帳號:guest(3.145.82.39)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳彥儒
作者(外文):Wu, Yen-Ju
論文名稱(中文):介孔矽碳奈米微粒與三元金屬硫化物應用於以鋰離子為基礎的能量儲存
論文名稱(外文):Mesoporous Si/C nanoparticles and trimetallic sulfides for lithium ion based energy storage
指導教授(中文):呂世源
指導教授(外文):Lu, Shih-Yuan
口試委員(中文):蔡德豪
潘詠庭
口試委員(外文):Tsai, De-Hao
Pan, Yung-Tin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:107030602
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:102
中文關鍵詞:鋰離子電容器鋰硫電池金屬硫化物矽碳複合材料鋰離子電池
外文關鍵詞:lithium ion capacitorlithium sulfur batterylithium ion batterymetal sulfidesilicon
相關次數:
  • 推薦推薦:0
  • 點閱點閱:140
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為了改善鋰離子電池(Lithium Ion Batteries, LIBs)的缺點,近年來對於裝置的改進研究受到了許多關注,其中鋰離子電容器(Lithium Ion Capacitors, LICs)與鋰硫電池(lithium-sulfur batteries)便吸引了眾多研究的目光。鋰離子電容器屬於同時擁有電池陽極以及電容陰極的混合式電容器(hybrid capacitor),可同時結合鋰離子電池與超級電容器的優點,在擁有高能量密度的同時還可提供媲美超級電容器的功率密度與循環穩定性;鋰硫電池則使用硫取代一般鈷酸鋰類的陰極材料,硫具有相較於鈷酸鋰等陰極材料高出許多的理論電容(~ 1675 mAh g-1)與能量密度(~ 2600 Wh kg-1),亦被視為下一代鋰離子電池性能升級的關鍵所在。針對兩種儲能裝置各自需要被改善的問題,本研究對於鋰離子電容器陽極與鋰硫電池陰極進行改進與發展。
在鋰離子電容器方面,本研究著重對於其中擁有電池性能的陽極進行探討。商業化石墨陽極理論電容值(≈ 372 mAh g-1)較低,無法提供更高的能量密度,因此近年亦有許多開發新陽極材料之研究。在眾多材料當中,矽碳複合材料成為下一世代鋰離子電池發展的首要目標,在鋰離子電池陽極中矽擁有相當高的理論電容值(≈ 4200 mAh g-1),並且其含量豐富、脫鋰電位低等優點也使其成為優秀的陽極材料。但矽的導電性不佳,而且在充放電過程中大量的體積變化也成為當今研究者們努力要克服的難題,所以大部分研究在陽極中會使用矽碳複合材料而非純矽材料,以增加陽極的導電性並降低整體的體積膨脹率。本研究以具介孔之矽奈米微粒複合摻氮碳材作為陽極,藉由介孔提供矽材料體積膨脹的空間,摻氮碳材提高陽極之導電性及穩定性,並且使用具有高比表面積之活性碳作為陰極。組合出之鋰離子電容器在0.32 kW kg-1的功率密度下可以提供高達210 Wh kg-1的能量密度,且在36.1 kW kg-1的高功率密度下仍能保有70.1 Wh kg-1的能量密度,在文獻中表現突出,並在經過20,000次循環的長效性測試後,還能保有原本89%的能量密度,具有相當優異之循環穩定性。
鋰硫電池雖然具有相當高的理論電容量與能量密度,但是仍然面臨許多限制。首先硫本身的導電性不佳,且在反應過程中所產生的多硫化鋰更因為其可溶於電解液的特性而可能擴散到陽極與鋰金屬接觸,產生活性物質的損耗甚至是短路的危害。對於這些缺點多數的研究選擇加入基底材料(sulfur host)來解決問題。初期基底材料的選擇通常為多孔碳材,因其具有良好的導電性,並且具有孔洞可以阻礙多硫化物擴散到陽極,但不具極性的純碳材與具極性的多硫化鋰彼此之間交互作用並不強烈,因此在經過多次循環之後容量仍然會產生明顯的衰退。有鑑於此更多具有極性的材料被報導使用於鋰硫電池中,其中金屬硫化物因為與多硫化物具有強烈的化學吸附力、與其它極性材料相比具有較好的導電性且具有催化多硫化物氧化還原反應之效果而被廣泛地研究。本研究利用類普魯士藍化合物衍生之三元金屬硫化物複合摻氮碳奈米盒,結合鐵、鈷、鎳硫化物各自的優點並且利用氨水加以蝕刻造孔以增加比表面積,成功達成快速吸附多硫化物以及減少鋰離子質傳阻礙的效果。將其作為鋰硫電池陰極,其儲能表現在0.1 C充放電速率下可以提供1238 mAh g-1的容量,在2 C時仍保有655 mAh g-1的容量,此外以1 C的充放電速率進行200個循環的穩定性測試後,仍然保有575 mAh g-1的容量,平均每次循環的容量損失率僅為0.049%。
Lithium ion batteries (LIBs) are currently the most popular energy storage device, but there are still ample rooms for improvements and new lithium ion based energy storage devices are under intensive development. Among them, lithium ion capacitors (LICs) and lithium-sulfur batteries (LSBs) have attracted much research attention. Lithium-ion capacitors are a hybrid energy storage device, composed of a battery type anode and a capacitor type cathode to take advantages of both lithium-ion batteries and supercapacitors (SCs) in one. While possessing high energy densities as in LIBs, LICs also provide high power densities and long-term stability comparable to SCs. LSBs use sulfur instead of the common lithium cobalt oxides of LIBs as the cathode material. Sulfur has a much higher theoretical capacity (~ 1675 mAh g-1) and energy density (~ 2600 Wh kg-1) than the popular cathode materials of LIBs such as lithium cobalt oxides, and is regarded as the key to the next generation lithium ion based energy storage. This work focuses on development of anode materials for LICs and cathode materials for LSBs.
As an anode material, silicon has a very high theoretical capacitance (≈ 4200 mAh g-1) and its delithiation potential is low, making it an outstanding anode material, but its poor conductivity and large volume variations involved during charging/discharging cycles are two detrimental issues to be resolved for its commercial applications. Most researchers use silicon/carbon composites rather than pure silicon as the anode to increase the conductivity and to reduce the overall volume variation. In this study, mesoporous silicon nanoparticles composited with N-doped carbon materials (m-Si@NDC) are developed as the anode for Li-ion based energy storage. Here, the buffer space to accommodate the volume variation of Si during charging/discharging cycles is provided by the mesopores of the mesoporous silicon nanoparticles, and N-doped carbon materials improve the conductivity and stability of the anode. Besides, activated carbons with high surface areas are used as the cathode for LIC assembly. The thus assembled LIC delivers a high energy density of 210 Wh kg-1 at a power density of 0.32 kW kg-1, and maintains a decent energy density of 70.1 Wh kg-1 even at a high power density of 36.1 kW kg-1. The performance is outstanding as compared with those reported in the literature. After the long-term test of 20,000 cycles, it retains 89% of the original energy density, indicating its excellent cycling stability.
LSBs, although possessing a relatively high theoretical electrical capacity and energy density, still face many limitations. First of all, the conductivity of sulfur is poor, and the lithium polysulfides generated during the discharge process may dissolve in the electrolyte and diffuse to the anode, resulting in loss of active materials and even short circuiting. For these shortcomings, most researchers choose to add sulfur hosts to solve the problem. In this work, Prussian blue analogues (PBAs) derived trimetallic sulfides composited with N-doped carbon nanoboxes are successfully synthesized, in which ammonia is used to etch the eight corners of the cubic structure of PBAs to create extra pores and increase the reaction surface area to boost adsorption of polysulfides and to improve the mass transfer of electrolyte in and out the nanoboxes. The as fabricated cathode delivers a discharge capacity of 1238 mAh g-1 at 0.1 C, and maintains a capacity of 655 mAh g-1 at 2 C. In addition, after a 200-cycle stability test at 1 C, it still retains a capacity of 575 mAh g-1, giving a low capacity decay rate of only 0.049% per cycle.
摘要 I
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XV
第1章 簡介 1
1-1 緒論 1
1-2 鋰離子電池 2
1-3 鋰離子電容器 5
1-4 鋰硫電池 6
1-5 多巴胺聚合簡介 8
1-6 鎂熱還原簡介 9
1-7 研究動機 10
1-7-1 以具介孔碳矽複合奈米微粒應用於鋰離子電容器 10
1-7-2 以類普魯士藍衍生三元金屬硫化物應用於鋰硫電池 11
第2章 文獻回顧 13
2-1 鋰離子電容器 13
2-1-1 概述 13
2-1-2 多孔矽奈米柱設計 15
2-1-3 利用網狀電極與摻氮碳材組成對稱式鋰離子電容器 18
2-1-4 以含孔洞結構矽材使用於鋰離子電容器 22
2-2 鋰硫電池 26
2-2-1 概述 26
2-2-2 中空硫化鎳複合碳材 26
2-2-3 二元金屬硫化物複合奈米碳管 28
第3章 實驗方法與儀器 31
3-1 實驗藥品 31
3-2 實驗儀器 34
3-3 分析儀器 35
3-4 實驗步驟 37
3-4-1 以具介孔矽奈米微粒複合氮摻雜碳材應用於鋰離子電容器 37
3-4-2 以三元金屬硫化物複合經蝕刻奈米碳盒應用於鋰硫電池 40
3-5 電化學測試與分析 42
第4章 結果與討論-鋰離子電容器部分 45
4-1 具介孔之二氧化矽球 45
4-2 摻氮碳材包覆二氧化矽奈米球 47
4-3 以鎂熱還原法還原MSS@NDC 48
4-3-1 鎂熱反應條件的控制 48
4-3-2 m-Si@NDC材料鑑定 51
4-4 m-Si@NDC陽極半電池電化學測試 58
4-4-1 不同反應時間m-Si@NDC比較 58
4-4-2 有無介孔對於長效穩定性之影響 59
4-4-3 針對m-Si@NDC其它電化學分析 60
4-4-4 原位拉曼測試 62
4-5 萄萄糖衍生之活化碳球(GCNS)材料鑑定 63
4-6 GCNS陰極半電池電化學測試 65
4-7 m-Si@NDC//GCNS鋰離子電容器測試 67
4-7-1 最佳重量配比測試 67
4-7-2 電容表現測試 67
4-7-3 循環長效性測試 69
4-7-4 與近年文獻中鋰離子電容器之比較 70
第5章 結果與討論-鋰硫電池部分 73
5-1 三元金屬(鐵、鈷、鎳)類普魯士藍 73
5-2 三元金屬硫化物複合氮摻雜碳奈米盒(S-FeCoNi@C-CNB)材料鑑定與分析 76
5-2-1 形貌、晶格繞射與元素組成分析 76
5-2-2 有無造孔比較 79
5-2-3 XPS分析 80
5-2-4三元金屬硫化物與純硫之複合材料(S-FeCoNi@C-CNB/S) 82
5-2-5 多硫化鋰吸附測試 84
5-3 S-FeCoNi@C-CNB/S應用於鋰硫電池陰極電化學測試 85
5-3-1 電池容量表現 85
5-3-2 循環長效表現測試 87
5-3-3 鋰離子質傳係數比較 89
5-3-4 與其它文獻鋰硫電池比較 92
第6章 結論 94
參考文獻 95

[1] M.M. Thackeray, C. Wolverton, E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries, Energy & Environmental Science 5 (2012) 7854-7863.
[2] S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood III, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon 105 (2016) 52-76.
[3] D. Deng, Li‐ion batteries: basics, progress, and challenges, Energy Science & Engineering 3 (2015) 385-418.
[4] C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nature Nanotechnology 3 (2008) 31.
[5] H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous hybrid lithium‐ion and sodium‐ion capacitors, Advanced Materials 29 (2017) 1702093.
[6] V. Aravindan, J. Gnanaraj, Y.-S. Lee, S. Madhavi, Insertion-type electrodes for nonaqueous Li-ion capacitors, Chemical reviews 114 (2014) 11619-11635.
[7] X. Hong, R. Wang, Y. Liu, J. Fu, J. Liang, S. Dou, Recent advances in chemical adsorption and catalytic conversion materials for Li–S batteries, Journal of Energy Chemistry 42 (2020) 144-168.
[8] X. Tao, J. Wang, Z. Ying, Q. Cai, G. Zheng, Y. Gan, H. Huang, Y. Xia, C. Liang, W. Zhang, Strong sulfur binding with conducting magnéli-phase TinO2n–1 nanomaterials for improving lithium–sulfur batteries, Nano Letters 14 (2014) 5288-5294.
[9] Z.W. Seh, J.H. Yu, W. Li, P.-C. Hsu, H. Wang, Y. Sun, H. Yao, Q. Zhang, Y. Cui, Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes, Nature Communications 5 (2014) 1-8.
[10] Z. Yuan, H.-J. Peng, T.-Z. Hou, J.-Q. Huang, C.-M. Chen, D.-W. Wang, X.-B. Cheng, F. Wei, Q. Zhang, Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts, Nano Letters 16 (2016) 519-527.
[11] A.-K. Pada, D. Desai, K. Sun, N. Prakirth Govardhanam, K. Törnquist, J. Zhang, J.M. Rosenholm, Comparison of Polydopamine-Coated Mesoporous Silica Nanorods and Spheres for the Delivery of Hydrophilic and Hydrophobic Anticancer Drugs, International Journal of Molecular Sciences 20 (2019) 3408.
[12] K. Huo, W. An, J. Fu, B. Gao, L. Wang, X. Peng, G.J. Cheng, P.K. Chu, Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries, Journal of Power Sources 324 (2016) 233-238.
[13] D.A. Agyeman, K. Song, G.H. Lee, M. Park, Y.M. Kang, Carbon‐coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy‐density Li‐ion battery, Advanced Energy Materials 6 (2016) 1600904.
[14] H.-Y. Cheng, P.-Y. Cheng, X.-F. Chuah, C.-L. Huang, C.-T. Hsieh, J. Yu, C.-H. Lin, S.-Y. Lu, Porous N-doped carbon nanostructure integrated with mesh current collector for Li-ion based energy storage, Chemical Engineering Journal 374 (2019) 201-210.
[15] C.-H. Jung, J. Choi, W.-S. Kim, S.-H. Hong, A nanopore-embedded graphitic carbon shell on silicon anode for high performance lithium ion batteries, Journal of Materials Chemistry A 6 (2018) 8013-8020.
[16] L. Wang, L. Hu, S. Gao, D. Zhao, L. Zhang, W. Wang, Bio-inspired polydopamine-coated clay and its thermo-oxidative stabilization mechanism for styrene butadiene rubber, RSC Advances 5 (2015) 9314-9324.
[17] J. Entwistle, A. Rennie, S. Patwardhan, A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond, Journal of Materials Chemistry A 6 (2018) 18344-18356.
[18] Z. Bao, M.R. Weatherspoon, S. Shian, Y. Cai, P.D. Graham, S.M. Allan, G. Ahmad, M.B. Dickerson, B.C. Church, Z. Kang, Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas, Nature 446 (2007) 172.
[19] L. Batchelor, A. Loni, L. Canham, M. Hasan, J. Coffer, Manufacture of mesoporous silicon from living plants and agricultural waste: an environmentally friendly and scalable process, Silicon 4 (2012) 259-266.
[20] L. Khanna, Y. Lai, M. Dasog, Systematic evaluation of inorganic salts as a heat sink for the magnesiothermic reduction of silica, Canadian Journal of Chemistry 96 (2018) 965-968.
[21] N. Lin, Y. Han, J. Zhou, K. Zhang, T. Xu, Y. Zhu, Y. Qian, A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries, Energy & Environmental Science 8 (2015) 3187-3191.
[22] B. Li, S. Li, Y. Jin, J. Zai, M. Chen, A. Nazakat, P. Zhan, Y. Huang, X. Qian, Porous Si@ C ball-in-ball hollow spheres for lithium-ion capacitors with improved energy and power densities, Journal of Materials Chemistry A 6 (2018) 21098-21103.
[23] Y. Son, S. Sim, H. Ma, M. Choi, Y. Son, N. Park, J. Cho, M. Park, Exploring Critical Factors Affecting Strain Distribution in 1D Silicon‐Based Nanostructures for Lithium‐Ion Battery Anodes, Advanced Materials 30 (2018) 1705430.
[24] R. Zhang, Y. Du, D. Li, D. Shen, J. Yang, Z. Guo, H.K. Liu, A.A. Elzatahry, D. Zhao, Highly reversible and large lithium storage in mesoporous Si/C nanocomposite anodes with silicon nanoparticles embedded in a carbon framework, Advanced Materials 26 (2014) 6749-6755.
[25] X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, J.Y. Huang, Size-dependent fracture of silicon nanoparticles during lithiation, Acs Nano 6 (2012) 1522-1531.
[26] K. Zhang, L.-L. Xu, J.-G. Jiang, N. Calin, K.-F. Lam, S.-J. Zhang, H.-H. Wu, G.-D. Wu, B.l. Albela, L. Bonneviot, Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure, Journal of the American Chemical Society 135 (2013) 2427-2430.
[27] F. Zheng, Y. Yang, Q. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework, Nature Communications 5 (2014) 5261.
[28] G. Ferrero, A. Fuertes, M. Sevilla, N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors, Journal of Materials Chemistry A 3 (2015) 2914-2923.
[29] J. Cao, T. Huang, R. Liu, X. Xi, D. Wu, Nitrogen-doped carbon coated stainless steel meshes for flexible supercapacitors, Electrochimica Acta 230 (2017) 265-270.
[30] J. Jiang, P. Nie, B. Ding, Y. Zhang, G. Xu, L. Wu, H. Dou, X. Zhang, Highly stable lithium ion capacitor enabled by hierarchical polyimide derived carbon microspheres combined with 3D current collectors, Journal of Materials Chemistry A 5 (2017) 23283-23291.
[31] T. Le, H. Tian, J. Cheng, Z.-H. Huang, F. Kang, Y. Yang, High performance lithium-ion capacitors based on scalable surface carved multi hierarchical construction electrospun carbon fibers, Carbon 138 (2018) 325-336.
[32] Y. Yao, M.T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W.D. Nix, Y. Cui, Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life, Nano Letters 11 (2011) 2949-2954.
[33] H. Kim, M. Seo, M.H. Park, J. Cho, A critical size of silicon nano‐anodes for lithium rechargeable batteries, Angewandte Chemie International Edition 49 (2010) 2146-2149.
[34] X. Lu, Q. Zhang, J. Wang, S. Chen, J. Ge, Z. Liu, L. Wang, H. Ding, D. Gong, H. Yang, High performance bimetal sulfides for lithium-sulfur batteries, Chemical Engineering Journal 358 (2019) 955-961.
[35] X. Cong, C. Cheng, Y. Liao, Y. Ye, C. Dong, H. Sun, X. Ji, W. Zhang, P. Fang, L. Miao, Intrinsic charge storage capability of transition metal dichalcogenides as pseudocapacitor electrodes, The Journal of Physical Chemistry C 119 (2015) 20864-20870.
[36] C. Ye, L. Zhang, C. Guo, D. Li, A. Vasileff, H. Wang, S.Z. Qiao, A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium–sulfur batteries, Advanced Functional Materials 27 (2017) 1702524.
[37] S. Zhang, K. Xu, T. Jow, EIS study on the formation of solid electrolyte interface in Li-ion battery, Electrochimica acta 51 (2006) 1636-1640.
[38] L. Yang, C. Wang, Z. Ye, P. Zhang, S. Wu, S. Jia, Z. Li, Z. Zhang, Anisotropic polydopamine capsules with an ellipsoidal shape that can tolerate harsh conditions: efficient adsorbents for organic dyes and precursors for ellipsoidal hollow carbon particles, RSC Advances 7 (2017) 21686-21696.
[39] W.S.V. Lee, X. Huang, T.L. Tan, J.M. Xue, Low Li+ insertion barrier carbon for high energy efficient lithium-ion capacitor, ACS applied materials & interfaces 10 (2018) 1690-1700.
[40] Q. Xu, J.K. Sun, Z.L. Yu, Y.X. Yin, S. Xin, S.H. Yu, Y.G. Guo, SiOx Encapsulated in Graphene Bubble Film: An Ultrastable Li‐Ion Battery Anode, Advanced Materials 30 (2018) 1707430.
[41] J. Chang, X. Huang, G. Zhou, S. Cui, P.B. Hallac, J. Jiang, P.T. Hurley, J. Chen, Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High‐Performance Lithium‐Ion Battery Anode, Advanced materials 26 (2014) 758-764.
[42] V. Baranchugov, E. Markevich, E. Pollak, G. Salitra, D. Aurbach, Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes, Electrochemistry Communications 9 (2007) 796-800.
[43] X. Shen, D. Mu, S. Chen, B. Xu, B. Wu, F. Wu, Si/mesoporous carbon composite as an anode material for lithium ion batteries, Journal of Alloys and Compounds 552 (2013) 60-64.
[44] P. Wu, H. Wang, Y. Tang, Y. Zhou, T. Lu, Three-dimensional interconnected network of graphene-wrapped porous silicon spheres: in situ magnesiothermic-reduction synthesis and enhanced lithium-storage capabilities, ACS Applied Materials & Interfaces 6 (2014) 3546-3552.
[45] H.-C. Shin, J.A. Corno, J.L. Gole, M. Liu, Porous silicon negative electrodes for rechargeable lithium batteries, Journal of power sources 139 (2005) 314-320.
[46] M. Green, E. Fielder, B. Scrosati, M. Wachtler, J.S. Moreno, Structured silicon anodes for lithium battery applications, Electrochemical and Solid-State Letters 6 (2003) A75-A79.
[47] M. Holzapfel, H. Buqa, L.J. Hardwick, M. Hahn, A. Würsig, W. Scheifele, P. Novák, R. Kötz, C. Veit, F.-M. Petrat, Nano silicon for lithium-ion batteries, Electrochimica acta 52 (2006) 973-978.
[48] J. Nanda, M.K. Datta, J.T. Remillard, A. O’Neill, P.N. Kumta, In situ Raman microscopy during discharge of a high capacity silicon–carbon composite Li-ion battery negative electrode, Electrochemistry Communications 11 (2009) 235-237.
[49] S. Hy, Y.-H. Chen, J.-y. Liu, J. Rick, B.-J. Hwang, In situ surface enhanced Raman spectroscopic studies of solid electrolyte interphase formation in lithium ion battery electrodes, Journal of Power Sources 256 (2014) 324-328.
[50] Z. Zeng, N. Liu, Q. Zeng, S.W. Lee, W.L. Mao, Y. Cui, In situ measurement of lithiation-induced stress in silicon nanoparticles using micro-Raman spectroscopy, Nano Energy 22 (2016) 105-110.
[51] A. Krause, O. Tkacheva, A. Omar, U. Langklotz, L. Giebeler, S. Dörfler, F. Fauth, T. Mikolajick, W.M. Weber, In Situ Raman Spectroscopy on Silicon Nanowire Anodes Integrated in Lithium Ion Batteries, Journal of The Electrochemical Society 166 (2019) A5378-A5385.
[52] P.-Y. Cheng, H.-Y. Cheng, C.-L. Huang, Y.-A. Chen, C.-T. Hsieh, S.-Y. Lu, N-doped Hierarchical Continuous Hollow Thin Porous Carbon Nanostructure for High Performance Flexible Gel-Type Symmetric Supercapacitors, ACS Sustainable Chemistry & Engineering (2019).
[53] F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, Y. Chen, A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density, Energy & Environmental Science 6 (2013) 1623-1632.
[54] X. Liu, H.-G. Jung, S.-O. Kim, H.-S. Choi, S. Lee, J.H. Moon, J.K. Lee, Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors, Scientific reports 3 (2013) 3183.
[55] R. Yi, S. Chen, J. Song, M.L. Gordin, A. Manivannan, D. Wang, High‐performance hybrid supercapacitor enabled by a high‐rate Si‐based anode, Advanced Functional Materials 24 (2014) 7433-7439.
[56] C. Liu, C. Zhang, H. Fu, X. Nan, G. Cao, Exploiting High‐Performance Anode through Tuning the Character of Chemical Bonds for Li‐Ion Batteries and Capacitors, Advanced Energy Materials 7 (2017) 1601127.
[57] D.P. Dubal, K. Jayaramulu, R. Zboril, R.A. Fischer, P. Gomez-Romero, Unveiling BiVO4 nanorods as a novel anode material for high performance lithium ion capacitors: beyond intercalation strategies, Journal of Materials Chemistry A 6 (2018) 6096-6106.
[58] M. Halim, G. Liu, R.E.A. Ardhi, C. Hudaya, O. Wijaya, S.-H. Lee, A.-Y. Kim, J.K. Lee, Pseudocapacitive characteristics of low-carbon silicon oxycarbide for lithium-ion capacitors, ACS applied materials & interfaces 9 (2017) 20566-20576.
[59] G. Li, Z. Yin, H. Guo, Z. Wang, G. Yan, Z. Yang, Y. Liu, X. Ji, J. Wang, Metalorganic Quantum Dots and Their Graphene‐Like Derivative Porous Graphitic Carbon for Advanced Lithium‐Ion Hybrid Supercapacitor, Advanced Energy Materials 9 (2019) 1802878.
[60] D.P. Dubal, K. Jayaramulu, J. Sunil, Š. Kment, P. Gomez‐Romero, C. Narayana, R. Zbořil, R.A. Fischer, Metal–Organic Framework (MOF) derived electrodes with robust and fast lithium storage for li‐ion hybrid capacitors, Advanced Functional Materials 29 (2019) 1900532.
[61] R. Wang, Q. Zhao, W. Zheng, Z. Ren, X. Hu, J. Li, L. Lu, N. Hu, J. Molenda, X. Liu, Achieving high energy density in a 4.5 V all nitrogen-doped graphene based lithium-ion capacitor, Journal of Materials Chemistry A 7 (2019) 19909-19921.
[62] C. Li, X. Zhang, K. Wang, X. Sun, Y. Ma, A 29.3 Wh kg− 1 and 6 kW kg− 1 pouch-type lithium-ion capacitor based on SiOx/graphite composite anode, Journal of Power Sources 414 (2019) 293-301.
[63] D. Qu, X. You, X. Feng, J. Wu, D. Liu, D. Zheng, Z.-z. Xie, D. Qu, J. Li, H. Tang, Lithium ion supercapacitor composed by Si-based anode and hierarchal porous carbon cathode with super long cycle life, Applied Surface Science 463 (2019) 879-888.
[64] B. Li, Z. Xiao, M. Chen, Z. Huang, X. Tie, J. Zai, X. Qian, Rice husk-derived hybrid lithium-ion capacitors with ultra-high energy, Journal of Materials Chemistry A 5 (2017) 24502-24507.
[65] L. Zhang, J.-S. Hu, X.-H. Huang, J. Song, S.-Y. Lu, Particle-in-box nanostructured materials created via spatially confined pyrolysis as high performance bifunctional catalysts for electrochemical overall water splitting, Nano Energy 48 (2018) 489-499.
[66] J.-T. Su, Y.-J. Wu, C.-L. Huang, Y.-A. Chen, H.-Y. Cheng, P.-Y. Cheng, C.-T. Hsieh, S.-Y. Lu, Nitrogen-doped carbon nanoboxes as high rate capability and long-life anode materials for high-performance Li-ion capacitors, Chemical Engineering Journal (2020) 125314.
[67] D.S. Raja, H.-W. Lin, S.-Y. Lu, Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities, Nano Energy 57 (2019) 1-13.
[68] W. Luo, X. Cao, S. Liang, J. Huang, Q. Su, Y. Wang, G. Fang, L. Shan, J. Zhou, Trimetallic Hybrid Sulfides Embedded in Nitrogen-Doped Carbon Nanocubes as an Advanced Sodium-Ion Battery Anode, ACS Applied Energy Materials 2 (2019) 4567-4575.
[69] J. Pu, Z. Shen, J. Zheng, W. Wu, C. Zhu, Q. Zhou, H. Zhang, F. Pan, Multifunctional Co3S4@ sulfur nanotubes for enhanced lithium-sulfur battery performance, Nano Energy 37 (2017) 7-14.
[70] X. Chen, X. Ding, H. Muheiyati, Z. Feng, L. Xu, W. Ge, Y. Qian, Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium-sulfur batteries, Nano Research 12 (2019) 1115-1120.
[71] C. Xuan, W. Lei, J. Wang, T. Zhao, C. Lai, Y. Zhu, Y. Sun, D. Wang, Sea urchin-like Ni–Fe sulfide architectures as efficient electrocatalysts for the oxygen evolution reaction, Journal of Materials Chemistry A 7 (2019) 12350-12357.
[72] J. Jiang, L. Zhu, H. Chen, Y. Sun, W. Qian, H. Lin, S. Han, Highly active and stable electrocatalysts of FeS2–reduced graphene oxide for hydrogen evolution, Journal of Materials Science 54 (2019) 1422-1433.
[73] J. Rashid, S. Saleem, S.U. Awan, A. Iqbal, R. Kumar, M. Barakat, M. Arshad, M. Zaheer, M. Rafique, M. Awad, Stabilized fabrication of anatase-TiO2/FeS2 (pyrite) semiconductor composite nanocrystals for enhanced solar light-mediated photocatalytic degradation of methylene blue, RSC advances 8 (2018) 11935-11945.
[74] W. Zhang, W. Chen, Q. Xiao, L. Yu, C. Huang, G. Lu, A. Morawski, Y. Yu, Nitrogen-coordinated metallic cobalt disulfide self-encapsulated in graphitic carbon for electrochemical water oxidation, Applied Catalysis B: Environmental 268 (2020) 118449.
[75] L. Chen, J. Zhang, X. Ren, R. Ge, W. Teng, X. Sun, X. Li, A Ni (OH)2–CoS2 hybrid nanowire array: a superior non-noble-metal catalyst toward the hydrogen evolution reaction in alkaline media, Nanoscale 9 (2017) 16632-16637.
[76] S.-L. Yang, H.-B. Yao, M.-R. Gao, S.-H. Yu, Monodisperse cubic pyrite NiS2 dodecahedrons and microspheres synthesized by a solvothermal process in a mixed solvent: thermal stability and magnetic properties, CrystEngComm 11 (2009) 1383-1390.
[77] S. Huang, H. Wang, Y. Zhang, S. Wang, Z. Chen, Z. Hu, X. Qian, Prussian blue-derived synthesis of uniform nanoflakes-assembled NiS2 hierarchical microspheres as highly efficient electrocatalysts in dye-sensitized solar cells, RSC Advances 8 (2018) 5992-6000.
[78] H. Liu, Q. He, H. Jiang, Y. Lin, Y. Zhang, M. Habib, S. Chen, L. Song, Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting, ACS nano 11 (2017) 11574-11583.
[79] Q. Zou, Y.-C. Lu, Solvent-dictated lithium sulfur redox reactions: an operando UV–vis spectroscopic study, The journal of physical chemistry letters 7 (2016) 1518-1525.
[80] P. Ji, B. Shang, Q. Peng, X. Hu, J. Wei, α-MoO3 spheres as effective polysulfides adsorbent for high sulfur content cathode in lithium-sulfur batteries, Journal of Power Sources 400 (2018) 572-579.
[81] P. Geng, S. Cao, X. Guo, J. Ding, S. Zhang, M. Zheng, H. Pang, Polypyrrole coated hollow metal–organic framework composites for lithium–sulfur batteries, Journal of Materials Chemistry A 7 (2019) 19465-19470.
[82] B. Liu, R. Bo, M. Taheri, I. Di Bernardo, N. Motta, H. Chen, T. Tsuzuki, G. Yu, A. Tricoli, Metal–Organic Frameworks/Conducting Polymer Hydrogel Integrated Three-Dimensional Free-Standing Monoliths as Ultrahigh Loading Li–S Battery Electrodes, Nano Letters 19 (2019) 4391-4399.
[83] Y. Xi, N. Angulakshmi, B. Zhang, X. Tian, Z. Tang, P. Xie, G.Z. Chen, Y. Zhou, A Co9S8 microsphere and N-doped carbon nanotube composite host material for lithium-sulfur batteries, Journal of Alloys and Compounds 826 (2020) 154201.
[84] L. Guo, J. Yu, J. Xiao, A. Li, Z. Yang, L. Zeng, Q. Zhang, Y. Zhu, Enhanced Multiple Anchoring and Catalytic Conversion of Polysulfides by Amorphous MoS3 Nanoboxes for High‐Performance Li‐S Batteries, Angewandte Chemie International Edition (2020).
[85] Y. Huang, D. Lv, Z. Zhang, Y. Ding, F. Lai, Q. Wu, H. Wang, Q. Li, Y. Cai, Z. Ma, Co-Fe Bimetallic sulfide with Strengthened Chemical Adsorption and Catalytic Activity for Polysulfides in Lithium-Sulfur Batteries, Chemical Engineering Journal (2020) 124122.
[86] D. Su, M. Cortie, H. Fan, G. Wang, Prussian Blue Nanocubes with an Open Framework Structure Coated with PEDOT as High‐Capacity Cathodes for Lithium–Sulfur Batteries, Advanced Materials 29 (2017) 1700587.
[87] H. Zhang, W. Zhao, M. Zou, Y. Wang, Y. Chen, L. Xu, H. Wu, A. Cao, 3D, Mutually embedded MOF@ carbon nanotube hybrid networks for high‐performance lithium‐sulfur batteries, Advanced Energy Materials 8 (2018) 1800013.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *