帳號:guest(18.226.172.2)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘭天祈
作者(外文):A-thano, Napaporn
論文名稱(中文):系外行星的凌星時間與透射光譜之分析研究
論文名稱(外文):Transit Timing and Transmission Spectroscopic Analyses of Extrasolar Planets
指導教授(中文):江瑛貴
指導教授(外文):Jiang, Ing-Guey
口試委員(中文):葉麗琴
何英宏
吳亞霖
饒兆聰
口試委員(外文):Yeh, Li-Chin
Harsono, Daniel
Wu, Ya-Lin
Ngeow, Chow-Choong
學位類別:博士
校院名稱:國立清華大學
系所名稱:天文研究所
學號:107025860
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:92
中文關鍵詞:系外行星
外文關鍵詞:ExoplanetsTransitTTVsExoplanets Atmosphere
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
系外行星系統的研究在近幾十年來發展迅速。在發現系外行星的方法中, 一種被稱為凌星時間變化的方法,已被證實對了解系外行星的運動狀態和 偵測其他的系外行星是非常有用的。除了用於發現新的系外行星外,其透射 光譜也經常用於了解該系外行星之大氣。在本研究中,我們對兩個選定的目 標:HAT-P-37 b (熱木星) 及HAT-P-26 b (海王星質量之行星) 進行了分析其凌 星時間變化和透射光譜的研究。
我們將展示HAT-P-37 b 的地面光度觀測結果,並利用此結果和過往的光度 曲線及先前發表之數據來計算更為精準的行星參數。從凌星時間變化之分析, 其訊號強度約為1.74 ± 0.17 分鐘,此變化可以由一顆小於地球質量的行星在1:2 的共振軌道上,與HAT-P-37 b 的重力交互作用產生。我們推論此系統有可能有 其他行星。對於此第二顆行星的質量上限分析,我們可以排除軌道週期小於六 天的土星質量行星。另外,HAT-P-37 b 的寬波帶透射光譜,顯示其擁有雲狀大 氣模型。
對於HAT-P-26 b,透過了SPEARNET 望遠鏡所進行的多頻帶地面光度 觀測資料,我們展示了新的凌星光度曲線。這些新的光度曲線,結合來 自HST、TESS 和先前發表的地面數據的光度曲線,我們計算出更精準的HAT- P-26 b 行星參數。凌星時間變化的分析結果顯示訊號強度為1.98 ± 0.05 分鐘, 這可能是由於在1:2 共振軌道上的另一顆約0.02倍木星質量的行星所致。而其大氣組成分析顯示HAT-P-26 b 的大氣含有約2.4+2.9-1.6% 的水,其溫度約為590+60−50 K。
In recent decades, the study of exoplanetary systems has grown rapidly. One successful method used for discovering exoplanets is called Transit Timing Varia- tions (TTVs), which have proven effective for studying exoplanetary dynamics and detecting additional planets. Beyond the detection of new exoplanets, transmis- sion spectroscopy is used to characterize planetary atmospheres. In this study, we performed TTVs analysis and transmission spectroscopy studies for the selected targets: the hot Jupiter HAT-P-37 b and the Neptune-mass planet HAT-P-26 b. We presented our ground-based photometric observations of HAT-P-37 b and refined the planetary parameters using both our light curves and previously pub- lished data. The possibility of an additional planet is inferred by the TTVs ampli- tude signal of 1.74 ± 0.17 minutes, which could be explained by the gravitational interaction of a sub-Earth mass planet at the 1:2 mean-motion resonance. From the analysis of an upper mass limit for the second planet, the Saturn-mass planet with an orbital period less than 6 days is excluded. The broad-band transmission spectra of HAT-P-37 b favor a cloudy atmospheric model with an outlier spectrum in the B-filter.
For HAT-P-26 b, we presented a new set of transit light curves obtained through the multiband photometric ground-based observations conducted by the SPEARNET telescopes network. These new light curves were combined with the light curves from the HST, TESS, and previously published ground-based data. We refined the planetary parameters of HAT-P-26 b. The TTV analysis shows an amplitude signal of 1.98 ± 0.05 minutes, which could result from the presence of an additional ∼ 0.02 MJup planet at the 1:2 mean-motion resonance orbit. The atmospheric composition analysis demonstrated that the atmosphere of HAT-P-26 b contains 2.4+2.9-1.6% of H2O, with a derived temperature of 590+60 K.
Abstract (Chinese).................. I
Abstract............................ II
Contents............................ III
List of Figures..................... VI
List of Tables...................... IX
1 Introduction...................... 1
2 Methodology........................ 6
2.1 TransitExoplanet............................ 6
2.2 StellarLimbDarkening......................... 7
2.3 DynamicExoplanet........................... 9
2.3.1 TransitTimingVariations(TTVs) ..................... 9
2.3.2 Upper-mass Limit for an Additional Planet ..........11
2.4 Detection of Exoplanet Atmosphere by using Transmission Spec-
troscopy................................. 12
2.5 AnOverviewofNumericalTools ................... 14
2.5.1 MarkovChainMonteCarlo(MCMC) ................. 14
2.5.2 NestedSampling ........................ 15
2.6 Implements ............................... 16
3 Investigating Transit Timing of HAT-P-37 b.. 17
3.1 Background ............................... 17
3.2 ObservationalData........................... 18
3.2.1 Photmetric Follow-up Observations and Data Reduction....18
3.2.2 LiteratureData......................... 20
3.3 Light-CurveModeling ......................... 21
3.4 ObservedNoise ............................. 23
3.5 TransitTimingAnalysis ...................... 26
3.5.1 TimingVariationModeling .................. 26
3.5.2 TheFrequencyAnalysisofTTVs ............... 30
3.5.3 UpperMassLimitforanAdditionalPlanet ...... 36
4 Investigating Transit Timing of HAT-P-26 b..... 39
4.1 Background ............................... 39
4.2 ObservationalData........................... 41
4.2.1 SPEARNET Observations and Data Reduction ...41
4.2.2 ExistingGround-basedData................... 44
4.2.3 HSTWFC3GrismData ................... 45
4.2.4 TESSData ........................... 46
4.3 Light-CurveModeling ......................... 46
4.4 ObservedNoise ............................. 58
4.5 TransitTimingAnalysis ........................ 60
4.5.1 ARefinedEphemeris...................... 60
4.5.2 TheFrequencyAnalysisofTTVs ............... 62
5 Transmission Spectroscopy............... 67
5.1 TheTransmissionSpectrumofHAT-P-37b ..............67
5.2 TheAtmosphericModelingofHAT-P-26b ...............72
6 Summaries and Conclusions..................... 80
6.1 ThehotJupiterHAT-P-37b...................... 80
6.2 TheNeptune-massplanetHAT-P-26b ............. 82
6.3 FutureWork............................... 83
Bibliography..................................85
A-thano, N., Awiphan, S., Jiang, I.-G., et al. 2023, AJ, 166, 223
A-thano, N., Jiang, I.-G., Awiphan, S., et al. 2022, AJ, 163, 77
Abel, M., Frommhold, L., Li, X., & Hunt, K. L. C. 2011, Journal of Physical Chemistry A, 115, 6805
Abel, M., Frommhold, L., Li, X., & Hunt, K. L. C. 2012, Journal of Chemical Physics, 136, 044319
Agol, E. & Fabrycky, D. C. 2018, in Handbook of Exoplanets, ed. H. J. Deeg & J. A. Belmonte, 7
Agol, E., Steffen, J., Sari, R., & Clarkson, W. 2005, MNRAS, 359, 567
Al-Refaie, A. F., Changeat, Q., Waldmann, I. P., & Tinetti, G. 2021, ApJ, 917, 37
Allard, F. 2014, in Exploring the Formation and Evolution of Planetary Systems, ed. M. Booth, B. C. Matthews, & J. R. Graham, Vol. 299, 271–272
Allard, F., Homeier, D., & Freytag, B. 2011, in Astronomical Society of the Pacific Conference Series, Vol. 448, 16th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, ed. C. Johns-Krull, M. K. Browning, & A. A. West, 91
Allard, N. F., Spiegelman, F., Leininger, T., & Molliere, P. 2019, A&A, 628, A120
Awiphan, S., Kerins, E., Pichadee, S., et al. 2016, MNRAS, 463, 2574
Bakos, G., Afonso, C., Henning, T., et al. 2009, in IAU Symposium, Vol. 253, IAU Symposium, 354–357
Bakos, G., Noyes, R. W., Kova ́cs, G., et al. 2004, PASP, 116, 266
Bakos, G. A ́., Hartman, J. D., Bhatti, W., et al. 2021, AJ, 162, 7
Bakos, G. A ́., Hartman, J. D., Torres, G., et al. 2012, AJ, 144, 19
Barros, S. C. C., Bou ́e, G., Gibson, N. P., et al. 2013, MNRAS, 430, 3032
Bertin, E. & Arnouts, S. 1996, A&AS, 117, 393
Bonomo, A. S., Desidera, S., Benatti, S., et al. 2017, A&A, 602, A107
Borucki, W. J., Koch, D., Basri, G., et al. 2010, Science, 327, 977
Bourque, M., Espinoza, N., Filippazzo, J., et al. 2021, The Exoplanet Characteri- zation Toolkit (ExoCTK)
Brande, J., Crossfield, I. J. M., Kreidberg, L., et al. 2022, AJ, 164, 197
Burrows, A., Dulick, M., Bauschlicher, C. W., J., et al. 2005, ApJ, 624, 988
Burrows, A., Ram, R. S., Bernath, P., Sharp, C. M., & Milsom, J. A. 2002, ApJ, 577, 986
Burt, J. A., Dragomir, D., Molli`ere, P., et al. 2021, AJ, 162, 87
Charbonneau, D., Brown, T. M., Noyes, R. W., & Gilliland, R. L. 2002, ApJ, 568, 377
Claret, A. 2000, A&A, 363, 1081
Claret, A. 2004, A&A, 428, 1001
Czesla, S., Schro ̈ter, S., Schneider, C. P., et al. 2019, PyA: Python astronomy- related packages
Deck, K. M. & Agol, E. 2016, ApJ, 821, 96
D ́esert, J.-M., Charbonneau, D., Demory, B.-O., et al. 2011, ApJS, 197, 14
Dhillon, V. S., Marsh, T. R., Atkinson, D. C., et al. 2014, MNRAS, 444, 4009
Edwards, B., Changeat, Q., Mori, M., et al. 2021, AJ, 161, 44
Fabrycky, D. C., Ford, E. B., Steffen, J. H., et al. 2012, ApJ, 750, 114
Feroz, F., Hobson, M. P., & Bridges, M. 2009, MNRAS, 398, 1601
Fletcher, L. N., Gustafsson, M., & Orton, G. S. 2018, ApJS, 235, 24
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306
Fulton, B. J., Shporer, A., Winn, J. N., et al. 2011, The Astronomical Journal, 142, 84
Gim ́enez, A. & Bastero, M. 1995, Ap&SS, 226, 99
Glidic, K., Schlawin, E., Wiser, L., et al. 2022, AJ, 164, 19
Gordon, I., Rothman, L. S., Wilzewski, J. S., et al. 2016, in AAS/Division for Plan- etary Sciences Meeting Abstracts, Vol. 48, AAS/Division for Planetary Sciences Meeting Abstracts #48, 421.13
Hartman, J. D., Bakos, G. A ́., Kipping, D. M., et al. 2011, ApJ, 728, 138
Hayes, J. J. C., Kerins, E., Morgan, J. S., et al. 2021, arXiv e-prints,
arXiv:2103.12139
Holman, M. J., Fabrycky, D. C., Ragozzine, D., et al. 2010, Science, 330, 51
Husser, T. O., Wende-von Berg, S., Dreizler, S., et al. 2013, A&A, 553, A6
Jackson, B., Greenberg, R., & Barnes, R. 2008, ApJ, 678, 1396
Jenkins, J. M., Twicken, J. D., McCauliff, S., et al. 2016, in Society of Photo- Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9913, Soft- ware and Cyberinfrastructure for Astronomy IV, ed. G. Chiozzi & J. C. Guzman, 99133E
Kanodia, S. & Wright, J. 2018, Research Notes of the AAS, 2, 4
Knutson, H. A., Charbonneau, D., Noyes, R. W., Brown, T. M., & Gilliland, R. L. 2007, ApJ, 655, 564
Kopal, Z. 1950, Harvard College Observatory Circular, 454, 1
Kreidberg, L. 2015, PASP, 127, 1161
Kreidberg, L., Bean, J. L., D ́esert, J.-M., et al. 2014, ApJL, 793, L27
Kreidberg, L., Line, M. R., Parmentier, V., et al. 2018a, AJ, 156, 17
Kreidberg, L., Line, M. R., Thorngren, D., Morley, C. V., & Stevenson, K. B. 2018b, ApJL, 858, L6
Lang, D., Hogg, D. W., Mierle, K., Blanton, M., & Roweis, S. 2010, AJ, 139, 1782 Lecavelier Des Etangs, A., Pont, F., Vidal-Madjar, A., & Sing, D. 2008, A&A, 481, L83
Lithwick, Y., Xie, J., & Wu, Y. 2012, ApJ, 761, 122
Lodi, L., Yurchenko, S. N., & Tennyson, J. 2015, Molecular Physics, 113, 1998 MacDonald, R. J. & Madhusudhan, N. 2017, MNRAS, 469, 1979
MacDonald, R. J. & Madhusudhan, N. 2019, MNRAS, 486, 1292
Maciejewski, G., Dimitrov, D., Mancini, L., et al. 2016, Acta Astronomica, 66, 55 Maciejewski, G., Fern ́andez, M., Aceituno, F., et al. 2018, Acta Astronomica, 68, 371
Mackay, D. J. C. 2003, Information Theory, Inference and Learning Algorithms
McDonald, I., van Loon, J. T., Decin, L., et al. 2009, MNRAS, 394, 831
McDonald, I., Zijlstra, A. A., & Boyer, M. L. 2012, MNRAS, 427, 343
McDonald, I., Zijlstra, A. A., & Watson, R. A. 2017, MNRAS, 471, 770
McKemmish, L. K., Masseron, T., Hoeijmakers, H. J., et al. 2019, MNRAS, 488, 2836
McKemmish, L. K., Yurchenko, S. N., & Tennyson, J. 2016, MNRAS, 463, 771
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E.
2004, The Journal of Chemical Physics, 21, 1087
Owens, A., Dooley, S., McLaughlin, L., et al. 2022, MNRAS, 511, 5448 Parviainen, H. & Aigrain, S. 2015, MNRAS, 453, 3821
Patra, K. C., Winn, J. N., Holman, M. J., et al. 2017, AJ, 154, 4
Pepper, J., Pogge, R. W., DePoy, D. L., et al. 2007, PASP, 119, 923
Pollacco, D. L., Skillen, I., Collier Cameron, A., et al. 2006, PASP, 118, 1407 Polyansky, O. L., Kyuberis, A. A., Zobov, N. F., et al. 2018, MNRAS, 480, 2597 Pontoppidan, K. M., Barrientes, J., Blome, C., et al. 2022, ApJL, 936, L14 Rabus, M., Alonso, R., Belmonte, J. A., et al. 2009, A&A, 494, 391
Rauer, H., Catala, C., Aerts, C., et al. 2014, Experimental Astronomy, 38, 249
Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2014, in Society of Photo- Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9143, Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, ed. J. Oschmann, Jacobus M., M. Clampin, G. G. Fazio, & H. A. MacEwen, 914320
Rothman, L. S. & Gordon, I. E. 2014, in 13th International HITRAN Conference,
49
Rustamkulov, Z., Sing, D. K., Mukherjee, S., et al. 2023, Nature Schwarzschild, K. 1906, Mathematisch-Physikalische Klasse, 43 Seager, S. & Deming, D. 2010, ARA&A, 48, 631
Seager, S. & Mall ́en-Ornelas, G. 2003, ApJ, 585, 1038
Seager, S. & Sasselov, D. D. 2000, ApJ, 537, 916
Sing, D. K., Fortney, J. J., Nikolov, N., et al. 2016, Nature, 529, 59
Skilling, J. 2004, in American Institute of Physics Conference Series, Vol. 735, Bayesian Inference and Maximum Entropy Methods in Science and Engineer- ing: 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, ed. R. Fischer, R. Preuss, & U. V. Tous- saint, 395–405
Skilling, J. 2006, Bayesian Analysis, 1, 833
Smith, A. M. S. e. a. 2014, Contributions of the Astronomical Observatory Skalnate
Pleso, 43, 500
Smith, J. C., Morris, R. L., Jenkins, J. M., et al. 2017a, Kepler Data Processing Handbook: Finding Optimal Apertures in Kepler Data, Kepler Science Docu- ment KSCI-19081-002, id. 7. Edited by Jon M. Jenkins.
Smith, J. C., Stumpe, M. C., Jenkins, J. M., et al. 2017b, Kepler Data Process- ing Handbook: Presearch Data Conditioning, Kepler Science Document KSCI- 19081-002, id. 8. Edited by Jon M. Jenkins.
Somogyi, W., Yurchenko, S. N., & Yachmenev, A. 2021, The Journal of Chemical Physics, 155, 214303
Southworth, J., Dominik, M., Jørgensen, U. G., et al. 2019, MNRAS, 490, 4230
Speagle, J. S. 2020, MNRAS, 493, 3132
Stassun, K. G., Oelkers, R. J., Paegert, M., et al. 2019, AJ, 158, 138
Stevenson, K. B., Bean, J. L., Seifahrt, A., et al. 2016, ApJ, 817, 141
Tennyson, J., Yurchenko, S. N., Al-Refaie, A. F., et al. 2016, Journal of Molecular Spectroscopy, 327, 73
Tinetti, G., Drossart, P., Eccleston, P., et al. 2018, Experimental Astronomy, 46, 135
Tody, D. 1986, in Society of Photo-Optical Instrumentation Engineers (SPIE) Con- ference Series, Vol. 627, Instrumentation in astronomy VI, ed. D. L. Crawford, 733
Tody, D. 1993, in Astronomical Society of the Pacific Conference Series, Vol. 52, Astronomical Data Analysis Software and Systems II, ed. R. J. Hanisch, R. J. V. Brissenden, & J. Barnes, 173
Trifonov, T., Brahm, R., Espinoza, N., et al. 2021, AJ, 162, 283
Tsiaras, A., Rocchetto, M., Waldmann, I. P., et al. 2016a, ApJ, 820, 99
Tsiaras, A., Waldmann, I. P., Rocchetto, M., et al. 2016b, ApJ, 832, 202
Turner, J. D., Leiter, R. M., Biddle, L. I., et al. 2017, MNRAS, 472, 3871
von Essen, C., Wedemeyer, S., Sosa, M. S., et al. 2019, A&A, 628, A116
Wakeford, H. R., Sing, D. K., Kataria, T., et al. 2017, Science, 356, 628 Wang, X.-Y., Wang, Y.-H., Wang, S., et al. 2021, ApJS, 255, 15
Western, C. M., Carter-Blatchford, L., Crozet, P., et al. 2018, Journal of Quanti- tative Spectroscopy and Radiative Transfer, 219, 127
Wheatley, P. J., West, R. G., Goad, M. R., et al. 2018, MNRAS, 475, 4476
Wittrock, J. M., Dreizler, S., Reefe, M. A., et al. 2022, AJ, 164, 27
Yang, J.-M., Wang, X.-Y., Li, K., & Liu, Y. 2021, PASJ
Yurchenko, S. N., Szabo ́, I., Pyatenko, E., & Tennyson, J. 2018, MNRAS, 480, 3397
Zechmeister, M. & Ku ̈rster, M. 2009, A&A, 496, 577
Zhang, M., Chachan, Y., Kempton, E. M. R., & Knutson, H. A. 2019, PASP, 131, 034501
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *