帳號:guest(18.117.192.192)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江淳修
作者(外文):Chiang, Chun-Hsiu.
論文名稱(中文):電漿輔助硒化製備二硒化鉬垂直層狀結構於離子調控1T/2H相轉換類神經元件應用
論文名稱(外文):Ions Manipulation and 1T/2H Phase Engineering in MoSe2 Vertical-Lamellar Structure Synthesized by Plasma-Assisted Selenization for Synapse-Mimicking Devices
指導教授(中文):闕郁倫
指導教授(外文):Chueh, Yu-Lun
口試委員(中文):金雅琴
謝光宇
葉文冠
口試委員(外文):King, Ya-Chin
Hsieh, Kuang-Yu
Yeh, Wen-Kuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:107031509
出版年(民國):109
畢業學年度:109
語文別:英文
論文頁數:77
中文關鍵詞:二硒化鉬電阻式記憶體相變化類神經元件銅嵌入低溫電漿硒化
外文關鍵詞:MoSe2 RRAMTMDCs1T/2H phase changeCu intercalationsynapse mimicking deviceplasma-assisted selenization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:405
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究使用電漿輔助化學氣相還原法,在低溫下製備出具有垂直層狀結構的二硒化鉬材料,並將此材料作為電阻式記憶體中的電阻變化層。
二硒化鉬屬於過鍍金屬二硫化物(TMD)類別,在二維材料的發展中有很大的佔比;過往關於二硫化鉬與二硫化鎢有許多傑出的研究,就相轉換的角度而言,二硒化鉬較前面兩者具備更低的轉換能障。此研究著力於相轉換貢獻在電阻式記憶體的電性表現上。使用電漿輔助硒化系統的目的,在於其有效降低製程溫度,減少基板熱損害,不需要材料轉移可直接製造元件。同時,後硒化製程在於厚度上可以做到大面積均勻可控,可以從前驅氧化物鍍膜厚度做改變。
透過垂直於層狀結構的電場所導致的金屬離子的嵌入,使得離子流動產生之合力給予層間壓縮力,縮減材料層間距,由富1T的混合相轉變為2H相,而當反向偏壓施加時,則為鬆弛壓力,層間距恢復,轉為原先富1T的混合相。
在金屬離子之中,銅的特殊性也加入討論,包括銅對降低相轉換能障的幫助,硒化銅薄層對於銅嵌入的影響。此研究顯示離子移動產生的相轉換與對應電性,元件表現上可以穩定操作100個迴圈,高低電阻比達1個數量級,耐久度測試達20,000秒;並且於脈衝電性量測顯示有類神經網路硬體端應用的潛力。
本研究提出過鍍金屬二硫化物族作為未來先進製程發展的重點材料,於記憶體元件應用的可行性,以及同步輻射光源輔助原理驗證,有助於未來相關研究的構想與發展。
Resistive random access memory (ReRAM) records 0 and 1 signals by varying conductance states of the middle layer in a MIM structure. And it has the merit of lower programming currents without sacrificing programming performance, retention or endurance. Devices applying synapse-mimicking concepts have attracted impressive attention recently. In an analogue computing neurocomputer, memristors can act as neurons separately and also play as the synapses which are the joints between neurons. By which energy consumption can be reduced and computation speed can be enhanced. Previous studies showed that transition metal dichalcogenides can be one of the candidates of the host material for ionic modulation to take place. Because TMDCs are stacking of two dimensional layers and there is only van-der-Waals force in between, intercalation between layers will cause structural and conductance change between the semiconducting hexagonal (2H) structure and metallic tetragonal (1T) one. However, most of the intercalations are carried out by immersing in organolithium reagent and current-voltage (I-V) measurement can only be conducted in the glove box. In this study, all the measurements can be done under atmospheric environment by an all-solid-state process including ions intercalation. Molybdenum selenide (MoSe2) patterns were synthesized by a specially designed selenization chamber assisted by plasma under low temperature, which decreases heat damage and reaches nowadays electronics requirements for low processing temperature. By using unsymmetrical electrodes design, electric field induces active metal ions into MoSe2 lamellar structure and change local arrangement thus have conductivity variation. Using different bias condition, ions will migrate and different local distribution of 1T and 2H can take place. When applying DC bias, this work shows great endurance of more than 100 cycles, high stability for retention test (more than 104 s) and an on-off ratio about 900%. In pulsed measurements, the conductivity in MoSe2 will gradual increase and will depotentiate conversely.
ABSTRACT (CHINESE) I
ABSTRACT (ENGLISH) II
CONTENTS III
FIGURE CAPTION V
TABLE CAPTION XI
CHAPTER 1 INTRODUCTION 1
1.1 TRANSITION METAL DICHALCOGENIDES (TMDCS) 1
1.1.1 Composition and crystal phases and electronic structure 1
1.1.2 Optical and vibrational properties 4
1.1.3 Manufacturing process of TMDCs 6
1.1.4 Intercalation and Cu adsorption induced phase change 12
1.1.5 Force induced phase change 18
1.1.6 XAS analysed phase change 20
1.2 TMD RESISTIVE RANDOM ACCESS MEMORY 21
1.2.1 Overview of memory 21
1.2.2 Metal oxide vs. TMDCs 22
1.2.3 TMDCs memory 24
CHAPTER 2 MOTIVATION 30
CHAPTER 3 EXPERIMENTAL DESIGN 33
3.1 FABRICATION OF MOSE2 34
3.2 ELECTRODES PATTERN DESIGN 38
3.3 IV MEASUREMENT 40
3.4 ANALYSIS TECHNIQUES 41
3.4.1 Raman spectroscopy 41
3.4.2 Electron microscope analysis and XPS 42
3.4.3 SPEM analysis 42
3.4.4 XAS spectroscopy 43
CHAPTER 4 RESULTS AND DISCUSSION 45
4.1 MATERIALS CHARATERIZATION ON MOSE2 SYNTHESIS 45
4.2 OPTIMIZATION OF RERAM PERFORMANCE 48
4.2.1 Comparison on phase difference 48
4.2.2 Comparison of inert and active metals 49
4.2.3 Copper intercalation 50
4.2.4 Comparison on lamellar direction 54
4.2.5 Performance discussion 55
4.3 MECHANISM DISCUSSION 58
4.3.1 Synchrotron radiation analysis 58
4.3.2 TEM analysis 61
4.3.3 Effect of work function on IV behavior 66
4.4 APPLICATION ON NEUROMORPHIC COMPUTATION 68
CHAPTER 5 CONCLUSION AND OUTLOOK 71
CHAPTER 6 REFERENCE 73

1. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 2013, 5 (4), 263-75.
2. Duerloo, K. A.; Li, Y.; Reed, E. J., Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat Commun 2014, 5, 4214.
3. Geim, A. K.; Grigorieva, I. V., Van der Waals heterostructures. Nature 2013, 499 (7459), 419-25.
4. Gong, C.; Zhang, H.; Wang, W.; Colombo, L.; Wallace, R. M.; Cho, K., Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Applied Physics Letters 2013, 103 (5).
5. Brent, J. R.; Savjani, N.; O'Brien, P., Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Progress in Materials Science 2017, 89, 411-478.
6. Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H., Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem Soc Rev 2015, 44 (9), 2757-85.
7. Gupta, U.; Naidu, B. S.; Maitra, U.; Singh, A.; Shirodkar, S. N.; Waghmare, U. V.; Rao, C. N. R., Characterization of few-layer 1T-MoSe2 and its superior performance in the visible-light induced hydrogen evolution reaction. APL Materials 2014, 2 (9).
8. Zhao, Y.; Lee, H.; Choi, W.; Fei, W.; Lee, C. J., Large-area synthesis of monolayer MoSe2 films on SiO2/Si substrates by atmospheric pressure chemical vapor deposition. RSC Advances 2017, 7 (45), 27969-27973.
9. Wang, X.; Gong, Y.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E.; Tay, B. K.; Ajayan, P. M., Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe2. ACS Nano 2014, 8 (5), 5125-5131.
10. Park, J. C.; Yun, S. J.; Kim, H.; Park, J.-H.; Chae, S. H.; An, S.-J.; Kim, J.-G.; Kim, S. M.; Kim, K. K.; Lee, Y. H., Phase-Engineered Synthesis of Centimeter-Scale 1T′- and 2H-Molybdenum Ditelluride Thin Films. ACS Nano 2015, 9 (6), 6548-6554.
11. Chen, Y.-Z.; Lee, S.-H.; Su, T.-Y.; Wu, S.-C.; Chen, P.-J.; Chueh, Y.-L., Phase-modulated 3D-hierarchical 1T/2H WSe2 nanoscrews by a plasma-assisted selenization process as high performance NO gas sensors with a ppb-level detection limit. Journal of Materials Chemistry A 2019, 7 (39), 22314-22322.
12. Qu, Y.; Medina, H.; Wang, S. W.; Wang, Y. C.; Chen, C. W.; Su, T. Y.; Manikandan, A.; Wang, K.; Shih, Y. C.; Chang, J. W.; Kuo, H. C.; Lee, C. Y.; Lu, S. Y.; Shen, G.; Wang, Z. M.; Chueh, Y. L., Wafer Scale Phase-Engineered 1T- and 2H-MoSe2 /Mo Core-Shell 3D-Hierarchical Nanostructures toward Efficient Electrocatalytic Hydrogen Evolution Reaction. Adv Mater 2016, 28 (44), 9831-9838.
13. Wang, R.; Yu, Y.; Zhou, S.; Li, H.; Wong, H.; Luo, Z.; Gan, L.; Zhai, T., Strategies on Phase Control in Transition Metal Dichalcogenides. Advanced Functional Materials 2018, 28 (47).
14. Yin, Y.; Zhang, Y.; Gao, T.; Yao, T.; Zhang, X.; Han, J.; Wang, X.; Zhang, Z.; Xu, P.; Zhang, P.; Cao, X.; Song, B.; Jin, S., Synergistic Phase and Disorder Engineering in 1T-MoSe2 Nanosheets for Enhanced Hydrogen-Evolution Reaction. Adv Mater 2017, 29 (28).
15. Ambrosi, A.; Sofer, Z.; Pumera, M., 2H --> 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem Commun (Camb) 2015, 51 (40), 8450-3.
16. Tan, Y.; Luo, F.; Zhu, M.; Xu, X.; Ye, Y.; Li, B.; Wang, G.; Luo, W.; Zheng, X.; Wu, N.; Yu, Y.; Qin, S.; Zhang, X. A., Controllable 2H-to-1T' phase transition in few-layer MoTe2. Nanoscale 2018, 10 (42), 19964-19971.
17. Jung, Y.; Zhou, Y.; Cha, J. J., Intercalation in two-dimensional transition metal chalcogenides. Inorganic Chemistry Frontiers 2016, 3 (4), 452-463.
18. Gong, Y.; Yuan, H.; Wu, C. L.; Tang, P.; Yang, S. Z.; Yang, A.; Li, G.; Liu, B.; van de Groep, J.; Brongersma, M. L.; Chisholm, M. F.; Zhang, S. C.; Zhou, W.; Cui, Y., Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat Nanotechnol 2018, 13 (4), 294-299.
19. Voiry, D.; Goswami, A.; Kappera, R.; e Silva Cde, C.; Kaplan, D.; Fujita, T.; Chen, M.; Asefa, T.; Chhowalla, M., Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat Chem 2015, 7 (1), 45-9.
20. Zhang, J.; Yang, A.; Wu, X.; van de Groep, J.; Tang, P.; Li, S.; Liu, B.; Shi, F.; Wan, J.; Li, Q.; Sun, Y.; Lu, Z.; Zheng, X.; Zhou, G.; Wu, C. L.; Zhang, S. C.; Brongersma, M. L.; Li, J.; Cui, Y., Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nat Commun 2018, 9 (1), 5289.
21. Liu, X.-C.; Zhao, S.; Sun, X.; Deng, L.; Zou, X.; Hu, Y.; Wang, Y.-X.; Chu, C.-W.; Li, J.; Wu, J.; Ke, F.-S.; Ajayan, P. M., Spontaneous self-intercalation of copper atoms into transition metal dichalcogenides. Science Advances 2020, 6 (7), eaay4092.
22. Ling, F.; Jing, H.; Chen, Y.; Kang, W.; Zeng, W.; Liu, X.; Zhang, Y.; Fang, L.; Zhou, M., Metastable phase control of two-dimensional transition metal dichalcogenides on metal substrates. Journal of Materials Chemistry C 2018, 6 (45), 12245-12251.
23. Yu, Y.; Nam, G. H.; He, Q.; Wu, X. J.; Zhang, K.; Yang, Z.; Chen, J.; Ma, Q.; Zhao, M.; Liu, Z.; Ran, F. R.; Wang, X.; Li, H.; Huang, X.; Li, B.; Xiong, Q.; Zhang, Q.; Liu, Z.; Gu, L.; Du, Y.; Huang, W.; Zhang, H., High phase-purity 1T'-MoS2- and 1T'-MoSe2-layered crystals. Nat Chem 2018, 10 (6), 638-643.
24. Zhao, W.; Ding, F., Energetics and kinetics of phase transition between a 2H and a 1T MoS2 monolayer-a theoretical study. Nanoscale 2017, 9 (6), 2301-2309.
25. Jin, Q.; Liu, N.; Chen, B.; Mei, D., Mechanisms of Semiconducting 2H to Metallic 1T Phase Transition in Two-dimensional MoS2 Nanosheets. The Journal of Physical Chemistry C 2018, 122 (49), 28215-28224.
26. Huang, H. H.; Fan, X.; Singh, D. J.; Zheng, W. T., First principles study on 2H-1T' transition in MoS2 with copper. Phys Chem Chem Phys 2018, 20 (42), 26986-26994.
27. Song, S.; Keum, D. H.; Cho, S.; Perello, D.; Kim, Y.; Lee, Y. H., Room Temperature Semiconductor-Metal Transition of MoTe2 Thin Films Engineered by Strain. Nano Lett 2016, 16 (1), 188-93.
28. Wu, L.; Longo, A.; Dzade, N. Y.; Sharma, A.; Hendrix, M.; Bol, A. A.; de Leeuw, N. H.; Hensen, E. J. M.; Hofmann, J. P., The Origin of High Activity of Amorphous MoS2 in the Hydrogen Evolution Reaction. ChemSusChem 2019, 12 (19), 4383-4389.
29. Chang, T.-C.; Chang, K.-C.; Tsai, T.-M.; Chu, T.-J.; Sze, S. M., Resistance random access memory. Materials Today 2016, 19 (5), 254-264.
30. Yang, J. J.; Strukov, D. B.; Stewart, D. R., Memristive devices for computing. Nat Nanotechnol 2013, 8 (1), 13-24.
31. Waser, R.; Aono, M., Nanoionics-based resistive switching memories. Nature Materials 2007, 6 (11), 833-840.
32. Hong, X.; Loy, D. J.; Dananjaya, P. A.; Tan, F.; Ng, C.; Lew, W., Oxide-based RRAM materials for neuromorphic computing. Journal of Materials Science 2018, 53 (12), 8720-8746.
33. Tang, J.; Bishop, D.; Kim, S.; Copel, M.; Gokmen, T.; Todorov, T.; Shin, S.; Lee, K.; Solomon, P.; Chan, K.; Haensch, W.; Rozen, J. In ECRAM as Scalable Synaptic Cell for High-Speed, Low-Power Neuromorphic Computing, 2018 IEEE International Electron Devices Meeting (IEDM), 1-5 Dec. 2018; 2018; pp 13.1.1-13.1.4.
34. Sebastian, A.; Pannone, A.; Subbulakshmi Radhakrishnan, S.; Das, S., Gaussian synapses for probabilistic neural networks. Nat Commun 2019, 10 (1), 4199.
35. Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M., Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568 (7750), 70-74.
36. Cheng, P.; Sun, K.; Hu, Y. H., Memristive Behavior and Ideal Memristor of 1T Phase MoS2 Nanosheets. Nano Lett 2016, 16 (1), 572-6.
37. Jadwiszczak, J.; Keane, D.; Maguire, P.; Cullen, C. P.; Zhou, Y.; Song, H.; Downing, C.; Fox, D.; McEvoy, N.; Zhu, R.; Xu, J.; Duesberg, G. S.; Liao, Z. M.; Boland, J. J.; Zhang, H., MoS2 Memtransistors Fabricated by Localized Helium Ion Beam Irradiation. ACS Nano 2019, 13 (12), 14262-14273.
38. Li, D.; Wu, B.; Zhu, X.; Wang, J.; Ryu, B.; Lu, W. D.; Lu, W.; Liang, X., MoS2 Memristors Exhibiting Variable Switching Characteristics toward Biorealistic Synaptic Emulation. ACS Nano 2018, 12 (9), 9240-9252.
39. Sangwan, V. K.; Lee, H. S.; Bergeron, H.; Balla, I.; Beck, M. E.; Chen, K. S.; Hersam, M. C., Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 2018, 554 (7693), 500-504.
40. Zhang, F.; Zhang, H.; Krylyuk, S.; Milligan, C. A.; Zhu, Y.; Zemlyanov, D. Y.; Bendersky, L. A.; Burton, B. P.; Davydov, A. V.; Appenzeller, J., Electric-field induced structural transition in vertical MoTe2- and Mo1-xWxTe2-based resistive memories. Nat Mater 2019, 18 (1), 55-61.
41. Li, Y.; Duerloo, K.-A. N.; Wauson, K.; Reed, E. J., Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nature Communications 2016, 7 (1).
42. Arnold, A. J.; Razavieh, A.; Nasr, J. R.; Schulman, D. S.; Eichfeld, C. M.; Das, S., Mimicking Neurotransmitter Release in Chemical Synapses via Hysteresis Engineering in MoS2 Transistors. ACS Nano 2017, 11 (3), 3110-3118.
43. Zhu, X.; Li, D.; Liang, X.; Lu, W. D., Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat Mater 2019, 18 (2), 141-148.
44. Singh, A.; Shirodkar, S. N.; Waghmare, U. V., 1H and 1T polymorphs, structural transitions and anomalous properties of (Mo,W)(S,Se) 2 monolayers: first-principles analysis. 2D Materials 2015, 2 (3), 035013.
45. Motter, J. P.; Koski, K. J.; Cui, Y., General Strategy for Zero-Valent Intercalation into Two-Dimensional Layered Nanomaterials. Chemistry of Materials 2014, 26 (7), 2313-2317.
46. Koski, K. J.; Wessells, C. D.; Reed, B. W.; Cha, J. J.; Kong, D.; Cui, Y., Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J Am Chem Soc 2012, 134 (33), 13773-9.
47. Hashemi, Z.; Rafiezadeh, S.; Hafizi, R.; Hashemifar, S. J.; Akbarzadeh, H., First-principles study of MoS2 and MoSe2 nanoclusters in the framework of evolutionary algorithm and density functional theory. Chemical Physics Letters 2018, 698, 41-50.
48. Dai, T.-J.; Liu, Y.-C.; Fan, X.-D.; Liu, X.-Z.; Xie, D.; Li, Y.-R., Synthesis of few-layer 2H-MoSe2 thin films with wafer-level homogeneity for high-performance photodetector. Nanophotonics 2018, 7 (12), 1959-1969.
49. Boyce, J. B.; Huberman, B. A., Superionic conductors: Transitions, structures, dynamics. Physics Reports 1979, 51 (4), 189-265.
50. Shimada, T.; Ohuchi, F. S.; Parkinson, B. A., Work Function and Photothreshold of Layered Metal Dichalcogenides. Japanese Journal of Applied Physics 1994, 33 (Part 1, No. 5A), 2696-2698.
51. Ouyang, B.; Xiong, S.; Jing, Y., Tunable phase stability and contact resistance of monolayer transition metal dichalcogenides contacts with metal. npj 2D Materials and Applications 2018, 2 (1).

(此全文20250906後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *