帳號:guest(18.188.212.54)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭郁鈞
作者(外文):Hsiao, Yu-Chun
論文名稱(中文):藉由與全碘無機鈣鈦礦奈米棒形成異質接面及利用奈米金粒子局域表面電漿子效應增益全溴無機鈣鈦礦奈米晶之光偵測元件性能
論文名稱(外文):Enhanced Performances of Photodetector Based on CsPbBr3 Nanocrystals by Forming Heterojunction with CsPbI3 Nanorods and Utilizing Localized Surface Plasmonic Effect of Gold Nanoparticles
指導教授(中文):陳力俊
指導教授(外文):Chen, Lih-Juann
口試委員(中文):吳文偉
呂明諺
口試委員(外文):Wu, Wen-Wei
Lu, Ming-Yen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:107031514
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:89
中文關鍵詞:光偵測器鈣鈦礦局域表面電漿子量子點奈米材料異質接面
外文關鍵詞:photodetectorperovskitelocalized surface plasmonquantum dotnano-materialheterojunction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:183
  • 評分評分:*****
  • 下載下載:38
  • 收藏收藏:0
近年來隨著科技的發展,許多劃時代的發明像是無人機、自動駕駛系統及互動式機器人已經對我們的日常生活造成了很大的影響。而上述的這些科技都包含著一個基本但不可或缺的元件:光偵測器。因此,在元件這領域中,光偵測器必定在未來會占有一席之地。目前,無機鹵素鈣鈦礦材料吸引了許多的關注因為他們擁有著令人興奮的潛能來應用在光電元件上。無機鹵素鈣鈦礦材料有許多優異的性質,像是載子遷移率高、擴散路徑長、在可見光波段的吸收率高及吸收光波段與貴金屬的局域表面電漿子共振波長吻合,而這些優勢也使他們成為理想的材料應用在光偵測器上。在本論文中將會探討利用奈米金顆粒局域表面電漿子共振來增益無機鹵素鈣鈦礦材料中的全溴無機鹵素鈣鈦礦米晶體和全碘無機鹵素鈣鈦礦奈米棒形成的異質結構光偵測器的元件性能表現。在形成異質結構和經過局域表面電漿子增益後,局域表面電漿子增益的全溴無機鹵素鈣鈦礦米晶體/全碘無機鹵素鈣鈦礦奈米棒異質結構光偵測器的偵測率、響應度及電流開關比可達1.93 × 1010 Jones、9.71 × 10-4 A/W和1230。
本論文主要分為五章節,第一章是簡介,其內容涵蓋奈米科技的介紹、光偵測器的工作原理、局域表面電漿子共振效應和無機鹵素鈣鈦礦材料的性質。第二章為實驗部分包含實驗步驟及實驗所需之儀器介紹。第三章則為研究數據之結果與討論,在此章節中含有無機鹵素鈣鈦礦的材料分析、元件分析及元件的光電特性量測。第四章為第三章研究結果的總結和結論。最後,第五章則是此研究未來的發展性。
Recently, the cutting-edge technology such as drone, self-driving automobile and robotic have caused a great impact to our daily life. These applications all contain a basic but indispensable component, photodetectors, which act as the bridge connecting the machine to the environment. Hence, the development of a photodetector with high performances is an important issue in the future. Currently, all-inorganic perovskite materials CsPbX3 (X = Cl, Br and I) have attracted a great deal of attentions due to their exciting and promising applications in optoelectronic devices. All-inorganic perovskite materials have the merits of high carrier mobility, long carrier diffusion length, excellent visible light absorption and well overlapping with localized surface plasmon resonance of noble metal nanostructures which make them become the ideal candidates for the photodetectors. Herein, the photodetectors based on CsPbBr3 nanocrystals are designed to form a heterostructure with CsPbI3 nanorods and utilize localized surface plasmon resonance of Au nanoparticles to enhance the device performances. After the formation of heterojunction and localized surface plasmonic enhancement, the detectivity, responsivity and on-off ratio of the Au-CsPbBr3 nanocrystals/CsPbI3 nanorods photodetectors can attain the value of 1.93 × 1010 Jones, 9.71 × 10-4 A/W and 1230, respectively.
In this thesis, five main chapters are presented. The introduction of nanotechnology, mechanisms of photodetector, localized surface plasmon resonance and properties of all-inorganic perovskite materials are discussed in chapter 1. The experimental procedures and experimental equipment are included in chapter 2. The experimental results including the characterization of the perovskite materials and device measurements are discussed in chapter 3. The experimental results are summarized in chapter 4. Finally, the future prospects of this research are discussed in chapter 5.
Acknowledgments.....i
摘要.....ii
Abstract.....iii
Table of Contents.....v
Chapter 1 Introduction.....1
1.1 Overview of Nanotechnology.....1
1.2 Nanostructures.....5
1.2.1 Zero-Dimensional (0D) Nanostructures.....5
1.2.2 Synthesis of 0D Nanostructures.....5
1.2.3 Mechanisms of Forming Uniform Nanocrystals via Hot Injection .....6
1.2.4 One-Dimensional (1D) Nanostructures.....10
1.3 Photodetector.....11
1.3.1 Photoconductive Effect.....12
1.3.2 Photoconductor.....13
1.3.3 Photodiode.....13
1.3.4 Key Parameters in Performances of Photodetector.....14
1.4 Metal-Semiconductor Contact (MS Contact).....17
1.4.1 Ohmic Contact.....18
1.4.2 Schottky Contact.....19
1.4.3 Metal-Semiconductor-Metal Contact (MSM Contact).....20
1.5 Heterostructure.....22
1.6 Plasmonic Properties of Nanomaterials.....24
1.6.1 Overview of Plasmonic Properties of Nanomaterials.....24
1.6.2 Localized Surface Plasmon Resonance (LSPR).....25
1.6.3 Plasmonic Materials.....27
1.6.4 Mechanisms of Plasmon Enhanced Photodetection.....28
1.7 Inorganic Perovskite.....30
1.7.1 Structure of CsPbBr3 and CsPbI3.....30
1.7.2 Properties of CsPbBr3 and CsPbI3.....31
Chapter 2 Experimental Section.....33
2.1 Experimental Procedures.....33
2.1.1 Synthesis of CsPbBr3 Nanocrystals.....33
2.1.2 Synthesis of CsPbI3 Nanorods.....35
2.1.3 Device Fabrication.....36
2.2 Experimental Equipments.....38
2.2.1 Synthesis System of CsPbBr3 NCs and CsPbI3 NRs.....38
2.2.2 Centrifuge.....39
2.2.3 Spin Coater.....40
2.2.4 Three-zone Furnace.....40
2.2.5 Electron Beam Evaporation System.....41
2.3 Characterization Instruments.....43
2.3.1 X-ray Diffractometer (XRD).....43
2.3.2 Scanning Electron Microscope (SEM).....44
2.3.3 Transmission Electron Microscope (TEM).....45
2.3.4 Scanning Probe Microscope (SPM) 47
2.3.5 Photoluminescence Spectroscope (PL).....48
2.3.6 UV-visible Spectroscope (UV-vis) 49
2.3.7 Probe Station and Semiconductor Characterization System.....50
Chapter 3 Results and Discussion.....52
3.1 Characterization of CsPbBr3 Nanocrystals.....52
3.1.1 XRD Analysis.....52
3.1.2 TEM Analysis.....53
3.1.3 PL and UV-visible Absorption Spectra.....54
3.2 Characterization of CsPbI3 Nanorods.....55
3.2.1 XRD Analysis.....55
3.2.2 SEM and EDX Analysis.....55
3.2.3 TEM Analysis.....56
3.2.4 UV-visible Absorption Spectrum.....57
3.3 Characterization of Devices.....58
3.3.1 SEM Analysis of Au Nanoparticles.....58
3.3.2 UV-visible Absorption Spectrum of Au Nanoparticles.....58
3.3.3 Surface and Thickness Analysis of CsPbBr3 NCs Film.....59
3.3.4 SEM Analysis of Interdigitated Electrodes.....61
3.3.5 Band Structure of CsPbBr3 NCs/CsPbI3 NRs Heterojunction.....61
3.3.6 Cross-section TEM Analysis of Devices.....63
3.3.7 Time Correlated Single Photon Counting (TCSPC) Analysis of Device.....64
3.4 Device Measurements.....67
3.4.1 Optoelectronic Properties of Device Based on CsPbBr3 NCs Film .....67
3.4.2 Optoelectronic Properties of Devices Based on CsPbBr3 NCs/CsPbI3 NRs Heterostructures.....71
3.4.3 Optoelectronic Properties of Device Based on Au-CsPbBr3 NCs/CsPbI3 NRs Heterostructure.....73
Chapter 4 Summary and Conclusions.....79
Chapter 5 Future Prospects.....80
5.1 Vertical Photodetector.....80
5.2 Plasmon Enhanced Photodetection with Metal Nanostructure Arrays .....81
References.....82
1. R.P. Feynman. There’s plenty of room at the bottom. Engineering and Science, 1960, 23, 22-36.
2. N. Taniguchi. On the basic concept of nanotechnology. Proceeding of the ICPE, 1974, 18-23.
3. M.-C. Daniel and D. Astruc. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 2004, 104, 293-346.
4. C. Koch. Top-down synthesis of nanostructured materials: Mechanical and thermal processing methods. Reviews on Advanced Materials Science, 2003, 5, 91-99.
5. W. Lu and C.M. Lieber, Nanoelectronics from the bottom up, in Nanoscience And Technology: A Collection of Reviews from Nature Journals. 2010, World Scientific. p. pp. 137-146.
6. P. Khanna, A. Kaur, and D. Goyal. Algae-based metallic nanoparticles: Synthesis, characterization and applications. J Microbiol Methods, 2019, 163, 105656.
7. C. Guozhong, Nanostructures and nanomaterials: synthesis, properties and applications. 2004: World Scientific.
8. F. Yuan, T. Yuan, L. Sui, Z. Wang, Z. Xi, Y. Li, X. Li, L. Fan, Z.a. Tan, and A. Chen. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nature Communications, 2018, 9, 1-11.
9. C.H. Lee, S. Qin, M.A. Savaikar, J. Wang, B. Hao, D. Zhang, D. Banyai, J.A. Jaszczak, K.W. Clark, and J.C. Idrobo. Room‐Temperature Tunneling Behavior of Boron Nitride Nanotubes Functionalized with Gold Quantum Dots. Advanced Materials, 2013, 25, 4544-4548.
10. C. Hu, D. Dong, X. Yang, K. Qiao, D. Yang, H. Deng, S. Yuan, J. Khan, Y. Lan, and H. Song. Synergistic effect of hybrid PbS quantum dots/2D‐WSe2 toward high performance and broadband phototransistors. Advanced Functional Materials, 2017, 27, 1603605.
11. Z. Zhang, C. Gao, Z. Wu, W. Han, Y. Wang, W. Fu, X. Li, and E. Xie. Toward efficient photoelectrochemical water-splitting by using screw-like SnO2 nanostructures as photoanode after being decorated with CdS quantum dots. Nano Energy, 2016, 19, 318-327.
12. H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L.S. Li, H. Shen, and F. Teng. High‐Efficiency Green InP Quantum Dot‐Based Electroluminescent Device Comprising Thick‐Shell Quantum Dots. Advanced Optical Materials, 2019, 7, 1801602.
13. R.W. Crisp, N. Kirkwood, G. Grimaldi, S. Kinge, L.D. Siebbeles, and A.J. Houtepen. Highly photoconductive InP quantum dots films and solar cells. ACS Applied Energy Materials, 2018, 1, 6569-6576.
14. M. Gong, Q. Liu, B. Cook, B. Kattel, T. Wang, W.-L. Chan, D. Ewing, M. Casper, A. Stramel, and J.Z. Wu. All-printable ZnO quantum dots/graphene van der Waals heterostructures for ultrasensitive detection of ultraviolet light. ACS Nano, 2017, 11, 4114-4123.
15. A. Litvin, I. Martynenko, F. Purcell-Milton, A. Baranov, A. Fedorov, and Y. Gun'Ko. Colloidal quantum dots for optoelectronics. Journal of Materials Chemistry A, 2017, 5, 13252-13275.
16. A. Valizadeh, H. Mikaeili, M. Samiei, S.M. Farkhani, N. Zarghami, A. Akbarzadeh, and S. Davaran. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Research Letters, 2012, 7, 480-493.
17. K. Alchalabi, D. Zimin, G. Kostorz, and H. Zogg. Self-assembled semiconductor quantum dots with nearly uniform sizes. Physical Review Letters, 2003, 90, 026104.
18. L. Spanhel and M.A. Anderson. Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. Journal of the American Chemical Society, 1991, 113, 2826-2833.
19. M.T. Swihart. Vapor-phase synthesis of nanoparticles. Current Opinion in Colloid & Interface Science, 2003, 8, 127-133.
20. C. Murray, D.J. Norris, and M.G. Bawendi. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115, 8706-8715.
21. S.G. Kwon and T. Hyeon. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small, 2011, 7, 2685-702.
22. X. Peng, J. Wickham, and A. Alivisatos. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth:“focusing” of size distributions. Journal of the American Chemical Society, 1998, 120, 5343-5344.
23. G.R. Patzke, F. Krumeich, and R. Nesper. Oxidic nanotubes and nanorods—anisotropic modules for a future nanotechnology. Angewandte Chemie International Edition, 2002, 41, 2446-2461.
24. Z. Chen, D. Cummins, B.N. Reinecke, E. Clark, M.K. Sunkara, and T.F. Jaramillo. Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Letters, 2011, 11, 4168-4175.
25. Y.P. Ivanov, A. Alfadhel, M. Alnassar, J.E. Perez, M. Vazquez, A. Chuvilin, and J. Kosel. Tunable magnetic nanowires for biomedical and harsh environment applications. Scientific Reports, 2016, 6, 24189.
26. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan. One‐dimensional nanostructures: synthesis, characterization, and applications. Advanced Materials, 2003, 15, 353-389.
27. Z. Wang, Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. 2000, ACS Publications.
28. Y. Sun and Y. Xia. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298, 2176-2179.
29. Y. Jiang, W.J. Zhang, J.S. Jie, X.M. Meng, X. Fan, and S.T. Lee. Photoresponse properties of CdSe single‐nanoribbon photodetectors. Advanced Functional Materials, 2007, 17, 1795-1800.
30. M. Razeghi and A. Rogalski. Semiconductor ultraviolet detectors. Journal of Applied Physics, 1996, 79, 7433-7473.
31. G.M. Williams. Optimization of eyesafe avalanche photodiode lidar for automobile safety and autonomous navigation systems. Optical Engineering, 2017, 56, 031224.
32. H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang, C. Wang, B.R. Ecker, Y. Gao, M.A. Loi, and L. Cao. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nature Photonics, 2016, 10, 333-339.
33. L. Dou, Y.M. Yang, J. You, Z. Hong, W.-H. Chang, G. Li, and Y. Yang. Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 2014, 5, 1-6.
34. L. Dou, A.B. Wong, Y. Yu, M. Lai, N. Kornienko, S.W. Eaton, A. Fu, C.G. Bischak, J. Ma, and T. Ding. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349, 1518-1521.
35. A. Pan and X. Zhu, Optoelectronic properties of semiconductor nanowires, in Semiconductor Nanowires. 2015, Elsevier. p. pp. 327-363.
36. R.L. Petritz. Theory of photoconductivity in semiconductor films. Physical Review, 1956, 104, 1508.
37. Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H.K. Tsang, H.P. Ho, and J.B. Xu. High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode. Advanced Optical Materials, 2015, 3, 1207-1214.
38. M. Ahmadi, T. Wu, and B. Hu. A Review on Organic-Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics. Adv Mater, 2017, 29, 1605242.
39. H.D. Jahromi, M. Sheikhi, and M. Yousefi. Investigation of the quantum dot infrared photodetectors dark current. Optics & Laser Technology, 2011, 43, 1020-1025.
40. Z. Fan, S.N. Mohammad, W. Kim, Ö. Aktas, A.E. Botchkarev, and H. Morkoç. Very low resistance multilayer Ohmic contact to n‐GaN. Applied Physics Letters, 1996, 68, 1672-1674.
41. S. Cheung and N. Cheung. Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied Physics Letters, 1986, 49, 85-87.
42. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen. ZnO Schottky ultraviolet photodetectors. Journal of Crystal Growth, 2001, 225, 110-113.
43. N. von den Driesch, D. Stange, D. Rainko, I. Povstugar, P. Zaumseil, G. Capellini, T. Schröder, T. Denneulin, Z. Ikonic, and J.M. Hartmann. Advanced GeSn/SiGeSn group IV heterostructure lasers. Advanced Science, 2018, 5, 1700955.
44. J. Ran, W. Guo, H. Wang, B. Zhu, J. Yu, and S.Z. Qiao. Metal‐free 2D/2D phosphorene/g‐C3N4 Van der Waals heterojunction for highly enhanced visible‐light photocatalytic H2 production. Advanced Materials, 2018, 30, 1800128.
45. Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song, J. Sophia, J. Liu, Z. Xu, Q. Xu, and Z. Wang. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano, 2016, 10, 573-580.
46. Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, and J. He. Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale, 2013, 5, 8326-8339.
47. H. Raether, Surface plasmons on smooth surfaces, in Surface plasmons on smooth and rough surfaces and on gratings. 1988, Springer. p. pp. 4-39.
48. C.H. Chou and F.C. Chen. Plasmonic nanostructures for light trapping in organic photovoltaic devices. Nanoscale, 2014, 6, 8444-8458.
49. X. Liu and M.T. Swihart. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chemical Society Reviews, 2014, 43, 3908-3920.
50. S. Peiris, J. McMurtrie, and H.-Y. Zhu. Metal nanoparticle photocatalysts: emerging processes for green organic synthesis. Catalysis Science & Technology, 2016, 6, 320-338.
51. L. Vigderman, B.P. Khanal, and E.R. Zubarev. Functional gold nanorods: synthesis, self‐assembly, and sensing applications. Advanced Materials, 2012, 24, 4811-4841.
52. Y.-C. Chen, Y.-S. Huang, H. Huang, P.-J. Su, T.-P. Perng, and L.-J. Chen. Photocatalytic enhancement of hydrogen production in water splitting under simulated solar light by band gap engineering and localized surface plasmon resonance of ZnxCd1-xS nanowires decorated by Au nanoparticles. Nano Energy, 2020, 67, 104225.
53. B. Sepúlveda, P.C. Angelomé, L.M. Lechuga, and L.M. Liz-Marzán. LSPR-based nanobiosensors. Nano Today, 2009, 4, 244-251.
54. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C.E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, and X. Qiu. Plasmonic nanolaser using epitaxially grown silver film. Science, 2012, 337, 450-453.
55. N. Gogurla, A.K. Sinha, S. Santra, S. Manna, and S.K. Ray. Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Sci Rep, 2014, 4, 6483.
56. J. Wu, P. Yu, A.S. Susha, K.A. Sablon, H. Chen, Z. Zhou, H. Li, H. Ji, X. Niu, and A.O. Govorov. Broadband efficiency enhancement in quantum dot solar cells coupled with multispiked plasmonic nanostars. Nano Energy, 2015, 13, 827-835.
57. G.V. Naik, V.M. Shalaev, and A. Boltasseva. Alternative plasmonic materials: beyond gold and silver. Advanced Materials, 2013, 25, 3264-3294.
58. M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, and Y. Xia. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chemical Reviews, 2011, 111, 3669-3712.
59. W. Li and J. Valentine. Metamaterial perfect absorber based hot electron photodetection. Nano Letters, 2014, 14, 3510-3514.
60. D. Lin, H. Wu, W. Zhang, H. Li, and W. Pan. Enhanced UV photoresponse from heterostructured Ag–ZnO nanowires. Applied Physics Letters, 2009, 94, 172103.
61. H.A. Atwater and A. Polman. Plasmonics for improved photovoltaic devices. Nat Mater, 2010, 9, 205-213.
62. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131, 6050-6051.
63. Q. Zeng, X. Zhang, C. Liu, T. Feng, Z. Chen, W. Zhang, W. Zheng, H. Zhang, and B. Yang. Inorganic CsPbI2Br perovskite solar cells: the progress and perspective. Solar RRL, 2019, 3, 1800239.
64. L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, and M.V. Kovalenko. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett, 2015, 15, 3692-3696.
65. S. Dastidar, S. Li, S.Y. Smolin, J.B. Baxter, and A.T. Fafarman. Slow electron–hole recombination in lead iodide perovskites does not require a molecular dipole. ACS Energy Letters, 2017, 2, 2239-2244.
66. H. Zhu, M.T. Trinh, J. Wang, Y. Fu, P.P. Joshi, K. Miyata, S. Jin, and X.Y. Zhu. Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites. Advanced Materials, 2017, 29, 1603072.
67. M. Shoaib, X. Zhang, X. Wang, H. Zhou, T. Xu, X. Wang, X. Hu, H. Liu, X. Fan, and W. Zheng. Directional growth of ultralong CsPbBr3 perovskite nanowires for high-performance photodetectors. Journal of the American Chemical Society, 2017, 139, 15592-15595.
68. B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, and L. Yin. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nature communications, 2018, 9, 1-8.
69. X. Zhang, W. Wang, B. Xu, S. Liu, H. Dai, D. Bian, S. Chen, K. Wang, and X.W. Sun. Thin film perovskite light-emitting diode based on CsPbBr3 powders and interfacial engineering. Nano Energy, 2017, 37, 40-45.
70. A. Marronnier, G. Roma, S. Boyer-Richard, L. Pedesseau, J.-M. Jancu, Y. Bonnassieux, C. Katan, C.C. Stoumpos, M.G. Kanatzidis, and J. Even. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano, 2018, 12, 3477-3486.
71. J. Zhang, G. Hodes, Z. Jin, and S.F. Liu. All-Inorganic CsPbX3 Perovskite Solar Cells: Progress and Prospects. Angew Chem Int Ed Engl, 2019, 58, 15596-15618.
72. J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han, and H. Zeng. 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control. Adv Mater, 2017, 29, 1603885.
73. T. Yang, Y. Zheng, Z. Du, W. Liu, Z. Yang, F. Gao, L. Wang, K.C. Chou, X. Hou, and W. Yang. Superior Photodetectors Based on All-Inorganic Perovskite CsPbI3 Nanorods with Ultrafast Response and High Stability. ACS Nano, 2018, 12, 1611-1617.
74. Y. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. Gong, P. Kanjanaboos, A.F. Nogueira, and E.H. Sargent. Efficient Luminescence from Perovskite Quantum Dot Solids. ACS Appl Mater Interfaces, 2015, 7, 25007-25013.
75. Y. Gao, Y. Wu, H. Lu, C. Chen, Y. Liu, X. Bai, L. Yang, W.Y. William, Q. Dai, and Y. Zhang. CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency. Nano Energy, 2019, 59, 517-526.
76. M. Jones, J. Nedeljkovic, R.J. Ellingson, A.J. Nozik, and G. Rumbles. Photoenhancement of luminescence in colloidal CdSe quantum dot solutions. The Journal of Physical Chemistry B, 2003, 107, 11346-11352.
77. S. Tong, J. Sun, C. Wang, Y. Huang, C. Zhang, J. Shen, H. Xie, D. Niu, S. Xiao, Y. Yuan, J. He, J. Yang, and Y. Gao. High-Performance Broadband Perovskite Photodetectors Based on CH3NH3PbI3/C8BTBT Heterojunction. Advanced Electronic Materials, 2017, 3.
78. J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M.H. Huang, and C.-S. Hsu. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano, 2011, 5, 959-967.
79. H. Hong and W.A. Anderson. Cryogenic processed metal-semiconductor-metal (MSM) photodetectors on MBE grown ZnSe. IEEE Transactions on Electron Devices, 1999, 46, 1127-1134.
80. C. Ma, Y. Shi, W. Hu, M.H. Chiu, Z. Liu, A. Bera, F. Li, H. Wang, L.J. Li, and T. Wu. Heterostructured WS2 /CH3NH3PbI3 Photoconductors with Suppressed Dark Current and Enhanced Photodetectivity. Adv Mater, 2016, 28, 3683-9.
81. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang. Nanowire ultraviolet photodetectors and optical switches. Advanced Materials, 2002, 14, 158-160.
82. Y. Chen, Y. Chu, X. Wu, W. Ou-Yang, and J. Huang. High-Performance Inorganic Perovskite Quantum Dot-Organic Semiconductor Hybrid Phototransistors. Advanced Materials, 2017, 29, 1704062.
83. Y. Zhang, S. Li, W. Yang, M.K. Joshi, and X. Fang. Millimeter-sized single-crystal CsPbrB3/CuI heterojunction for high-performance self-powered photodetector. The Journal of Physical Chemistry Letters, 2019, 10, 2400-2407.
84. X. Song, X. Liu, D. Yu, C. Huo, J. Ji, X. Li, S. Zhang, Y. Zou, G. Zhu, and Y. Wang. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Applied Materials & Interfaces, 2018, 10, 2801-2809.
85. J. Ding, S. Du, Z. Zuo, Y. Zhao, H. Cui, and X. Zhan. High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector. The Journal of Physical Chemistry C, 2017, 121, 4917-4923.
86. G. Maculan, A.D. Sheikh, A.L. Abdelhady, M.I. Saidaminov, M.A. Haque, B. Murali, E. Alarousu, O.F. Mohammed, T. Wu, and O.M. Bakr. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector. The Journal of Physical Chemistry Letters, 2015, 6, 3781-3786.
87. Y. Zhang, W. Xu, X. Xu, J. Cai, W. Yang, and X. Fang. Self-powered dual-color UV–green photodetectors based on SnO2 millimeter wire and microwires/CsPbBr3 particle heterojunctions. The Journal of Physical Chemistry Letters, 2019, 10, 836-841.
88. Z. Du, D. Fu, J. Teng, L. Wang, F. Gao, W. Yang, H. Zhang, and X. Fang. CsPbI3 Nanotube Photodetectors with High Detectivity. Small, 2019, 15, 1905253.
89. Y. Zhou, J. Luo, Y. Zhao, C. Ge, C. Wang, L. Gao, C. Zhang, M. Hu, G. Niu, and J. Tang. Flexible linearly polarized photodetectors based on all‐inorganic perovskite CsPbI3 nanowires. Advanced Optical Materials, 2018, 6, 1800679.
90. W. Zheng, X. Xiong, R. Lin, Z. Zhang, C. Xu, and F. Huang. Balanced photodetection in one-step liquid-phase-synthesized CsPbBr3 micro-/nanoflake single crystals. ACS Applied Materials & Interfaces, 2018, 10, 1865-1870.
91. 蔡鵬輝, 四元無機鈣鈦礦量子點與銀奈米顆粒應用於光偵測元件表現之增益, in 材料科學工程學系. 2019, 國立清華大學. p. 64.
92. B.R. Sutherland, A.K. Johnston, A.H. Ip, J. Xu, V. Adinolfi, P. Kanjanaboos, and E.H. Sargent. Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering. ACS Photonics, 2015, 2, 1117-1123.
93. J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu. Surface plasmon‐enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small, 2015, 11, 2392-2398.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *