帳號:guest(3.145.12.181)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):柯嘉琳
作者(外文):Ko, Chia-Lin
論文名稱(中文):使用JVLA和ALMA解析NGC1333 IRAS4A上塵埃顆粒排列所產生的發射和消光線性偏極化
論文名稱(外文):Resolving Linear Polarization due to Emission and Extinction of Aligned Dust Grains on NGC1333 IRAS4A with JVLA and ALMA
指導教授(中文):賴詩萍
指導教授(外文):Lai, Shih-Ping
口試委員(中文):呂浩宇
李景輝
顏士韋
平野尚美
口試委員(外文):Liu, Hau-Yu
Lee, Chin-Fei
Yen, Hsi-Wei
Hirano, Naomi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:天文研究所
學號:107025503
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:113
中文關鍵詞:恆星形成原恆星年輕恆星物體塵埃連續發射譜消光星際物質星周塵偏振測量磁場自行運動
外文關鍵詞:Star formationProtostarsYoung stellar objectsDust continuum emissionExtinctionInterstellar mediumCircumstellar dustPolarimetryMagnetic fieldsProper motions
相關次數:
  • 推薦推薦:0
  • 點閱點閱:726
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
對於年輕恆星體中的塵埃,何時會從(次)微米尺度的星際塵埃,生長到毫米尺度的隕石球粒,目前尚未有定論。先前的研究基於在(次)毫米波段觀察到較低的光譜指數(~2-3),普遍認為塵埃在早期(如第0/I期)的年輕恆星體中已經長到毫米大小。如果確實如此,在(次)毫米觀察到的偏極光,則有可能是經由塵埃散射所發出的線偏振散射光,而不是藉由非球形塵埃受到磁性影響會傾向整齊排列的特性,所發出的線偏振發射光。釐清這個議題,不僅對於瞭解塵埃顆粒的生長和類地行星的形成至關重要,也會對原行星盤形成和演化的研究產生影響。

本研究的主要目標是檢驗我們的假設:(一)在第0/I期的年輕恆星體中,最大的塵埃顆粒小於100微米。(二)先前的觀測結果檢測到低光譜指數的主要原因是:原行星(假)盤在次毫米波長下有較高的光學深度,以及其溫度會隨半徑增加而下降。(三)塵埃的長軸與磁場的方向垂直。(四)在原行星(假)盤上,(次)毫米偏極光是來自於塵埃的線偏振二向色性消光;在包覆原恆星的氣體團中(~500到1000天文單位),偏極光則是來自塵埃的線偏振發射光。

本研究使用卡爾·央斯基甚大天線陣列(JVLA)和阿塔卡瑪大型毫米波及次毫米波陣列(ALMA),對年輕第0期的雙星系統NGC1333 IRAS4A,進行多波段、高解析度的塵埃偏極光觀測。我們利用JVLA的觀測結果首次在7至17毫米波長(18至48十億赫茲)成功檢測到年輕恆星體的塵埃線偏振光。透過將這些JVLA的觀測與ALMA在0.87、1.3和2毫米波長處的觀測進行比較,我們首次明確地驗證了塵埃二向色性消光在這些波段下的特性,並進而重新解釋磁場的型態。最後,基於在視線方向上的兩個塵埃組成的簡化模型,我們初步得出:在~60至1000天文單位的尺度上,觀測到的塵埃連續體強度、偏振強度以及偏振角度,與最大塵埃顆粒小於100微米的假設相符。
When dust grains grow from (sub)micron-sized interstellar dust to millimeter-sized chondrules in young stellar objects (YSOs) remains under debate. Based on the observations of the low spectral indices (~2-3) at the (sub)millimeter wavelengths, previously, it had been generally considered that dust grains have already grown to millimeter sizes during the embedded stages (i.e., Class 0/I) of YSOs. If this is indeed the case, then the (sub)millimeter polarization observations may trace the linearly polarized dust scattered light instead of the linearly polarized emission of the non-spherical dust grains which are presumably aligned with the magnetic field. Clarifying this issue is not only crucial to our understanding of grain growth and terrestrial planet-formation but will also impact on the investigation of protoplanetary disk formation and evolution.

The main subject of this study is to test our alternative hypotheses: (1) the maximum dust grain sizes in Class 0/I YSOs remain smaller than 100 microns, (2) the embedded protoplanetary (pseudo-)disks are optically thick at the submillimeter wavelengths and present radially decreasing temperature profile, which are the main reasons why the previous observations detected low spectral indices, (3) the projected long axis of dust grains are aligned perpendicular to the magnetic field, and (4) at the projected areas of the protoplanetary (pseudo-)disks, the (sub)millimeter polarization observations trace the linearly polarized dichroic dust extinction; they trace the linearly polarized dust emission at the projected areas of the spatially extended (~500-1000 au) circumstellar envelopes.

Our research is based on the high angular resolution, multi-wavelength observations of dust polarization towards the Class 0 protobinary system, NGC1333 IRAS4A, using the Karl G. Jansky Very Large Array (JVLA) and the Atacama Large Millimeter Array (ALMA). Our JVLA observations yielded the first successful detection of dust linear polarization at 7-17 mm wavelengths (18-48 GHz). By comparing these JVLA observations with the ALMA observations at 0.87, 1.3, and 2 mm wavelengths, we have unambiguously verified the characteristic signatures of the polarized dichroic dust extinction at these wavelengths for the first time. This result has forced a re-interpretation of the magnetic field topology. Finally, based on a simplified model with two dust components in a line-of-sight, we tentatively conclude that the observed Stokes $I$ intensities, polarized intensities, and polarization position angles are consistent with the less than 100-micron maximum grain sizes on ~60-1000 au scales.
Abstract ......................................................... i
摘要 .............................................................. ii
致謝 .............................................................. iv
List of Figures .................................................. x
List of Tables ................................................... xii

1. Introduction .................................................. 3
1.1. Star Formation Overview ..................................... 3
1.1.1. Probing Star Formation: Planck function ................... 3
1.1.2. Classification of Young Stellar Objects ................... 4
1.2. Open Question: When do Dust Grains Growth from (Sub)micron Size to Millimeter Size in Young Stellar Objects? ..................... 6
1.2.1. One Approach to the Question: Dust Opacity Spectral Index . 7
1.2.2. Another Approach to the Question: Dust Self Scattering .... 8
1.2.3. Previous Studies: Dust Grain Growth in YSOs ............... 9
1.2.4. A Case Study of NGC1333 IRAS4A ............................ 9
1.3. Open Question: What Role do Magnetic Fields Play in the Process of Star Formation? ............................................... 11
1.3.1. One Approach to the Question: Magnetic Field Morphology ... 12
1.3.2. Previous Studies: Magnetic Field Morphology in YSOs ....... 13
1.3.3. A Case Study of NGC1333 IRAS4A ............................ 15
1.4. Motivation .................................................. 15
1.4.1. Why do We Use JVLA and ALMA? .............................. 16
1.4.2. Why do We Observe Dust Polarization? ...................... 16
1.4.3. Why do We Observe NGC1333 IRAS4A? ......................... 17
1.5. OverviewoftheThesis ......................................... 17

2. Multi-Wavelength Dust Polarization Observations toward NGC1333 IRAS4A with JVLA and ALMA: Resolving Polarization Mechanisms ..... 19
2.1. Introduction ................................................ 20
2.1.1. Motivation ................................................ 20
2.1.2. Target Source ............................................. 21
2.1.3. Overview of this Section .................................. 21
2.2. Observations and Data Reduction ............................. 22
2.2.1. JVLA Observations ......................................... 22
2.2.2. ALMA Observations ......................................... 22
2.2.3. Polarization Images ....................................... 23
2.3. Results ..................................................... 25
2.3.1. Polarization Position Angle ............................... 25
2.3.2. Polarization Percentage ................................... 25
2.4. Discussion .................................................. 28
2.4.1. Inferred Magnetic Field Morphology at the Scale of 100–1000 AU
around IRAS4A .................................................... 28
2.4.2. Derived Optical Depth at the Inner 100 AU of IRAS4A1 ...... 28
2.4.3. Polarization Mechanism .................................... 30
2.4.3.1. Dust Self-Scattering? ................................... 30
2.4.3.2. Radiative Alignment? .................................... 31
2.4.3.3. Dust Grains Aligned with Magnetic Field ................. 31
2.4.4. Toy Model to Interpret the Trends of Polarization Percentage .................................................................. 31
2.5. Conclusions ................................................. 33

3. Astrometry: Proper Motion and Parallax of NGC1333 IRAS4A ...... 35
3.1. Introduction ................................................ 35
3.1.1. Motivation ................................................ 35
3.1.2. Formulae of the Proper Motion and the Parallax ............ 35
3.1.3. Overview of this Section .................................. 36
3.2. Observations and Data Reduction ............................. 36
3.3. Data Analysis Procedures .................................... 38
3.3.1. Source Position ........................................... 38
3.3.2. Astrometric Accuracy ...................................... 38
3.3.3. Astrometry Fitting ........................................ 38
3.4. Results ..................................................... 39
3.5. Discussion and Conclusions .................................. 42

4. Dual-Wavelength Dust Polarization Observations toward NGC1333 IRAS4A with ALMA at High Angular Resolution ...................... 43
4.1. Introduction ................................................ 44
4.1.1. Motivation ................................................ 44
4.1.2. Overview of this Section .................................. 44
4.2. Observations and Data Reduction ............................. 44
4.2.1. Polarization Observations ................................. 44
4.2.2. Polarization Images ....................................... 45
4.3. Results ..................................................... 46
4.3.1. Dust Stokes I Continuum Emission .......................... 47
4.3.1.1. Morphology .............................................. 47
4.3.1.2. Brightness Temperature .................................. 47
4.3.1.3. Spectral Index .......................................... 51
4.3.2. Dust Polarization toward IRAS4A1 .......................... 51
4.3.3. Dust Polarization toward IRAS4A2 .......................... 52
4.4. Analysis .................................................... 52
4.4.1. General Description of our Toy Model ...................... 52
4.4.2. One-Component Model toward IRAS4A2 ........................ 54
4.4.3. Two-Component Model toward IRAS4A1 ........................ 54
4.5. Discussion .................................................. 55
4.5.1. Stokes I Intensity ........................................ 55
4.5.2. Polarization Angle ........................................ 56
4.5.3. Polarization Percentage ................................... 57
4.5.4. Possible Evidence for Candidate Disk in IRAS4A1 ........... 57
4.5.5. Inferred Magnetic Field Morphology ........................ 58
4.6. Conclusions ................................................. 59

5. Conclusions and Future Prospects .............................. 69
5.1. Thesis Conclusions .......................................... 69
5.2. Future Prospects ............................................ 71

A. Appendix to Chapter 2 ......................................... 73
A.1.Polarization Measurements .................................... 73
A.2.Polarization Images .......................................... 73
B. Appendix to Chapter 3 ......................................... 77
B.1. One Dimensional Slice of Stokes I Intensity in IRAS4A1 and IRAS4A2 .......................................................... 77
B.2. Stokes I Images in IRAS4A1 and IRAS4A2 at Different Epochs .. 77
C. List of Mathematical Symbols .................................. 93
D. List of Abbreviations ......................................... 95

Bibliography ..................................................... 97
Adams, F. C., Lada, C. J., and Shu, F. H. (1987). Spectral Evolution of Young Stellar Objects. ApJ, 312:788.

Akeson, R. L. and Carlstrom, J. E. (1997). Magnetic Field Structure in Protostellar Envelopes. ApJ, 491:254–266.

Akeson, R. L., Carlstrom, J. E., Phillips, J. A., and Woody, D. P. (1996). Millimeter Interferometric Polarization Imaging of the Young Stellar Object NGC 1333/IRAS 4A. ApJ, 456:L45.

Andersson, B. G., Lazarian, A., and Vaillancourt, J. E. (2015). Interstellar Dust Grain Alignment. ARA&A, 53:501–539.

André, P. (2015). Spectral Classification of Embedded Stars, pages 2308–2313. Andre, P. and Montmerle, T. (1994). From T Tauri Stars to Protostars: Circumstellar Material and Young Stellar Objects in the rho Ophiuchi Cloud. ApJ, 420:837.

Andre, P., Ward-Thompson, D., and Barsony, M. (1993). Submillimeter Continuum Observations of rho Ophiuchi A: The Candidate Protostar VLA 1623 and Prestellar Clumps. ApJ, 406:122.

Bacciotti, F., Girart, J. M., Padovani, M., Podio, L., Paladino, R., Testi, L., Bianchi, E., Galli, D., Codella, C., Coffey, D., Favre, C., and Fedele, D. (2018). ALMA Observations of Polarized Emission toward the CW Tau and DG Tau Protoplanetary Disks: Constraints on Dust Grain Growth and Settling. ApJ, 865(2):L12.

Beckwith, S. V. W. and Sargent, A. I. (1991). Particle Emissivity in Circumstellar Disks. ApJ, 381:250.

Bergin, E. A. and Tafalla, M. (2007). Cold Dark Clouds: The Initial Conditions for Star Formation. ARA&A, 45(1):339–396.

Bock, D. C. J., Bolatto, A. D., Hawkins, D. W., Kemball, A. J., Lamb, J. W., Plambeck, R. L., Pound, M. W., Scott, S. L., Woody, D. P., and Wright, M. C. H. (2006). First results from CARMA: the combined array for research in millimeter-wave astronomy. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 6267 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, page 626713.

Carilli, C. L., McKinnon, M., Ott, J., Beasley, A., Isella, A., Murphy, E., Leroy, A., Casey, C., Moullet, A., Lacy, M., Hodge, J., Bower, G., Demorest, P., Hull, C., Hughes, M., di Francesco, J., Narayanan, D., Kent, B., Clark, B., and Butler, B. (2015). Next Generation Very Large Array Memo No. 5: Science Working Groups – Project Overview. arXiv e-prints, page arXiv:1510.06438.

Carrasco-González, C., Henning, T., Chand ler, C. J., Linz, H., Pérez, L., Rodríguez, L. F., Galván-Madrid, R., Anglada, G., Birnstiel, T., van Boekel, R., Flock, M., Klahr, H., Macias, E., Menten, K., Osorio, M., Testi, L., Torrelles, J. M., and Zhu, Z. (2016). The VLA View of the HL Tau Disk: Disk Mass, Grain Evolution, and Early Planet Formation. ApJ, 821(1):L16.

Chandler, C. J. and Butler, B. J. (2014). Commissioning and operation of the new Karl G. Jansky Very Large Array. In Observatory Operations: Strategies, Processes, and Systems V, volume 9149 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, page 914917.

Chiang, H.-F., Looney, L. W., and Tobin, J. J. (2012). The Envelope and Embedded Disk around the Class 0 Protostar L1157-mm: Dual-wavelength Interferometric Observations and Modeling. ApJ, 756(2):168.

Ching, T.-C., Lai, S.-P., Zhang, Q., Yang, L., Girart, J. M., and Rao, R. (2016). Helical Magnetic Fields in the NGC 1333 IRAS 4A Protostellar Outflows. ApJ, 819:159.

Choi, M., Tatematsu, K., and Kang, M. (2010). Kinematics of the Ammonia Disk Around the Protostar NGC 1333 IRAS 4A2. ApJ, 723:L34–L37.

Cox, E. G., Harris, R. J., Looney, L. W., Li, Z.-Y., Yang, H., Tobin, J. J., and Stephens, I. (2018). ALMA’s Polarized View of 10 Protostars in the Perseus Molecular Cloud. ApJ, 855(2):92.

Cox, E. G., Harris, R. J., Looney, L. W., Segura-Cox, D. M., Tobin, J., Li, Z.-Y., Tychoniec, Ł., Chandler, C. J., Dunham, M. M., Kratter, K., Melis, C., Perez, L. M., and Sadavoy, S. I. (2015). High-resolution 8 mm and 1 cm Polarization of IRAS 4A from the VLA Nascent Disk and Multiplicity (VANDAM) Survey. ApJ, 814:L28.

Crutcher, R. M. (2012). Magnetic Fields in Molecular Clouds. ARA&A, 50:29–63.

Crutcher, R. M. and Kemball, A. J. (2019). Review of Zeeman Effect Observations of Regions of Star Formation K Zeeman Effect, Magnetic Fields, Star formation, Masers, Molecular clouds. Frontiers in Astronomy and Space Sciences, 6:66.

De Simone, M., Ceccarelli, C., Codella, C., Svoboda, B. E., Chandler, C., Bouvier, M., Yamamoto, S., Sakai, N., Caselli, P., Favre, C., Loinard, L., Lefloch, B., Liu, H. B., López-Sepulcre, A., Pineda, J. E., Taquet, V., and Testi, L. (2020). Hot Corinos Chemical Diversity: Myth or Reality? ApJ, 896(1):L3.

Dent, W. R. F., Pinte, C., Cortes, P. C., Ménard, F., Hales, A., Fomalont, E., and de Gregorio-Monsalvo, I. (2019). Submillimetre dust polarization and opacity in the HD163296 protoplanetary ring system. MNRAS, 482(1):L29–L33.

Doi, Y., Hasegawa, T., Furuya, R. S., Coudé, S., Hull, C. L. H., Arzoumanian, D., Bastien, P., Chen, M. C.-Y., Di Francesco, J., Friesen, R., Houde, M., Inutsuka, S.-i., Mairs, S., Matsumura, M., Onaka, T., Sadavoy, S., Shimajiri, Y., Tahani, M., Tomisaka, K., Eswaraiah, C., Koch, P. M., Pattle, K., Won Lee, C., Tamura, M., Berry, D., Ching, T.-C., Hwang, J., Kwon, W., Soam, A., Wang, J.-W., Lai, S.-P., Qiu, K., Ward-Thompson, D., Byun, D.-Y., Chen, H.-R. V., Chen, W. P., Chen, Z., Cho, J., Choi, M., Choi, Y., Chrysostomou, A., Chung, E. J., Diep, P. N., Duan, H.-Y., Fanciullo, L., Fiege, J., Franzmann, E., Friberg, P., Fuller, G., Gledhill, T., Graves, S. F., Greaves, J. S., Griffin, M. J., Gu, Q., Han, I., Hatchell, J., Hayashi, S. S., Hoang, T., Inoue, T., Iwasaki, K., Jeong, I.-G., Johnstone, D., Kanamori, Y., Kang, J.-h., Kang, M., Kang, S.-j., Kataoka, A., Kawabata, K. S., Kemper, F., Kim, G., Kim, J., Kim, K.-T., Kim, K. H., Kim, M.-R., Kim, S., Kirk, J. M., Kobayashi, M. I. N.,Konyves, V., Kusune, T., Kwon, J., Lacaille, K., Law, C.-Y., Lee, C.-F., Lee, H., Lee, J.-E., Lee, S.-S., Lee, Y.-H., Li, D., Li, D., Li, H.-b., Liu, H.-L., Liu, J., Liu, S.-Y., Liu, T., de Looze, I., Lyo, A. R., Matthews, B. C., Moriarty-Schieven, G. H., Nagata, T., Nakamura, F., Nakanishi, H., Ohashi, N., Park, G., Parsons, H., Peretto, N., Pyo, T.-S., Qian, L., Rao, R., Rawlings, M. G., Retter, B., Richer, J., Rigby, A., Saito, H., Savini, G., Scaife, A. M. M., Seta, M., Shinnaga, H., Tang, Y.-W., Tsukamoto, Y., Viti, S., Wang, H., Whitworth, A. P., Yen, H.-W., Yoo, H., Yuan, J., Yun, H.-S., Zenko, T., Zhang, C.-P., Zhang, G., Zhang, Y., Zhou, J., Zhu, L., André, P., Dowell, C. D., Eyres, S. P. S., Falle, S., van Loo, S., and Robitaille, J.-F. (2020). The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333. ApJ, 899(1):28.

Dotson, J. L., Vaillancourt, J. E., Kirby, L., Dowell, C. D., Hildebrand, R. H., and Davidson, J. A. (2010). 350 μm Polarimetry from the Caltech Submillimeter Observatory. ApJS, 186(2):406–426.

Draine, B. T. (2006). On the Submillimeter Opacity of Protoplanetary Disks. ApJ, 636(2):1114–1120.

Frank, A., Ray, T. P., Cabrit, S., Hartigan, P., Arce, H. G., Bacciotti, F., Bally, J., Benisty, M., Eislöffel, J., Güdel, M., Lebedev, S., Nisini, B., and Raga, A. (2014). Jets and Outflows from Star to Cloud: Observations Confront Theory. Protostars and Planets VI, pages 451–474.

Frau, P., Galli, D., and Girart, J. M. (2011). Comparing star formation models with interferometric observations of the protostar NGC 1333 IRAS 4A. I. Magnetohydrodynamic collapse models. A&A, 535:A44.

Galametz, M., Maury, A., Girart, J. M., Rao, R., Zhang, Q., Gaudel, M., Valdivia, V., Keto, E., and Lai, S.-P. (2018). SMA observations of polarized dust emission in solar-type Class 0 protostars: Magnetic field properties at envelope scales. A&A, 616:A139.

Galametz, M., Maury, A. J., Valdivia, V., Testi, L., Belloche, A., and André, P. (2019). Low dust emissivities and radial variations in the envelopes of Class 0 protostars: possible signature of early grain growth. A&A, 632:A5.

Galván-Madrid, R., Liu, H. B., Izquierdo, A. F., Miotello, A., Zhao, B., Carrasco-González, C., Lizano, S., and Rodríguez, L. F. (2018). On the Effects of Self-obscuration in the (Sub)Millimeter Spectral Indices and the Appearance of Protostellar Disks. ApJ, 868(1):39.

Girart, J. M., Crutcher, R. M., and Rao, R. (1999). Detection of Polarized CO Emission from the Molecular Outflow in NGC 1333 IRAS 4A. ApJ, 525:L109–L112.

Girart, J. M., Rao, R., and Marrone, D. P. (2006). Magnetic Fields in the Formation of Sun-Like Stars. Science, 313:812–814.

Gonçalves, J., Galli, D., and Girart, J. M. (2008). Modeling the magnetic field in the protostellar source NGC 1333 IRAS 4A. A&A, 490:L39–L42.

Green, R. M. (1985). Spherical Astronomy.

Guilloteau, S., Delannoy, J., Downes, D., Greve, A., Guelin, M., Lucas, R., Morris, D., Radford, S. J. E., Wink, J., Cernicharo, J., Forveille, T., Garcia-Burillo, S., Neri, R., Blondel, J., Perrigourad, A., Plathner, D., and Torres, M. (1992). The IRAM interferometer on Plateau de Bure. A&A, 262:624.

Hennebelle, P. and Inutsuka, S.-i. (2019). The role of magnetic field in molecular cloud formation and evolution. Frontiers in Astronomy and Space Sciences, 6:5.

Hernández-Gómez, A., Loinard, L., Chand ler, C. J., Rodríguez, L. F., Zapata, L. A., Wilner, D. J., Ho, P. T. P., Caux, E., Quénard, D., Bottinelli, S., Brogan, C. L., Hartmann, L., and Menten, K. M. (2019). On the Nature of the Compact Sources in IRAS 16293-2422 Seen at Centimeter to Submillimeter Wavelengths. ApJ, 875(2):94.

Hildebrand, R. H. (1983). The determination of cloud masses and dust characteristics from submillimetre thermal emission. QJRAS, 24:267–282.

Hildebrand, R. H. (1988). Magnetic fields and stardust. QJRAS, 29:327–351.

Hildebrand, R. H., Davidson, J. A., Dotson, J. L., Dowell, C. D., Novak, G., and Vaillancourt, J. E. (2000). A Primer on Far-Infrared Polarimetry. PASP, 112:1215–1235.

Ho, P. T. P., Moran, J. M., and Lo, K. Y. (2004). The Submillimeter Array. ApJ, 616(1):L1–L6.

Hull, C. L. H., Plambeck, R. L., Bolatto, A. D., Bower, G. C., Carpenter, J. M., Crutcher, R. M., Fiege, J. D., Franzmann, E., Hakobian, N. S., Heiles, C., Houde, M., Hughes, A. M., Jameson, K., Kwon, W., Lamb, J. W., Looney, L. W., Matthews, B. C., Mundy, L., Pillai, T., Pound, M. W., Stephens, I. W., Tobin, J. J., Vaillancourt, J. E., Volgenau, N. H., and Wright, M. C. H. (2013). Misalignment of Magnetic Fields and Outflows in Protostellar Cores. ApJ, 768(2):159.

Hull, C. L. H., Plambeck, R. L., Kwon, W., Bower, G. C., Carpenter, J. M., Crutcher, R. M., Fiege, J. D., Franzmann, E., Hakobian, N. S., Heiles, C., Houde, M., Hughes, A. M., Lamb, J. W., Looney, L. W., Marrone, D. P., Matthews, B. C., Pillai, T., Pound, M. W., Rahman, N., Sandell, G., Stephens, I. W., Tobin, J. J., Vaillancourt, J. E., Volgenau, N. H., and Wright, M. C. H. (2014). TADPOL: A 1.3 mm Survey of Dust Polarization in Star-forming Cores and Regions. ApJS, 213:13.

Hull, C. L. H., Yang, H., Li, Z.-Y., Kataoka, A., Stephens, I. W., Andrews, S., Bai, X., Cleeves, L. I., Hughes, A. M., Looney, L., Pérez, L. M., and Wilner, D. (2018). ALMA Observations of Polarization from Dust Scattering in the IM Lup Protoplanetary Disk. ApJ, 860:82.

Jørgensen, J. K., Bourke, T. L., Myers, P. C., Di Francesco, J., van Dishoeck, E. F., Lee, C.-F., Ohashi, N., Schöier, F. L., Takakuwa, S., Wilner, D. J., and Zhang, Q. (2007). PROSAC: A Submillimeter Array Survey of Low-Mass Protostars. I. Overview of Program: Envelopes, Disks, Outflows, and Hot Cores. ApJ, 659(1):479–498.

Juvela, M., Demyk, K., Doi, Y., Hughes, A., Lefèvre, C., Marshall, D. J., Meny, C., Montillaud, J., Pagani, L., Paradis, D., Ristorcelli, I., Malinen, J., Montier, L. A., Paladini, R., Pelkonen, V. M., and Rivera-Ingraham, A. (2015). Galactic cold cores. VI. Dust opacity spectral index. A&A, 584:A94.

Kataoka, A., Muto, T., Momose, M., Tsukagoshi, T., and Dullemond, C. P. (2016). Grain Size Constraints on HL Tau with Polarization Signature. ApJ, 820(1):54.

Kataoka, A., Muto, T., Momose, M., Tsukagoshi, T., Fukagawa, M., Shibai, H., Hanawa, T., Murakawa, K., and Dullemond, C. P. (2015). Millimeter-wave Polarization of Protoplanetary Disks due to Dust Scattering. ApJ, 809:78.

Kataoka, A., Okuzumi, S., Tanaka, H., and Nomura, H. (2014). Opacity of fluffy dust aggregates. A&A, 568:A42.

Kataoka, A., Tsukagoshi, T., Pohl, A., Muto, T., Nagai, H., Stephens, I. W., Tomisaka, K., and Momose, M. (2017). The Evidence of Radio Polarization Induced by the Radiative Grain Alignment and Self-scattering of Dust Grains in a Protoplanetary Disk. ApJ, 844:L5.

Ko, C.-L., Liu, H. B., Lai, S.-P., Ching, T.-C., Rao, R., and Girart, J. M. (2020). Resolving Linear Polarization due to Emission and Extinction of Aligned Dust Grains on NGC 1333 IRAS4A with JVLA and ALMA. ApJ, 889(2):172.

Kounkel, M., Hartmann, L., Loinard, L., Ortiz-León, G. N., Mioduszewski, A. J., Rodríguez, L. F., Dzib, S. A., Torres, R. M., Pech, G., Galli, P. A. B., Rivera, J. L., Boden, A. F., Evans, Neal J., I., Briceño, C., and Tobin, J. J. (2017). The Gould’s Belt Distances Survey (GOBELINS) II. Distances and Structure toward the Orion Molecular Clouds. ApJ, 834(2):142.

Kwon, W., Looney, L. W., Mundy, L. G., Chiang, H.-F., and Kemball, A. J. (2009). Grain Growth and Density Distribution of the Youngest Protostellar Systems. ApJ, 696(1):841–852.

Kwon, W., Stephens, I. W., Tobin, J. J., Looney, L. W., Li, Z.-Y., van der Tak, F. F. S., and Crutcher, R. M. (2019). Highly Ordered and Pinched Magnetic Fields in the Class 0 Protobinary System L1448 IRS 2. ApJ, 879(1):25.

Lada, C. J. (1987). Star formation: from OB associations to protostars. In Peimbert, M. and Jugaku, J., editors, Star Forming Regions, volume 115 of IAU Symposium, page 1.

Lai, S.-P., Crutcher, R. M., Girart, J. M., and Rao, R. (2002). Interferometric Mapping of Magnetic Fields in Star-forming Regions. II. NGC 2024 FIR 5. ApJ, 566(2):925–930.

Lay, O. P., Carlstrom, J. E., and Hills, R. E. (1995). NGC 1333 IRAS 4: Further Multiplicity Revealed with the CSO-JCMT Interferometer. ApJ, 452:L73.

Lee, C.-F. (2020). Molecular jets from low-mass young protostellar objects. A&A Rev., 28(1):1.
Li, A. and Draine, B. T. (2001). Infrared Emission from Interstellar Dust. II. The Diffuse Interstellar Medium. ApJ, 554(2):778–802.

Li, H.-b., Dowell, C. D., Goodman, A., Hildebrand , R., and Novak, G. (2009). Anchoring Magnetic Field in Turbulent Molecular Clouds. ApJ, 704(2):891–897.

Li, J. I.-H., Liu, H. B., Hasegawa, Y., and Hirano, N. (2017). Systematic Analysis of Spectral Energy Distributions and the Dust Opacity Indices for Class 0 Young Stellar Objects. ApJ, 840:72.

Li, Z.-Y., Krasnopolsky, R., Shang, H., and Zhao, B. (2014). On the Role of Pseudodisk Warping and Reconnection in Protostellar Disk Formation in Turbulent Magnetized Cores. ApJ, 793:130.

Lin, Z.-Y. D., Li, Z.-Y., Yang, H., Looney, L., Lee, C.-F., Stephens, I., and Lai, S.-P. (2020). Probing the temperature structure of optically thick discs using polarized emission of aligned grains. MNRAS, 493(4):4868–4883.

Liu, H. B. (2019). The Anomalously Low (Sub)Millimeter Spectral Indices of Some Protoplanetary Disks May Be Explained By Dust Self-scattering. ApJ, 877(2):L22.

Liu, H. B., Hasegawa, Y., Ching, T.-C., Lai, S.-P., Hirano, N., and Rao, R. (2018). Detection of 40-48 GHz dust continuum linear polarization towards the Class 0 young stellar object IRAS 16293-2422. A&A, 617:A3.

Liu, H. B., Lai, S.-P., Hasegawa, Y., Hirano, N., Rao, R., Li, I.-H., Fukagawa, M., Girart, J. M., Carrasco-González, C., and Rodríguez, L. F. (2016). Detection of Linearly Polarized 6.9 mm Continuum Emission from the Class 0 Young Stellar Object NGC 1333 IRAS4A. ApJ, 821:41.

Liu, H. B., Qiu, K., Zhang, Q., Girart, J. M., and Ho, P. T. P. (2013). Gas Kinematics and the Dragged Magnetic Field in the High-mass Molecular Outflow Source G192.16-3.84: An SMA View. ApJ, 771(1):71.

López-Sepulcre, A., Sakai, N., Neri, R., Imai, M., Oya, Y., Ceccarelli, C., Higuchi, A. E., Aikawa, Y., Bottinelli, S., Caux, E., Hirota, T., Kahane, C., Lefloch, B., Vastel, C., Watanabe, Y., and Yamamoto, S. (2017). Complex organics in IRAS 4A revisited with ALMA and PdBI: Striking contrast between two neighbouring protostellar cores. A&A, 606:A121.

Matthews, B. C., McPhee, C. A., Fissel, L. M., and Curran, R. L. (2009). The Legacy of SCUPOL: 850 μm Imaging Polarimetry from 1997 to 2005. ApJS, 182(1):143–204.

Matthews, B. C. and Wilson, C. D. (2000). Magnetic Fields in Star-forming Molecular Clouds. I. The First Polarimetry of OMC-3 in Orion A. ApJ, 531(2):868–872.

Maureira, M. J., Pineda, J. E., Segura-Cox, D. M., Caselli, P., Testi, L., Lodato, G., Loinard, L., and Hernández-Gómez, A. (2020). Orbital and Mass Constraints of the Young Binary System IRAS 16293-2422 A. ApJ, 897(1):59.

Maury, A. J., Girart, J. M., Zhang, Q., Hennebelle, P., Keto, E., Rao, R., Lai, S.-P., Ohashi, N., and Galametz, M. (2018). Magnetically regulated collapse in the B335 protostar? I. ALMA observations of the polarized dust emission. MNRAS, 477:2760–2765.

McKee, C. F. and Ostriker, E. C. (2007). Theory of Star Formation. ARA&A, 45(1):565–687.

McKee, C. F., Zweibel, E. G., Goodman, A. A., and Heiles, C. (1993). Magnetic Fields in Star-Forming Regions - Theory. In Levy, E. H. and Lunine, J. I., editors, Protostars and Planets III, page 327.

McMullin, J. P., Waters, B., Schiebel, D., Young, W., and Golap, K. (2007). CASA Architecture and Applications. In Shaw, R. A., Hill, F., and Bell, D. J., editors, Astronomical Data Analysis Software and Systems XVI, volume 376 of Astronomical Society of the Pacific Conference Series, page 127.

Miotello, A., Testi, L., Lodato, G., Ricci, L., Rosotti, G., Brooks, K., Maury, A., and Natta, A. (2014). Grain growth in the envelopes and disks of Class I protostars. A&A, 567:A32.

Mouschovias, T. C. (1977). A connection between the rate of rotation of interstellar clouds, magnetic fields, ambipolar diffusion, and the periods of binary stars. ApJ, 211:147–151.

Myers, P. C., Adams, F. C., Chen, H., and Schaff, E. (1998). Evolution of the Bolometric Temperature and Luminosity of Young Stellar Objects. ApJ, 492(2):703–726.

Myers, P. C. and Ladd, E. F. (1993). Bolometric Temperatures of Young Stellar Objects. ApJ, 413:L47.

Nakatani, R., Liu, H. B., Ohashi, S., Zhang, Y., Hanawa, T., Chandler, C., Oya, Y., and Sakai, N. (2020). Substructure Formation in a Protostellar Disk of L1527 IRS. ApJ, 895(1):L2.

Natta, A., Testi, L., Calvet, N., Henning, T., Waters, R., and Wilner, D. (2007). Dust in Protoplanetary Disks: Properties and Evolution. In Reipurth, B., Jewitt, D., and Keil, K., editors, Protostars and Planets V, page 767.

Ohashi, S., Kataoka, A., Nagai, H., Momose, M., Muto, T., Hanawa, T., Fukagawa, M., Tsukagoshi, T., Murakawa, K., and Shibai, H. (2018). Two Different Grain Size Distributions within the Protoplanetary Disk around HD 142527 Revealed by ALMA Polarization Observation. ApJ, 864(1):81.

Okuzumi, S. and Tazaki, R. (2019). Nonsticky Ice at the Origin of the Uniformly Polarized Submillimeter Emission from the HL Tau Disk. ApJ, 878(2):132.

Ortiz-León, G. N., Loinard, L., Dzib, S. A., Galli, P. A. B., Kounkel, M., Mioduszewski, A. J., Rodríguez, L. F., Torres, R. M., Hartmann, L., Boden, A. F., Evans, Neal J., I., Briceño, C., and Tobin, J. J. (2018). The Gould’s Belt Distances Survey (GOBELINS). V. Distances and Kinematics of the Perseus Molecular Cloud. ApJ, 865(1):73.

Pattle, K., Lai, S.-P., Hasegawa, T., Wang, J.-W., Furuya, R. S., Ward-Thompson, D., Bastien, P., Coudé, S., Eswaraiah, C., Fanciullo, L., di Francesco, J., Hoang, T., Kim, G., Kwon, W., Lee, C. W., Liu, S.-Y., Liu, T., Matsumura, M., Onaka, T., Sadavoy, S., and Soam, A. (2019). JCMT BISTRO Survey Observations of the Ophiuchus Molecular Cloud: Dust Grain Alignment Properties Inferred Using a Ricean Noise Model. ApJ, 880(1):27.

Perley, R., Napier, P., Jackson, J., Butler, B., Carlson, B., Fort, D., Dewdney, P., Clark, B., Hayward, R., Durand , S., Revnell, M., and McKinnon, M. (2009). The Expanded Very Large Array. IEEE Proceedings, 97(8):1448–1462.

Perley, R. A., Chandler, C. J., Butler, B. J., and Wrobel, J. M. (2011). The Expanded Very Large Array: A New Telescope for New Science. ApJ, 739(1):L1.

Planck Collaboration, Abergel, A., Ade, P. A. R., Aghanim, N., Alves, M. I. R., Aniano, G., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., Band ay, A. J., Barreiro, R. B., Bartlett, J. G., Battaner, E., Benabed, K., Benoit-Lévy, A., Bernard, J. P., Bersanelli, M., Bielewicz, P., Bobin, J., Bonaldi, A., Bond, J. R., Bouchet, F. R., Boulanger, F., Burigana, C., Cardoso, J. F., Catalano, A., Chamballu, A., Chiang, H. C., Christensen, P. R., Clements, D. L., Colombi, S., Colombo, L. P. L., Couchot, F., Crill, B. P., Cuttaia, F., Danese, L., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Désert, F. X., Dickinson, C., Diego, J. M., Dole, H., Donzelli, S., Doré, O., Douspis, M., Dupac, X., Efstathiou, G., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Finelli, F., Forni, O., Frailis, M., Franceschi, E., Galeotta, S., Ganga, K., Ghosh, T., Giard, M., Giraud-Héraud, Y., González-Nuevo, J., Górski, K. M., Gregorio, A., Gruppuso, A., Guillet, V., Hansen, F. K., Harrison, D., Helou, G., Henrot-Versillé, S., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Hobson, M., Holmes, W. A., Hornstrup, A., Hovest, W., Huffenberger, K. M., Jaffe, A. H., Jaffe, T. R., Joncas, G., Jones, A., Jones, W. C., Juvela, M., Kalberla, P., Keihänen, E., Kerp, J., Keskitalo, R., Kisner, T. S., Kneissl, R., Knoche, J., Kunz, M., Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J. M., Lasenby, A., Lawrence, C. R., Leonardi, R., Levrier, F., Liguori, M., Lilje, P. B., Linden-Vørnle, M., López-Caniego, M., Lubin, P. M., Macías-Pérez, J. F., Maffei, B., Maino, D., Mand olesi, N., Maris, M., Marshall, D. J., Martin, P. G., Martínez-González, E., Masi, S., Massardi, M., Matarrese, S., Mazzotta, P., Melchiorri, A., Mendes, L., Mennella, A., Migliaccio, M., Mitra, S., Miville-Deschênes, M. A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli, P., Noviello, F., Novikov, D., Novikov, I., Oxborrow, C. A., Pagano, L., Pajot, F., Paoletti, D., Pasian, F., Perdereau, O., Perotto, L., Perrotta, F., Piacentini, F., Piat, M., Pierpaoli, E., Pietrobon, D., Plaszczynski, S., Pointecouteau, E., Polenta, G., Ponthieu, N., Popa, L., Pratt, G. W., Prunet, S., Puget, J. L., Rachen, J. P., Reach, W. T., Rebolo, R., Reinecke, M., Remazeilles, M., Renault, C., Ricciardi, S., Riller, T., Ristorcelli, I., Rocha, G., Rosset, C., Roudier, G., Rusholme, B., Sandri, M., Savini, G., Spencer, L. D., Starck, J. L., Sureau, F., Sutton, D., Suur-Uski, A. S., Sygnet, J. F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Umana, G., Valenziano, L., Valiviita, J., Van Tent, B., Verstraete, L., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Winkel, B., Yvon, D., Zacchei, A., and Zonca, A. (2014). Planck intermediate results. XVII. Emission of dust in the diffuse interstellar medium from the far-infrared to microwave frequencies. A&A, 566:A55.

Pudritz, R. E. and Ray, T. P. (2019). The Role of Magnetic Fields in Protostellar Outflows and Star Formation. Frontiers in Astronomy and Space Sciences, 6:54.

Rao, R., Girart, J. M., Marrone, D. P., Lai, S.-P., and Schnee, S. (2009). IRAS 16293: A “Magnetic” Tale of Two Cores. ApJ, 707(2):921–935.

Reissl, S., Seifried, D., Wolf, S., Banerjee, R., and Klessen, R. S. (2017). The origin of dust polarization in molecular outflows. A&A, 603:A71.

Rhodes, B. (2019). Skyfield: High precision research-grade positions for planets and Earth satellites generator.

Ricci, L., Testi, L., Natta, A., and Brooks, K. J. (2010a). Dust grain growth in ρ-Ophiuchi protoplanetary disks. A&A, 521:A66.

Ricci, L., Testi, L., Natta, A., Neri, R., Cabrit, S., and Herczeg, G. J. (2010b). Dust properties of protoplanetary disks in the Taurus-Auriga star forming region from millimeter wavelengths. A&A, 512:A15.

Rodríguez, L. F., Dzib, S. A., Zapata, L., Lizano, S., Loinard, L., Menten, K. M., and Gómez, L. (2020). Proper Motions of the Radio Source Orion MR, Formerly Known as Orion n, and New Sources with Large Proper Motions in Orion BN/KL. ApJ, 892(2):82.

Rybicki, G. B. and Lightman, A. P. (1979). Radiative processes in astrophysics.

Sadavoy, S. I., Myers, P. C., Stephens, I. W., Tobin, J., Commerçon, B., Henning, T., Looney, L., Kwon, W., Segura-Cox, D., and Harris, R. (2018). Dust Polarization toward Embedded Protostars in Ophiuchus with ALMA. I. VLA 1623. ApJ, 859(2):165.

Sadavoy, S. I., Stephens, I. W., Myers, P. C., Looney, L., Tobin, J., Kwon, W., Commerçon, B., Segura-Cox, D., Henning, T., and Hennebelle, P. (2019). Dust Polarization toward Embedded Protostars in Ophiuchus with ALMA. III. Survey Overview. ApJS, 245(1):2.

Sahu, D., Liu, S.-Y., Su, Y.-N., Li, Z.-Y., Lee, C.-F., Hirano, N., and Takakuwa, S. (2019). Implications of a Hot Atmosphere/Corino from ALMA Observations toward NGC 1333 IRAS 4A1. ApJ, 872:196.

Santangelo, G., Codella, C., Cabrit, S., Maury, A. J., Gueth, F., Maret, S., Lefloch, B., Belloche, A., André, P., Hennebelle, P., Anderl, S., Podio, L., and Testi, L. (2015). Jet multiplicity in the proto-binary system NGC 1333-IRAS4A. The detailed CALYPSO IRAM-PdBI view. A&A, 584:A126.

Segura-Cox, D. M., Looney, L. W., Tobin, J. J., Li, Z.-Y., Harris, R. J., Sadavoy, S., Dunham, M. M., Chandler, C., Kratter, K., Pérez, L., and Melis, C. (2018). The VLA Nascent Disk and Multiplicity Survey of Perseus Protostars (VANDAM). V. 18 Candidate Disks around Class 0 and I Protostars in the Perseus Molecular Cloud. ApJ, 866(2):161.

Shu, F. H. (1977). Self-similar collapse of isothermal spheres and star formation. ApJ, 214:488–497.

Shu, F. H., Adams, F. C., and Lizano, S. (1987). Star formation in molecular clouds - Observation and theory. ARA&A, 25:23–81.

Simmons, J. F. L. and Stewart, B. G. (1985). Point and interval estimation of the true unbiased degree of linear polarization in the presence of low signal-to-noise ratios. A&A, 142:100–106.

Stephens, I. W., Dunham, M. M., Myers, P. C., Pokhrel, R., Sadavoy, S. I., Vorobyov, E. I., Tobin, J. J., Pineda, J. E., Offner, S. S. R., Lee, K. I., Kristensen, L. E., Jørgensen, J. K., Goodman, A. A., Bourke, T. L., Arce, H. G., and Plunkett, A. L. (2017). Alignment between Protostellar Outflows and Filamentary Structure. ApJ, 846(1):16.

Stephens, I. W., Looney, L. W., Kwon, W., Fernández-López, M., Hughes, A. M., Mundy, L. G., Crutcher, R. M., Li, Z.-Y., and Rao, R. (2014). Spatially resolved magnetic field structure in the disk of a T Tauri star. Nature, 514(7524):597–599.

Stephens, I. W., Looney, L. W., Kwon, W., Hull, C. L. H., Plambeck, R. L., Crutcher, R. M., Chapman, N., Novak, G., Davidson, J., Vaillancourt, J. E., Shinnaga, H., and Matthews, T. (2013). The Magnetic Field Morphology of the Class 0 Protostar L1157-mm. ApJ, 769(1):L15.

Su, Y.-N., Liu, S.-Y., Li, Z.-Y., Lee, C.-F., Hirano, N., Takakuwa, S., and Hsieh, I. T. (2019). The Infall Motion in the Low-mass Protostellar Binary NGC 1333 IRAS 4A1/4A2. ApJ, 885(2):98.

Tazaki, R., Lazarian, A., and Nomura, H. (2017). Radiative Grain Alignment In Protoplanetary Disks: Implications for Polarimetric Observations. ApJ, 839:56.

Tazaki, R., Tanaka, H., Kataoka, A., Okuzumi, S., and Muto, T. (2019). Unveiling Dust Aggregate Structure in Protoplanetary Disks by Millimeter-wave Scattering Polarization. ApJ, 885(1):52.

Tazzari, M., Testi, L., Ercolano, B., Natta, A., Isella, A., Chandler, C. J., Pérez, L. M., Andrews, S., Wilner, D. J., Ricci, L., Henning, T., Linz, H., Kwon, W., Corder, S. A., Dullemond, C. P., Carpenter, J. M., Sargent, A. I., Mundy, L., Storm, S., Calvet, N., Greaves, J. A., Lazio, J., and Deller, A. T. (2016). Multiwavelength analysis for interferometric (sub-)mm observations of protoplanetary disks. Radial constraints on the dust properties and the disk structure. A&A, 588:A53.

Testi, L., Birnstiel, T., Ricci, L., Andrews, S., Blum, J., Carpenter, J., Dominik, C., Isella, A., Natta, A., Williams, J. P., and Wilner, D. J. (2014). Dust Evolution in Protoplanetary Disks. In Beuther, H., Klessen, R. S., Dullemond, C. P., and Henning, T., editors, Protostars and Planets VI, page 339.

Thompson, A. R., Clark, B. G., Wade, C. M., and Napier, P. J. (1980). The Very Large Array. ApJS, 44:151–167.

Urban, S. E. and Seidelmann, P. K. (2014). Explanatory Supplement to the Astronomical Almanac (3rd Edition). In American Astronomical Society Meeting Abstracts #223, volume 223 of American Astronomical Society Meeting Abstracts, page 247.20.

Vaillancourt, J. E. (2006). Placing Confidence Limits on Polarization Measurements. PASP, 118:1340–1343.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C., Polat, ̇I., Feng, Y., Moore, E. W., Vand erPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and Contributors, S... (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272.

Wang, J.-W., Lai, S.-P., Eswaraiah, C., Pattle, K., Di Francesco, J., Johnstone, D., Koch, P. M., Liu, T., Tamura, M., Furuya, R. S., Onaka, T., Ward-Thompson, D., Soam, A., Kim, K.-T., Lee, C. W., Lee, C.-F., Mairs, S., Arzoumanian, D., Kim, G., Hoang, T., Hwang, J., Liu, S.-Y., Berry, D., Bastien, P., Hasegawa, T., Kwon, W., Qiu, K., André, P., Aso, Y., Byun, D.-Y., Chen, H.-R., Chen, M. C., Chen, W. P., Ching, T.-C., Cho, J., Choi, M., Chrysostomou, A., Chung, E. J., Coudé, S., Doi, Y., Dowell, C. D., Drabek-Maunder, E., Duan, H.-Y., Eyres, S. P. S., Falle, S., Fanciullo, L., Fiege, J., Franzmann, E., Friberg, P., Friesen, R. K., Fuller, G., Gledhill, T., Graves, S. F., Greaves, J. S., Griffin, M. J., Gu, Q., Han, I., Hatchell, J., Hayashi, S. S., Holland, W., Houde, M., Inoue, T., Inutsuka, S.-i., Iwasaki, K., Jeong, I.-G., Kanamori, Y., Kang, J.-h., Kang, M., Kang, S.-j., Kataoka, A., Kawabata, K. S., Kemper, F., Kim, J., Kim, K. H., Kim, M.-R., Kim, S., Kirk, J. M., Kobayashi, M. I. N., Konyves, V., Kwon, J., Lacaille, K. M., Lee, H., Lee, J.-E., Lee, S.-S., Lee, Y.-H., Li, D., Li, D., Li, H.-b., Liu, H.-L., Liu, J., Lyo, A. R., Matsumura, M., Matthews, B. C., Moriarty-Schieven, G. H., Nagata, T., Nakamura, F., Nakanishi, H., Ohashi, N., Park, G., Parsons, H., Pascale, E., Peretto, N., Pon, A., Pyo, T.-S., Qian, L., Rao, R., Rawlings, M. G., Retter, B., Richer, J., Rigby, A., Robitaille, J.-F., Sadavoy, S., Saito, H., Savini, G., Scaife, A. M. M., Seta, M., Shinnaga, H., Tang, Y.-W., Tomisaka, K., Tsukamoto, Y., van Loo, S., Wang, H., Whitworth, A. P., Yen, H.-W., Yoo, H., Yuan, J., Yun, H.-S., Zenko, T., Zhang, C.-P., Zhang, G., Zhang, Y.-P., Zhou, J., and Zhu, L. (2019). JCMT BISTRO Survey: Magnetic Fields within the Hub-filament Structure in IC 5146. ApJ, 876(1):42.

Ward-Thompson, D., McKee, C. F., Furuya, R., and Tsukamoto, Y. (2020). Editorial: The Role of Magnetic Fields in the Formation of Stars. Frontiers in Astronomy and Space Sciences, 7:13.

Wardle, J. F. C. and Kronberg, P. P. (1974). The linear polarization of quasi-stellar radio sources at 3.71 and 11.1 centimeters. ApJ, 194:249–255.

Weingartner, J. C. and Draine, B. T. (2001). Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. ApJ, 548(1):296–309.

Wilson, T. L., Rohlfs, K., and Hüttemeister, S. (2013). Tools of Radio Astronomy. Wolf, S., Launhardt, R., and Henning, T. (2003). Magnetic Field Evolution in Bok Globules. ApJ, 592(1):233–244.

Wootten, A. and Thompson, A. R. (2009). The Atacama Large Millimeter/Submillimeter Array. IEEE Proceedings, 97(8):1463–1471.

Wurster, J. and Li, Z.-Y. (2018). The role of magnetic fields in the formation of protostellar discs. Frontiers in Astronomy and Space Sciences, 5:39.

Yang, H., Li, Z.-Y., Looney, L. W., Cox, E. G., Tobin, J., Stephens, I. W., Segura-Cox,
D. M., and Harris, R. J. (2016). Disc polarization from both emission and scattering of magnetically aligned grains: the case of NGC 1333 IRAS 4A1. MNRAS, 460:4109–4121.

Yang, H., Li, Z.-Y., Looney, L. W., Girart, J. M., and Stephens, I. W. (2017). Scattering-produced (sub)millimetre polarization in inclined discs: optical depth effects, near-far side asymmetry and dust settling. MNRAS, 472(1):373–388.

Zhu, Z., Zhang, S., Jiang, Y.-F., Kataoka, A., Birnstiel, T., Dullemond, C. P., Andrews, S. M., Huang, J., Pérez, L. M., Carpenter, J. M., Bai, X.-N., Wilner, D. J., and Ricci, L. (2019). One Solution to the Mass Budget Problem for Planet Formation: Optically Thick Disks with Dust Scattering. ApJ, 877(2):L18.

Zucker, C., Schlafly, E. F., Speagle, J. S., Green, G. M., Portillo, S. K. N., Finkbeiner, D. P., and Goodman, A. A. (2018). Mapping Distances across the Perseus Molecular Cloud Using CO Observations, Stellar Photometry, and Gaia DR2 Parallax Measurements. ApJ, 869:83.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *