帳號:guest(3.144.244.117)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭家宜
作者(外文):Guo, Jia-Yi
論文名稱(中文):低粗糙度介電層上高附著濕式金屬化製程之研究
論文名稱(外文):Adhesive Wet Metallization on Low Profile Dielectric Substrate
指導教授(中文):王潔
衛子健
指導教授(外文):Wang, Jane
Wei, Tzu-Chien
口試委員(中文):王金勝
李英傑
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107030701
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:105
中文關鍵詞:化學鍍感光型介電材料BT樹脂微粗化表面處理技術
外文關鍵詞:Electroless Plating, ELPDielectric SubstrateBismaleimide Triazine ResinLow Profile
相關次數:
  • 推薦推薦:0
  • 點閱點閱:401
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
印刷電路板(Printed Circuit Boards, PCB)產業經常使用化學鍍(Electroless Plating, ELP)進行金屬化。一般而言,化學鍍金屬層與材料間的附著力主要與材料自身的粗糙度有關,當表面越平滑,金屬層與材料間的附著力即越差。然而,隨著PCB產業朝向細線路與高頻高速化發展,對於材料表面的平整需求大幅提升,因此傳統上用來增加表面粗糙度的粗化處理,如除膠渣(Desmear)已漸漸不被允許使用。
本研究以聚乙烯醇(Polyvinyl Alcohol, PVA)包覆的鈀奈米粒子(PVA_Pd)作為化學鍍銅的觸媒,並搭配富含有胺基官能團的高分子(Polyethylenimine, PEI)水溶液作為表面改質劑。藉由PEI的胺基與PVA_Pd發生化學鍵結交互作用,進而使後續的金屬層與基材間具有一定程度的附著力表現。
首部分深入探討ELP前不同的感光型介電材料(Photo-Imageable Dielectric, PID)表面形貌對其後續化學鍍金屬層與基材附著力的影響。結果發現,若要達成化鍍銅層與基板間有高附著力,表面粗糙度固然重要,但是基材材料本身的結構完整性亦至關重要。兩者之間取得一定程度的平衡才是高附著力表現的關鍵。實驗結果顯示經過改良後的微粗化表面處理技術,使得PID的化學鍍銅層可以在極有限的粗糙度增加幅度下表現出500gf/cm以上的ELP銅附著力強度。
第二部分的研究以第一部分的結果為基礎,將微粗化表面處理流程應用於另一種IC載板材料–BT樹脂(Bismaleimide Triazine Resin),其ELP銅附著力表現由完全沒有附著力提升至250gf/cm,再次驗證微粗化表面處理的可行性。除了改善介面的錨定強度,吾人也藉由強化材料間化學鍵結的交互作用,提升BT樹脂材料的表面化學活性,使得附著力表現再進一步的提升至300 gf/cm。
In printed circuit board (PCB) industry, electroless-plating (ELP) is widely used to metallize non-conductive substrate because of its simplicity and cost effectiveness. Generally, the adhesion between ELP layer and substrate is largely determined by the roughness of the substrate. Typically, the lower the roughness is, the worse the adhesion gets. However, the trend of PCB development moves toward to fine line and high frequency, both of which requires substrate surface being flat so traditional roughening treatment to ensure sufficient adhesion such as desmear is no longer allowed.
In this work, we develop a new method realize high adhesion ELP on low roughness dielectric by modifying the substrate surface with a novel amine-based surfactant ; the amine-surfactant modified surface is able to graft a polymer-capped Pd nanoclusteractivator via a distinct molecular interaction between Pd core and amino-moieties on the surfactant. Due to this interaction, the adhesion of resultant ELP Cu is significantly enhanced.
The adhesion of ELP Cu is further enhanced by applying a special surface roughening. This special surface treatment involving modifying traditional potassium permanganate desmear process but omitting the swelling step in order to maintain the backbone structure of the substrate while mildly sculpturing the surface to form micro-craters. The average T-peel adhesion of ELP-Cu on photo-imageable dielectric (PID) is enhanced from 185 to 571 gf/cm using this process.
Next we tried to apply the aforementioned surface roughening on BT resin which has excellent high-frequency properties such as low dielectric constant and low dielectric loss. Due to the chemical inertness of BT, the enhancement of ELP Cu is not as significant as the case in PID. Therefore we added a chemical treatment using KOH solution to enable the chemical activity on BT surface. Finally, the peel strength reached 300gf/cm.
摘要...I
Abstract...II
致謝...IV
一、緒論...1
二、文獻回顧...4
2-1印刷電路板...4
2-2鍍層附著力增強處理...10
2-2-1物理錨定機制...10
2-2-2化學修飾法–矽烷化合物表面改質...17
2-3鈀觸媒於化學鍍銅之催化及應用...20
2-3-1化學鍍銅基本原理...20
2-3-2化學鍍銅銅液組成與特性...21
2-3-3化學鍍銅液反應及觸媒催化機制...23
2-3-4鈀觸媒於化學鍍銅之應用...25
2-4訊號傳輸之電氣特性...31
2-4-1訊號延遲RC-Delay...31
2-4-2訊號傳遞損耗...33
2-5研究目的與動機...37
三、實驗...38
3-1實驗藥品...38
3-2實驗材料...39
3-2-1Photo-imageable dielectric感光型介電材料...39
3-2-1BT(Bismaleimide Triazine)樹脂基板...41
3-2-2FR-4玻璃環氧樹脂...43
3-3設備與儀器...44
3-3-1奈米粒徑分析儀(Dynamic Light Scattering, DLS)...45
3-3-2接觸角量測儀(Contact Angle Meter)...46
3-3-3X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS)...47
3-3-4表面輪廓量測儀Alpha step...48
3-3-5掃描式電子顯微鏡(Scanning electron microscope, SEM)...51
3-3-6聚焦離子束電子束掃描式顯微鏡系統(Dual-beam Focused Ion Beam system, FIB)...53
3-3-7傅里葉轉換紅外光譜(Fourier-transform infrared spectroscopy, FTIR)...54
3-3-8萬能拉力機(Universal Testing Machine)...55
3-4實驗方法...56
3-4-1奈米鈀觸媒(PVA_Pd)製備...56
3-4-2無電鍍銅藥水配製...56
3-4-3電鍍銅槽配製...57
3-4-4非導體基材之金屬化流程...58
四、結果與討論...62
4-1微粗化表面處理於感光型介電基板上化學鍍銅之應用...62
4-1-1胺基改質劑搭配奈米鈀之改質效果...62
4-1-2微粗化表面處理製程開發...67
4-2微粗化流程搭配化學活性改良應用於BT樹脂...80
4-2-1確認微粗化表面處理效果...80
4-2-2開環反應增加BT樹脂化學活性...84
4-2-3BT樹脂與銅層裂面分析...91
五、總結...96
參考文獻...97
[1].曹桂漪, "5G簡介與應用", 臺灣大學計算機及資訊網路中心, 2020.
[2].Hirai, Hidefumi, et al. "Characterization of palladium nanoparticles protected with polymer as hydrogenation catalyst." Reactive and Functional Polymers 37.1-3 (1998): 121-131.
[3].Hsu, Chin-Wei, et al. "Adhesive nickel-phosphorous electroless plating on silanized silicon wafer catalyzed by reactive palladium nanoparticles." 2015 10th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). IEEE, 2015.
[4].Xian, Junyang, et al. "Size-dependent interaction of the poly (N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals." Langmuir 28.17 (2012): 6736-6741.
[5].Strimbu, Lidia, Jian Liu, and Angel E. Kaifer. "Cyclodextrin-capped palladium nanoparticles as catalysts for the Suzuki reaction." Langmuir 19.2 (2003): 483-485.
[6].Ge, J., M. P. K. Turunen, and J. K. Kivilahti. "Surface modification and characterization of photodefinable epoxy/copper systems." Thin Solid Films 440.1-2 (2003): 198-207.
[7].Schröer, D., R. J. Nichols, and H. Meyer. "Pretreatment of polymer surfaces—the crucial step prior to metal deposition." Electrochimica Acta 40.10 (1995): 1487-1494.
[8].Hayden, Harley, et al. "Adhesion enhancement between electroless copper and epoxy-based dielectrics." IEEE Transactions on Advanced Packaging 32.4 (2009): 758-767.
[9].Hollahan, John R., and Alexis T. Bell. "Techniques and applications of plasma chemistry." (1974).
[10].Liston, E. M., L. Martinu, and M. R. Wertheimer. "Plasma surface modification of polymers for improved adhesion: a critical review." Journal of adhesion science and technology 7.10 (1993): 1091-1127.
[11].Strobel, Mark, Christopher Stewart Lyons, and Kash L. Mittal, eds. "Plasma surface modification of polymers: relevance to adhesion." (1994).
[12].Niino, Hiroyuki, and Akira Yabe. "Excimer laser polymer ablation: formation of positively charged surfaces and its application into the metallization of polymer films." Applied surface science 69.1-4 (1993): 1-6.
[13].Mittal, Kashmiri L., ed. Metallized Plastic: Fundamentals and Applications. Vol. 43. CRC press, 1997.
[14].Brewis, D. M., ed. Surface analysis and pretreatment of plastics and metals. Macmillan Publishing, 1982.
[15].Chan, Chi Ming. Polymer surface modification and characterization. 1993.
[16].Glocker, D. Handbook of Thin Film Process Technology: 98/2 Recipes for Optical Materials. CRC Press, 2018.
[17].Garbassi, Fabio, et al. Polymer surfaces: from physics to technology. Chichester: Wiley, 1998.
[18].Ge, J., R. Tuominen, and J. K. Kivilahti. "Adhesion of electrolessly-deposited copper to photosensitive epoxy." Journal of Adhesion Science and Technology 15.10 (2001): 1133-1143.
[19].Siau, Sam, et al. "Adhesion strength of the epoxy polymer/copper interface for use in microelectronics." Journal of the electrochemical society 152.6 (2005): C442.
[20].Sun, Jiang-Yan, et al. "Adhesion study between electroless seed layers and build-up dielectric film substrates." Journal of The Electrochemical Society 160.3 (2013): D107.
[21].張靖霖, "電路板新進工程師手冊", 台灣電路板協會, 2017.
[22].Kukanskis, Peter E., and Harold L. Rhodenizer. "Process for preparing printed circuit board thru-holes." U.S. Patent No. 4,597,988. 1 Jul. 1986.
[23].Arkles, Barry. "Hydrophobicity, hydrophilicity and silanes." Paint & Coatings Industry Magazine 22.12 (2006): 114-135.
[24].Chrisey, Linda A., Gil U. Lee, and C. Elizabeth O'Ferrall. "Covalent attachment of synthetic DNA to self-assembled monolayer films." Nucleic acids research 24.15 (1996): 3031-3039.
[25].Kim, H., and J. Jang. "Corrosion protection and adhesion promotion for polyimide/copper system using silane-modified polymeric materials." Polymer 41.17 (2000): 6553-6561.
[26].Herzer, Nicole, Stephanie Hoeppener, and Ulrich S. Schubert. "Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates." Chemical Communications 46.31 (2010): 5634-5652.
[27].Xie, Yanjun, et al. "Silane coupling agents used for natural fiber/polymer composites: A review." Composites Part A: Applied Science and Manufacturing 41.7 (2010): 806-819.
[28].Iimura, Ken-ichi, Yayoi Nakajima, and Teiji Kato. "A study on structures and formation mechanisms of self-assembled monolayers of n-alkyltrichlorosilanes using infrared spectroscopy and atomic force microscopy." Thin Solid Films 379.1-2 (2000): 230-239.
[29].Zhu, Mojun, Maria Z. Lerum, and Wei Chen. "How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica." Langmuir 28.1 (2012): 416-423.
[30].Witucki, Gerald L. "A silane primer: chemistry and applications of alkoxy silanes." Journal of coatings technology 65 (1993): 57-57.
[31].Asenath Smith, Emily, and Wei Chen. "How to prevent the loss of surface functionality derived from aminosilanes." Langmuir 24.21 (2008): 12405-12409.
[32].Chen, Chi-Fan, et al. "Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling." Journal of the American Chemical Society 130.3 (2008): 824-826.
[33].Sun, Ren‐De, et al. "Adhesion of Electroless Deposited Cu on ZnO‐Coated Glass Substrates: The Effect of the ZnO Surface Morphology." Journal of the Electrochemical Society 146.6 (1999): 2117.
[34].Brenner, Abner, and Grace E. Riddell. "Nickel plating on steel by chemical reduction." Plating and surface finishing 85.8 (1998): 54-55.
[35].Brenner, Abner, and Grace E. Riddell. "Nickel plating on steel by chemical reduction." Journal of research of the National Bureau of Standards 37.1 (1946): 31-34.
[36].De Minjer, C. H., and P. F. J. vd Boom. "The Nucleation with SnCl2‐PdCl2 Solutions of Glass Before Electroless Plating." Journal of The Electrochemical Society 120.12 (1973): 1644.
[37].Shu, J., B. P. A. Grandjean, and S. Kaliaguine. "Effect of Cu (OH)2 on electroless copper plating." Industrial & engineering chemistry research 36.5 (1997): 1632-1636.
[38].Jayalakshmi, S., P. Venkatesh, and P. BalaRamesh. "Recent Advances in Electroless Copper Deposition–A Review." International Journal of Advanced Research in Engineering and Applied Sciences 5.8 (2016): 1-18.
[39].Ryu, Changsup, et al. "Microstructure and reliability of copper interconnects." IEEE transactions on electron devices 46.6 (1999): 1113-1120.
[40].Hung, Aina. "Electroless copper deposition with hypophosphite as reducing agent." Plating and surface finishing 75.1 (1988): 62.
[41].Ohno, Izumi, Osamu Wakabayashi, and Shiro Haruyama. "Anodic oxidation of reductants in electroless plating." Journal of the electrochemical society 132.10 (1985): 2323.
[42].Juzeliunas, Eimutis, Howard W. Pickering, and Konrad G. Weil. "Electrochemical quartz crystal microgravimetry study of metal deposition from EDTA complexes." Journal of the Electrochemical Society 147.3 (2000): 1088.
[43].Oita, Masahiro, Masao Matsuoka, and Chiaki Iwakura. "Deposition rate and morphology of electroless copper film from solutions containing 2,2’-dipyridyl." Electrochimica acta 42.9 (1997): 1435-1440.
[44].Shacham-Diamand, Yosi, and Valery M. Dubin. "Copper electroless deposition technology for ultra-large-scale-integration (ULSI) metallization." Microelectronic Engineering 33.1-4 (1997): 47-58.
[45].Zheng, W. "Fundamentals of Electrochemical Deposition." Corrosion 59.1 (2003): 88.
[46].Van Den Meerakker, J. E. A. M. "On the mechanism of electroless plating. I. Oxidation of formaldehyde at different electrode surfaces." Journal of Applied Electrochemistry 11.3 (1981): 387-393.
[47].De Minjer, C. H., and P. F. J. vd Boom. "The Nucleation with SnCl2‐PdCl2 Solutions of Glass Before Electroless Plating." Journal of The Electrochemical Society 120.12 (1973): 1644.
[48].Peng, Chao, et al. "Study of the adsorptive behavior of Pd/PVP nanoparticles and its interaction with conditioner in electroless copper deposition." Colloids and Surfaces A: Physicochemical and Engineering Aspects 308.1-3 (2007): 93-99.
[49].Rahim, Enaam H., et al. "Heck reactions catalyzed by PAMAM-dendrimer encapsulated Pd (0) nanoparticles." Nano Letters 1.9 (2001): 499-501.
[50].Faure, Bertrand, et al. "Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens." Science and technology of advanced materials 14.2 (2013): 023001.
[51].Pileni, Marie-Paule. "The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals." Nature materials 2.3 (2003): 145-150.
[52].Narayanan, R. "Chimica OGGI-Chem. Today 2007, 25, 84–86.(b) Narayanan, R.; El-Sayed." J. Phys. Chem 109 (2005): 12663-12676.
[53].Wu, Lei, et al. "Phosphine dendrimer-stabilized palladium nanoparticles, a highly active and recyclable catalyst for the Suzuki− Miyaura reaction and hydrogenation." Organic letters 8.16 (2006): 3605-3608.
[54].Strimbu, Lidia, Jian Liu, and Angel E. Kaifer. "Cyclodextrin-capped palladium nanoparticles as catalysts for the Suzuki reaction." Langmuir 19.2 (2003): 483-485.
[55].Li, Yin, Edna Boone, and Mostafa A. El-Sayed. "Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution." Langmuir 18.12 (2002): 4921-4925.
[56].Hou, Zhenshan, et al. "Biphasic Aerobic Oxidation of Alcohols Catalyzed by Poly (ethylene glycol)‐Stabilized Palladium Nanoparticles in Supercritical Carbon Dioxide." Angewandte Chemie International Edition 44.9 (2005): 1346-1349.
[57].Xian, Junyang, et al. "Size-dependent interaction of the poly (N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals." Langmuir 28.17 (2012): 6736-6741.
[58].Bohr, Mark T. "Interconnect scaling-the real limiter to high performance ULSI." Proceedings of International Electron Devices Meeting. IEEE, 1995.
[59].H. S. Rathore, D. Nguyen, ‘Effect of scaling of interconnection”, Copper metallization for sub-micron integrated, 8, 1998.
[60].鍾朝安, "銀導體連線技術," 國家奈米元件實驗室奈米通訊, vol. 20, pp. 26-33, 2013.
[61].Wheeler, Harold A. "Formulas for the skin effect." Proceedings of the IRE 30.9 (1942): 412-424.
[62].Schneider, M. V. "Dielectric loss in integrated microwave circuits." Bell System Technical Journal 48.7 (1969): 2325-2332.
[63].Bauer, Charles E., and William A. Bold. "Multilayer interconnect circuitry using photoimageable dielectric." U.S. Patent No. 4,566,186. 28 Jan. 1986.
[64].Knudsen, P. D., R. L. Brainard, and K. T. Schell. "A photoimageable dielectric for sequential PWB fabrication." Circuit World (1995).
[65].Pucel, Robert A., Daniel J. Masse, and Curtis P. Hartwig. "Losses in microstrip." IEEE transactions on microwave theory and techniques 16.6 (1968): 342-350.
[66].Liew, Elaine, et al. "Signal transmission loss due to copper surface roughness in high-frequency region." Proceedings of IPC APEX EXPO 2014 Technical Conference. 2014.
[67].Yamaguchi, Masataka, Satoru Kuramochi, and Yoshitaka Fukuoka. "High frequency transmission property evaluation of fine wiring substrates." Transactions of the Japan institute of Electronics Packaging 1.1 (2008): 29-35.
[68].Ge, J., R. Tuominen, and J. K. Kivilahti. "Adhesion of electrolessly-deposited copper to photosensitive epoxy." Journal of Adhesion Science and Technology 15.10 (2001): 1133-1143.
[69].Nahin, Paul J. Oliver Heaviside: sage in solitude. New York: ieee Press, 1987.
[70].Puttlitz, Karl J., and Paul A. Totta, eds. Area array interconnection handbook. Springer Science & Business Media, 2012.
[71].Lau, John H. Microvias: for low cost, high density interconnects. McGraw-Hill Education, 2001.
[72].Kurosawa, Miki. "Application report-Laser drilling high-density printed circuit boards-CO2 laser drilling has a central role in manufacturing the newest PCB materials." Industrial Laser Solutions-for Manufacturing 27.5 (2012): 13.
[73].利俊鴻, "電子用低介電材料之合成與性質之研究.", 2002.
[74].莊貴貽, "IC構裝載板用介電絕緣材料簡介." 工業材料雜誌, 322期, 2013.
[75].張立信, "表面化學分析技術," 國家奈米元件實驗室奈米通訊, vol. 19, 2012.
[76].汪建民, "材料分析," 中國材料科學學會, 2014.
[77].The schematic diagram of SEM structure.
Available: http://www.bahens-sem.com/service/260.html.
[78].The schematic diagram of FTIR analysis process.
Available: www.mse.ttu.edu.tw/ezfiles/63/1063/img/647/146611620.doc.
[79].Dow, Wei-Ping, Her-Shu Huang, and Zack Lin. "Interactions between brightener and chloride ions on copper electroplating for laser-drilled via-hole filling." Electrochemical and Solid State Letters 6.9 (2003): C134.
[80].Park, Soo-Jin, Eun-Jung Lee, and Soo-Han Kwon. "Influence of surface treatment of polyimide film on adhesion enhancement between polyimide and metal films." Bulletin of the Korean Chemical Society 28.2 (2007): 188-192.
[81].蒋英, 阙正波, 张竞, & 黄培, "聚酰亚胺薄膜表面水解动力学研究." 絕緣材料, pp. 52-54, 2009.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *