. Yang. Superior Photodetectors Based on All-Inorganic Perovskite CsPbI3 Nanorods with Ultrafast Response and High Stability. ACS Nano, 2018, 12, 1611-1617. 74. Y. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. Gong, P. Kanjanaboos, A.F. Nogueira, and E.H. Sargent. Efficient Luminescence from Perovskite Quantum Dot Solids. ACS Appl Mater Interfaces, 2015, 7, 25007-25013. 75. Y. Gao, Y. Wu, H. Lu, C. Chen, Y. Liu, X. Bai, L. Yang, W.Y. William, Q. Dai, and Y. Zhang. CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency. Nano Energy, 2019, 59, 517-526. 76. M. Jones, J. Nedeljkovic, R.J. Ellingson, A.J. Nozik, and G. Rumbles. Photoenhancement of luminescence in colloidal CdSe quantum dot solutions. The Journal of Physical Chemistry B, 2003, 107, 11346-11352. 77. S. Tong, J. Sun, C. Wang, Y. Huang, C. Zhang, J. Shen, H. Xie, D. Niu, S. Xiao, Y. Yuan, J. He, J. Yang, and Y. Gao. High-Performance Broadband Perovskite Photodetectors Based on CH3NH3PbI3/C8BTBT Heterojunction. Advanced Electronic Materials, 2017, 3. 78. J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M.H. Huang, and C.-S. Hsu. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano, 2011, 5, 959-967. 79. H. Hong and W.A. Anderson. Cryogenic processed metal-semiconductor-metal (MSM) photodetectors on MBE grown ZnSe. IEEE Transactions on Electron Devices, 1999, 46, 1127-1134. 80. C. Ma, Y. Shi, W. Hu, M.H. Chiu, Z. Liu, A. Bera, F. Li, H. Wang, L.J. Li, and T. Wu. Heterostructured WS2 /CH3NH3PbI3 Photoconductors with Suppressed Dark Current and Enhanced Photodetectivity. Adv Mater, 2016, 28, 3683-9. 81. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang. Nanowire ultraviolet photodetectors and optical switches. Advanced Materials, 2002, 14, 158-160. 82. Y. Chen, Y. Chu, X. Wu, W. Ou-Yang, and J. Huang. High-Performance Inorganic Perovskite Quantum Dot-Organic Semiconductor Hybrid Phototransistors. Advanced Materials, 2017, 29, 1704062. 83. Y. Zhang, S. Li, W. Yang, M.K. Joshi, and X. Fang. Millimeter-sized single-crystal CsPbrB3/CuI heterojunction for high-performance self-powered photodetector. The Journal of Physical Chemistry Letters, 2019, 10, 2400-2407. 84. X. Song, X. Liu, D. Yu, C. Huo, J. Ji, X. Li, S. Zhang, Y. Zou, G. Zhu, and Y. Wang. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Applied Materials & Interfaces, 2018, 10, 2801-2809. 85. J. Ding, S. Du, Z. Zuo, Y. Zhao, H. Cui, and X. Zhan. High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector. The Journal of Physical Chemistry C, 2017, 121, 4917-4923. 86. G. Maculan, A.D. Sheikh, A.L. Abdelhady, M.I. Saidaminov, M.A. Haque, B. Murali, E. Alarousu, O.F. Mohammed, T. Wu, and O.M. Bakr. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector. The Journal of Physical Chemistry Letters, 2015, 6, 3781-3786. 87. Y. Zhang, W. Xu, X. Xu, J. Cai, W. Yang, and X. Fang. Self-powered dual-color UV–green photodetectors based on SnO2 millimeter wire and microwires/CsPbBr3 particle heterojunctions. The Journal of Physical Chemistry Letters, 2019, 10, 836-841. 88. Z. Du, D. Fu, J. Teng, L. Wang, F. Gao, W. Yang, H. Zhang, and X. Fang. CsPbI3 Nanotube Photodetectors with High Detectivity. Small, 2019, 15, 1905253. 89. Y. Zhou, J. Luo, Y. Zhao, C. Ge, C. Wang, L. Gao, C. Zhang, M. Hu, G. Niu, and J. Tang. Flexible linearly polarized photodetectors based on all‐inorganic perovskite CsPbI3 nanowires. Advanced Optical Materials, 2018, 6, 1800679. 90. W. Zheng, X. Xiong, R. Lin, Z. Zhang, C. Xu, and F. Huang. Balanced photodetection in one-step liquid-phase-synthesized CsPbBr3 micro-/nanoflake single crystals. ACS Applied Materials & Interfaces, 2018, 10, 1865-1870. 91. 蔡鵬輝, 四元無機鈣鈦礦量子點與銀奈米顆粒應用於光偵測元件表現之增益, in 材料科學工程學系. 2019, 國立清華大學. p. 64. 92. B.R. Sutherland, A.K. Johnston, A.H. Ip, J. Xu, V. Adinolfi, P. Kanjanaboos, and E.H. Sargent. Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering. ACS Photonics, 2015, 2, 1117-1123. 93. J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu. Surface plasmon‐enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small, 2015, 11, 2392-2398. |