帳號:guest(18.226.214.10)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高達姆
作者(外文):Kumar, Gautam
論文名稱(中文):探究氮化鎵、碳化矽、鈦酸鍶晶圓的電性晶面效應及氧化鎘、四氧化三鈷、氧化亞銅晶體的性質之晶面效應與其起源
論文名稱(外文):Probing Electrical Facet Effects in GaN, 4H-SiC and SrTiO3 Wafers, and Syntheses and Facet-Dependent Property and Origin Examinations of CdO, Co3O4 and Cu2O Crystals
指導教授(中文):黃暄益
指導教授(外文):Huang, Michael Hsuan-Yi
口試委員(中文):陳益佳
徐雍鎣
郭俊宏
莊裕鈞
口試委員(外文):Chen, I-chia
Hsu, Yung-Jung
Kuo, Chun-Hong
Chuang, Yu-Chun
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:107023857
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:137
中文關鍵詞:半導體材料場效應晶體管形狀控制晶體材料合成電流整改
外文關鍵詞:Semiconductor materialsField-Effect TransistorShape control crystalsMaterial synthesisCurrent rectification
相關次數:
  • 推薦推薦:0
  • 點閱點閱:251
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在現代技術的發展中,無論是場效應晶體管 (FET) 還是電磁元件的進步,半導體和軟磁材料都在發揮作用,並且在過去幾十年中擔任非常關鍵的角色。 目前發現半導體晶體的晶面效應不僅存在於光學特性中,還存在於電導性質中。 在本論文中,第 1 章研究了具有六方晶格和立方晶格結構的氮化鎵、碳化矽和鈦酸鍶晶圓受晶面效應影響的光學性質和導電性質,其中氮化鎵及碳化矽的{0001}晶面跟{1010}/{1100}-側晶面具有很明顯的導電性質的差異,特別是與 {1010}/{1100} 面相比,{0001} 面的導電性更高。 此外碳化矽的兩種側晶面{101 ̅0}/{12 ̅10}表現出相似的低導電特性。當將鎢探針同時接觸頂面和側面進行電流-電壓測量時,能觀察到清晰的電流整流,這表現出不同晶面具有不同的能帶彎曲。 將具有 {100} 晶面和 {111} 晶面的鈦酸鍶晶圓切割成數小塊可以呈現出 {110}晶面的碎片,並使用新的 {100} 側面進行電學測量。 {111} 面被發現具有高導電性,其次是{110}晶面,而最低的是 {100}。 同樣,當鎢探針同時接觸 {111} 和 {110} 以及 {110} 和 {100} 時,發現電流整流。
第 2 章致力於氧化鎘的形狀的演變及其光學和電學性質。{111}-星狀八面體、八面體和{100}-截斷八面體的氧化鎘顆粒以及非常薄的六方氫氧化鎘顆粒可以通過一種非常簡單、節能和省時的方法合成。 藉由吉布斯自由能的調控使顆粒的形貌改變。 氧化鎘顆粒會呈現出不同的顏色,因此雖然顆粒尺寸較大但能隙的變化從 2.16 eV 到 1.51 eV 不等。 截斷的八面體氧化鎘粒子的導電性測量顯示 {111} 面比 {100} 面更具導電性。 當最導電和最不導電的面同時通過鎢探針接觸時能觀察到電流整流。
第3章展示了三種反應條件,以生產大小和形狀可控的氧化鈷。通過調整反應混合物中硝酸鈉的量藉以實現大小控制。另外使用尿素作為鹼,並改變溫度可以產生立方體和截半立方體。同時改變硝酸鈷和氫氧化鈉的量會從立方體、八面體、截半立方體演化到{100}截面的八面體。紫外可見光吸收顯示從31到43奈米的立方體紅移,此外幾乎相同大小的立方體(42奈米)和截半立方體(43奈米)則顯示出截半立方體藍移。由此觀察到了小型和相對較大的晶體隨著大小和晶面不同造成能隙的位移。受溫度影響的磁化強度顯示出,不同形狀的粒子在不可逆溫度(Tirr)、Néel溫度(TN)和總磁化值上具有顯著影響,八面體具有高磁化率。2和300 K的等溫磁化顯示,八面體的行為像硬鐵磁體,具有高的矯頑力HC和保磁力,而立方體和截半立方體則像軟磁性材料一樣,2 K時具有相對較低的矯頑力HC和保磁力。在300 K下,立方體和八面體仍然具有磁性,而截半立方體幾乎是非磁性的。因此,除了光學性質之外,物理性質,例如磁化,被認為是材料的基本性質,也與晶體表面有高度相關。
第4章描述了穿透式電子顯微鏡的實驗證據,證明了由表面薄層引起了氧化亞銅晶體的各種晶面特性。這是第一個將薄表面層可視化的實驗。使用超高分辨率穿透式電子顯微鏡(JEOL, JEM-F200)成像和Gatan DigitalMicrograph®版本3.51.3720.0的數據分析,實現了清晰的晶格探討。氧化亞銅晶體的晶面晶格間距在立方體、八面體、截半立方體、{100}-截面八面體和菱形十二面體晶體的中心和邊緣之間顯示出顯著的偏差,類似於核和殼的組成部分。並使用快速傅立葉變換的方法數據處理,可以視覺上識別出所有晶體的薄表面層。同時,還發現了不同形狀的氧化亞銅晶體具有獨特的晶格點視覺特徵和尺寸。
In the development of modern technology, be it advancements in field effect transistors (FET) or electromagnetic devices, semiconductors and soft magnetic materials are playing and have played a very crucial role for the last several decades. It has been seen that semiconductor single crystals exhibit facet effects that exist not only in optical properties and also in electrical conductivity behaviours. In this dissertation, facet-dependent optical and conductive properties of GaN, 4H-SiC and SrTiO3 wafers having hexagonal and cubic lattice structures have been investigated in Chapter 1, which shows a very significant conductivity difference between {0001}-top face and {1010}/ {1100}-side face for GaN and 4H-SiC. {0001} face is much conductive compared to {1010}/ {1100} face. In the case of SiC, two side faces {1010}/{1-210} show similar as well as less conductivity. A clear current rectification has also been observed when I-V measurement is done by contacting the tungsten probes to the top and side face simultaneously, which indicates different band bending for different facets. Two intrinsic wafers with the top face of {100} and {111} of SrTiO3 were cut into pieces exposing {110} and a new {100} side face was used for electrical measurements. {111} face was found to be highly conductive following {110} and the least {100}. Here again, current rectification was found when tungsten probes were simultaneously contacted to {111} and {110} as well as {110} and {100}.
Chapter 2 is dedicated to the shape evolution of cadmium oxide and its optical and electrical properties. {111}-bound stellated octahedra, octahedra and {100}-truncated octahedra of cadmium oxide particles along with very thin hexagonal cadmium hydroxide particles have been synthesized by a very simple, energy and time-efficient method. Gibbs free energy change produces particle shape variation. CdO particles exhibit distinct colour, hence band gap varies from 2.16 eV to 1.51 eV despite the large particle size. Conductivity measurements of a truncated octahedral CdO particle show {111} facet is more electrically conductive compared to {100} facet. A current rectification was observed when most and least conducting faces are simultaneously contacted through a tungsten probe.
Chapter 3 showcases the three reaction conditions to produce size and shape-controlled Co3O4. Size control has been achieved by adjusting the amount of NaNO3 in the reaction mixture. Replacing the base with urea and varying temperatures produces cubes and cuboctahedra. Simultaneous change in the amount of cobalt nitrate and sodium hydroxide gives a progressive shape evolution from cubes, octahedra, cuboctahedra to {100}-truncated octahedra. Uv-Vis absorbance shows a red shift for 31 to 43 nm cubes while almost similar-sized cubes (42 nm) and cuboctahedra (43 nm) give a blue shift for cuboctahedra. Size and facet dependant bandgap shift have also been observed for small and relatively large crystals. Temperature-dependent magnetization shows a significant effect on irreversible temperature (Tirr), Ne ́el temperature (TN) and aggregate magnetization values for differently shaped particles, octahedra were found to have high magnetic susceptibility. Isothermal magnetization at 2 K and 300 K revels, octahedra behave like hard ferromagnets with high coercivity HC and retentivity whereas cubes and cuboctahedra are alike soft magnetic material with relatively low coercivity HC and retentivity at 2 K. At 300 K cuboctahedra is almost nonmagnetic as cubes and octahedra remain magnetic. Thus, in addition to the optical property, physical property like magnetization, which is believed to be blk property of a material is also highly surface related.
Chapter 4 describes TEM evidence of a thin surface layer causing the various facet-dependent properties of Cu2O crystals. This is the first experimental visualization of the proposed thin surface layer. Using ultra-high resolution TEM (JEOL, JEM-F200) imaging and data analysis with Gatan DigitalMicrograph® Version 3.51.3720.0, enables a clear visual lattice investigation. The lattice spacing of facial Cu2O crystals shows a significant deviation among the center and edge of the cube, octahedron, cuboctahedron, {100}-truncated octahedron and rhombic dodecahedron crystals giving surface and bulk components. Visually a thin surface layer was identified for all crystals using the FFT method of data processing. Visual features and size of the lattice points were also found to be distinct for differently shaped Cu2O crystals.
CONTENTS
論文摘要 i
ABSTRACT ii
CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xvi
LIST OF PUBLICATIONS xvii
PREFACE xix
Chapter 1 1
Facet-dependent optical and electrical properties of intrinsic GaN, 4H-SiC and SrTiO3 wafers 1
1.1 Introduction 1
1.2 Experimental 4
1.2.1 Probe preparation 4
1.2.2 Sample preparation for the electrical measurements 4
1.2.3 Electrical conductivity measurements 5
1.3 Results and discussions 5
1.3.1 GaN 5
1.3.2 SiC 14
1.3.3 SrTiO3 24
1.4 Conclusion 31
1.5 References 33
Chapter 2 40
Morphological evolution of cadmium oxide crystal showing optical and facet-dependent electrical properties 40
2.1 Introduction 40
2.2 Experimental 42
2.2.1 CdO crystal synthesis 42
2.2.2 Electrical conductivity measurement 42
2.2.3 Instrumentation 43
2.3 Results and discussions 43
2.3.1 Crystal synthesis and structural characterization 43
2.3.2 Gibbs free energy calculation 47
2.3.3 Crystal phase characterization through XRD 49
2.3.4 Crystal structure and surface characterization using TEM and XPS 53
2.3.5 Optical and electrical conductivity properties 55
2.4 Conclusion 60
2.5 References 61
Chapter 3 67
Morphology- and size-tunable cobalt oxide nanoparticles showing size- and facet-dependent optical and magnetic properties 67
3.1 Introduction 67
3.2 Experimental 69
3.2.1 Chemicals 69
3.2.2 Synthesis of size-tunable Co3O4 cubes 69
3.2.3 Synthesis of Co3O4 cubes and cuboctahedra 70
3.2.4 Systematic shape evolution of Co3O4 particles 70
3.3 Results and Discussion 71
3.3.1 Synthesis and characterization of size-tunable Co3O4 nanocubes 71
3.3.2 Synthesis and characterization of nanocubes and cuboctahedra 83
3.3.3 Synthesis of shape-tunable Co3O4 crystals 90
3.3.4 Size and facet-dependent optical properties 100
3.3.5 Magnetic property of Co3O4 particles 102
3.4 Conclusion 106
3.5 References 107
Chapter 4 115
Experimental evidence of surface and bulk lattice differences in facial Cu2O crystals 115
4.1 Introduction 115
4.2 Experimental 116
4.2.1 Cu2O Particle synthesis 116
4.2.2 TEM imaging and data analysis 118
4.3 Results and discussions 118
4.4 Conclusion 131
4.5 References 133

Chapter 1 References
1. Tan, C. S.; Hsu, S. C.; Ke, W. H.; Chen, L. J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett. 2015, 15 (3), 2155-60.

2. Tan, C. S.; Chen, Y. J.; Hsia, C. F.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Silver Oxide Crystals. Chem. Asian J. 2017, 12 (3), 293-297.

3. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of PbS Nanocrystals. Chem. Mater. 2016, 28 (5), 1574-1580.

4. Kim, C. W.; Yeob, S. J.; Cheng, H.-M.; Kang, Y. S. A Selectively Exposed Crystal Facet-Engineered TiO2 Thin Film Photoanode for The Higher Performance of The Photoelectrochemical Water Splitting Reaction. Energy Environ. Sci. 2015, 8 (12), 3646-3653.

5. Kumar, G.; Chen, C.-R.; Chen, B.-H.; Chen, J.-W.; Huang, M. H., Morphological Evolution of Cadmium Oxide Crystals Showing Color Changes and Facet-Dependent Conductivity Behavior. J. Mater. Chem. C 2022, 10 (33), 12125-12131.

6. Wu, S. H.; Hsiao, C. H.; Hsieh, P. L.; Huang, X. F.; Huang, M. H. Growth of Ceo2 Nanocubes Showing Size-Dependent Optical and Oxygen Evolution Reaction Behaviors. Dalton Trans. 2021, 50 (42), 15170-15175.

7. Liu, G.; Yin, L. C.; Pan, J.; Li, F.; Wen, L.; Zhen, C.; Cheng, H. M. Greatly Enhanced Electronic Conduction and Lithium Storage of Faceted Tio₂ Crystals Supported on Metallic Substrates by Tuning Crystallographic Orientation of Tio₂. Adv. Mater 2015, 27 (23), 3507-12.

8. Tan, C. S.; Hsieh, P. L.; Chen, L. J.; Huang, M. H. Silicon Wafers with Facet-Dependent Electrical Conductivity Properties. Angew. Chem. Int. Ed. 2017, 56 (48), 15339-15343.

9. Hsieh, P. L.; Lee, A. T.; Chen, L. J.; Huang, M. H. Germanium Wafers Possessing Facet-Dependent Electrical Conductivity Properties. Angew. Chem. Int. Ed. 2018, 57 (49), 16162-16165.

10. Hsieh, P.-L.; Wu, S.-H.; Liang, T.-Y.; Chen, L.-J.; Huang, M. H. GaAs Wafers Possessing Facet-Dependent Electrical Conductivity Properties. J. Mater. Chem. C 2020, 8 (16), 5456-5460.

11. Tan, C.-S.; Huang, M. H. Surface-Dependent Band Structure Variations and Bond Deviations of GaN. Phy. Chem. Chem. Phys. 2022, 24 (16), 9135-9140.

12. Tan, C.-S.; Huang, M. H. Surface-Dependent Band Structure Variations and Bond-Level Deviations in Cu2O. Inorg. Chem. Front. 2021, 8 (18), 4200-4208.

13. Tan, C. S.; Huang, M. H. Density Functional Theory Calculations Revealing Metal-Like Band Structures and Work Function Variation for Ultrathin Gallium Arsenide (111) Surface Layers. Chem. Asian J. 2019, 14 (13), 2316-2321.

14. Tan, C.-S.; Lu, M.-Y.; Peng, W.-H.; Chen, L.-J.; Huang, M. H. Germanium Possessing Facet-Specific Trap States and Carrier Lifetimes. J. Phys. Chem. C 2020, 124 (24), 13304-13309.

15. Tan, C.-S.; Chen, L.-J.; Huang, M. H. Large Facet-Specific Built-In Potential Differences Affecting Trap State Densities and Carrier Lifetimes of GaAs Wafers. J. Phys. Chem. C 2020, 124 (39), 21577-21582.

16. Tan, C. S.; Zhao, Y.; Guo, R. H.; Chuang, W. T.; Chen, L. J.; Huang, M. H. Facet-Dependent Surface Trap States and Carrier Lifetimes of Silicon. Nano Lett. 2020, 20 (3), 1952-1958.

17. Madasu, M.; Huang, M. H. Cu2O Polyhedra for Aryl Alkyne Homocoupling Reactions. Catal. Sci. Technol. 2020, 10 (20), 6948-6952.

18. Hsieh, P.-L.; Naresh, G.; Huang, Y.-S.; Tsao, C.-W.; Hsu, Y.-J.; Chen, L.-J.; Huang, M. H. Shape-Tunable SrTiO3 Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. J. Phys. Chem. C 2019, 123 (22), 13664-13671.

19. Yang, Y.-C.; Peng, Y.-W.; Lee, A.-T.; Kumar, G.; Huang, M. H. CsPbBr3 and CsPbI3 Rhombic Dodecahedra and Nanocubes Displaying Facet-Dependent Optical Properties. Inorg. Chem. Front. 2021, 8 (21), 4685-4695.

20. Huang, M. H. Semiconductor Nanocrystals Possessing Broadly Size‐and Facet‐Dependent Optical Properties. J. Chin. Chem. Soc. 2021, 68 (1), 45-50.

21. Huang, M. H.; Madasu, M. Facet-Dependent and Interfacial Plane-Related Photocatalytic Behaviors of Semiconductor Nanocrystals and Heterostructures. Nano Today 2019, 28, 100768.

22. Lee, M.; Yang, M.; Song, K. M.; Park, S. InGaN/GaN Blue Light Emitting Diodes Using Freestanding GaN Extracted from a Si Substrate. ACS Photonics 2018, 5 (4), 1453-1459.

23. Cheng, C.-H.; Huang, T.-W.; Wu, C.-L.; Chen, M. K.; Chu, C. H.; Wu, Y.-R.; Shih, M.-H.; Lee, C.-K.; Kuo, H.-C.; Tsai, D. P.; Lin, G.-R. Transferring the Bendable Substrateless GaN LED Grown on a Thin C-rich SiC Buffer Layer to Flexible Dielectric and Metallic Plates. J. Mater. Chem. C 2017, 5 (3), 607-617.

24. Han, S.; Noh, S.; Kim, J. W.; Lee, C. R.; Lee, S. K.; Kim, J. S. Stretchable Inorganic GaN-Nanowire Photosensor with High Photocurrent and Photoresponsivity. ACS Appl. Mater. Interfaces 2021, 13 (19), 22728-22737.

25. den Hertog, M. I.; González-Posada, F.; Songmuang, R.; Rouviere, J. L.; Fournier, T.; Fernandez, B.; Monroy, E. Correlation of Polarity and Crystal Structure with Optoelectronic and Transport Properties of GaN/AlN/GaN Nanowire Sensors. Nano Lett. 2012, 12 (11), 5691-6.

26. Niebelschütz, M.; Cimalla, V.; Ambacher, O.; Machleidt, T.; Ristic, J.; Calleja, E. Electrical Performance of Gallium Nitride Nanocolumns. Phys. E 2007, 37 (1), 200-203.

27. Simpkins, B.; Pehrsson, P.; Laracuente, A. Electronic Conduction in GaN Nanowires. Appl. phys. lett. 2006, 88 (7), 072111.

28. Kim, J.-R.; So, H. M.; Park, J. W.; Kim, J.-J.; Kim, J.; Lee, C. J.; Lyu, S. C. Electrical Transport Properties of Individual Gallium Nitride Nanowires Synthesized by Chemical-Vapor-Deposition. Appl. phys. lett. 2002, 80 (19), 3548-3550.

29. Huang, Y.; Duan, X.; Cui, Y.; Lieber, C. M. Gallium Nitride Nanowire Nanodevices. Nano Lett. 2002, 2 (2), 101-104.

30. Lee, A. T.; Tan, C. S.; Huang, M. H. Current Rectification and Photo-Responsive Current Achieved Through Interfacial Facet Control of Cu2O-Si Wafer Heterojunctions. ACS Cent. Sci. 2021, 7 (11), 1929-1937.

31. Kimoto, T.; Itoh, A.; Matsunami, H. Step Bunching in Chemical Vapor Deposition of 6H–and 4H–SiC on Vicinal SiC (0001) Faces. Appl. phys. lett. 1995, 66 (26), 3645-3647.

32. Gao, W.; Zhang, F.; Zheng, Z.; Li, J. Unique and Tunable Photodetecting Performance for Two-Dimensional Layered MoSe2/WSe2 p-n Junction on the 4H-SiC Substrate. ACS Appl. Mater. Interfaces 2019, 11 (21), 19277-19285.

33. Chen, Y. C.; Salter, P. S.; Niethammer, M.; Widmann, M.; Kaiser, F.; Nagy, R.; Morioka, N.; Babin, C.; Erlekampf, J.; Berwian, P.; Booth, M. J.; Wrachtrup, J. Laser Writing of Scalable Single Color Centers in Silicon Carbide. Nano Lett. 2019, 19 (4), 2377-2383.

34. Castelletto, S.; Johnson, B. C.; Zachreson, C.; Beke, D.; Balogh, I.; Ohshima, T.; Aharonovich, I.; Gali, A. Room Temperature Quantum Emission from Cubic Silicon Carbide Nanoparticles. ACS nano 2014, 8 (8), 7938-47.

35. Lichtenwalner, D. J.; Misra, V.; Dhar, S.; Ryu, S.-H.; Agarwal, A. High-Mobility Enhancement-Mode 4 H-SiC Lateral Field-Effect Transistors Utilizing Atomic Layer Deposited Al2O3 Gate Dielectric. App. Phys. Lett. 2009, 95 (15), 152113.

36. Yano, H.; Hirao, T.; Kimoto, T.; Matsunami, H.; Shiomi, H. Interface Properties in Metal-Oxide-Semiconductor Structures on n-type 4 H-SiC (0338). Appl. phys. lett. 2002, 81 (25), 4772-4774.

37. Roccaforte, F.; Fiorenza, P.; Vivona, M.; Greco, G.; Giannazzo, F. Selective Doping in Silicon Carbide Power Devices. Mater. 2021, 14 (14).

38. Marschall, R. Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Adv. Funct. Mater. 2014, 24 (17), 2421-2440.

39. Van Benthem, K.; Elsässer, C.; French, R., Bulk electronic structure of SrTiO3: Experiment and theory. J. Appl. phys. 2001, 90 (12), 6156-6164.

40. Syväjärvi, M.; Yakimova, R.; Janzén, E. Step-Bunching in SiC Epitaxy: Anisotropy and Influence of Growth Temperature. J. Cryst. Growth 2002, 236 (1), 297-304.

41. Tangi, M.; Mishra, P.; Tseng, C. C.; Ng, T. K.; Hedhili, M. N.; Anjum, D. H.; Alias, M. S.; Wei, N.; Li, L. J.; Ooi, B. S. Band Alignment at GaN/Single-Layer WSe2 Interface. ACS Appl. Mater. Interfaces 2017, 9 (10), 9110-9117.

42. Kibria, M. G.; Qiao, R.; Yang, W.; Boukahil, I.; Kong, X.; Chowdhury, F. A.; Trudeau, M. L.; Ji, W.; Guo, H.; Himpsel, F. J.; Vayssieres, L.; Mi, Z. Atomic-Scale Origin of Long-Term Stability and High Performance of p-GaN Nanowire Arrays for Photocatalytic Overall Pure Water Splitting. Adv. Mater. 2016, 28 (38), 8388-8397.

43. Jiang, C.; Moniz, S. J. A.; Wang, A.; Zhang, T.; Tang, J. Photoelectrochemical Devices for Solar Water Splitting – Materials and Challenges. Chem. Soc. Rev. 2017, 46 (15), 4645-4660.

44. Pan, C.; Zhai, J.; Wang, Z. L. Piezotronics and Piezo-Phototronics of Third Generation Semiconductor Nanowires. Chem. Rev. 2019, 119 (15), 9303-9359.

45. Huang, J.-Y.; Madasu, M.; Huang, M. H. Modified Semiconductor Band Diagrams Constructed from Optical Characterization of Size-Tunable Cu2O Cubes, Octahedra, and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122 (24), 13027-13033.

46. Wu, Y. C.; Lu, H. Y. Crystallographic Orientation Relationships Between Hexagonal and Tetragonal Barium Titanate. J. Am. Ceramic Soc. 2005, 88 (11), 3154-3161.

47. Asghar, M.; Shahid, M.; Iqbal, F.; Fatima, K.; Nawaz, M. A.; Arbi, H.; Tsu, R. Simple Method for the Growth of 4H Silicon Carbide on Silicon Substrate. AIP Adv. 2016, 6 (3), 035201.

48. Kim, H.-K.; Kim, S. I.; Kim, S.; Lee, N.-S.; Shin, H.-K.; Lee, C. W. Relation between Work Function and Structural Properties of Triangular Defects in 4H-SiC Epitaxial Layer: Kelvin Probe Force Microscopic and Spectroscopic Analyses. Nanoscale 2020, 12 (15), 8216-8229.

Chapter 2 References
1. Thoka, S.; Lee, A.-T.; Huang, M. H., Scalable Synthesis of Size-Tunable Small Cu2O Nanocubes and Octahedra for Facet-Dependent Optical Characterization and Pseudomorphic Conversion to Cu Nanocrystals. ACS Sustainable Chem. Eng. 2019, 7 (12), 10467-10476.

2. Hsieh, M. S.; Su, H. J.; Hsieh, P. L.; Chiang, Y. W.; Huang, M. H. Synthesis of Ag3PO4 Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Appl. Mater. Interfaces 2017, 9 (44), 39086-39093.

3. Chen, Y. J.; Chiang, Y. W.; Huang, M. H., Synthesis of Diverse Ag2O Crystals and Their Facet-Dependent Photocatalytic Activity Examination. ACS Appl. Mater. Interfaces 2016, 8 (30), 19672-9.

4. Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H. Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity. J. Am. Chem. Soc. 2012, 134 (2), 1261-7.

5. Wu, S. H.; Hsiao, C. H.; Hsieh, P. L.; Huang, X. F.; Huang, M. H. Growth of CeO2 Nanocubes Showing Size-Dependent Optical and Oxygen Evolution Reaction Behaviors. Dalton Trans. 2021, 50 (42), 15170-15175.

6. Tan, C. S.; Chen, Y. J.; Hsia, C. F.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Silver Oxide Crystals. Chem.- Asian J. 2017, 12 (3), 293-297.

7. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of PbS Nanocrystals. Chem. Mater. 2016, 28 (5), 1574-1580.

8. Tan, C. S.; Hsu, S. C.; Ke, W. H.; Chen, L. J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett. 2015, 15 (3), 2155-60.

9. Liu, G.; Yin, L. C.; Pan, J.; Li, F.; Wen, L.; Zhen, C.; Cheng, H. M. Greatly Enhanced Electronic Conduction and Lithium Storage of Faceted TiO₂ Crystals Supported on Metallic Substrates by Tuning Crystallographic Orientation of TiO₂. Adv. Mater. 2015, 27 (23), 3507-12.

10. Kim, C. W.; Yeob, S. J.; Cheng, H.-M.; Kang, Y. S. A Selectively Exposed Crystal Facet-Engineered TiO2 Thin Film Photoanode for the Higher Performance of the Photoelectrochemical Water Splitting Reaction. Energy Environ. Sci. 2015, 8 (12), 3646-3653.

11. Kumar, G.; Chen, J.-W.; Ma, H.-H.; Huang, X.-F.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of a 4H-SiC Wafer. J. Mater. Chem. C 2022, 10 (28), 10424-10428.

12. Hsieh, P.-L.; Kumar, G.; Wang, Y.-Y.; Lu, Y.-J.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of GaN Wafers. J. Mater. Chem. C 2021, 9 (42), 15354-15358.

13. Hsieh, P.-L.; Wu, S.-H.; Liang, T.-Y.; Chen, L.-J.; Huang, M. H. GaAs Wafers Possessing Facet-Dependent Electrical Conductivity Properties. J. Mater. Chem. C 2020, 8 (16), 5456-5460.

14. Hsieh, P. L.; Lee, A. T.; Chen, L. J.; Huang, M. H. Germanium Wafers Possessing Facet-Dependent Electrical Conductivity Properties. Angew. Chem. Int. Ed. 2018, 57 (49), 16162-16165.

15. Tan, C. S.; Hsieh, P. L.; Chen, L. J.; Huang, M. H. Silicon Wafers with Facet-Dependent Electrical Conductivity Properties. Angew. Chem. Int. Ed. 2017, 56 (48), 15339-15343.

16. Rej, S.; Bisetto, M.; Naldoni, A.; Fornasiero, P. Well-Defined Cu2O Photocatalysts for Solar Fuels and Chemicals. J. Mater. Chem. A 2021, 9 (10), 5915-5951.

17. Majumder, D.; Chakraborty, I.; Mandal, K.; Roy, S. Facet-Dependent Photodegradation of Methylene Blue Using Pristine CeO2 Nanostructures. ACS omega 2019, 4 (2), 4243-4251.

18. Huang, M. H.; Madasu, M. Facet-Dependent and Interfacial Plane-Related Photocatalytic Behaviors of Semiconductor Nanocrystals and Heterostructures. Nano Today 2019, 28, 100768.

19. Hsieh, P.-L.; Naresh, G.; Huang, Y.-S.; Tsao, C.-W.; Hsu, Y.-J.; Chen, L.-J.; Huang, M. H. Shape-Tunable SrTiO3 Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. J. Phys. Chem. C 2019, 123 (22), 13664-13671.

20. Tan, C.-S.; Huang, M. H. Surface-Dependent Band Structure Variations and Bond Deviations of GaN. Phys. Chem. Chem. Phys. 2022, 24 (16), 9135-9140.

21. Tan, C.-S.; Huang, M. H. Surface-Dependent Band Structure Variations and Bond-Level Deviations in Cu2O. Inorg. Chem. Front. 2021, 8 (18), 4200-4208.

22. Tan, C. S.; Huang, M. H. Density Functional Theory Calculations Revealing Metal-like Band Structures and Work Function Variation for Ultrathin Gallium Arsenide (111) Surface Layers. Chem.- Asian J. 2019, 14 (13), 2316-2321.

23. Tan, C. S.; Huang, M. H. Density Functional Theory Calculations Revealing Metal-like Band Structures for Ultrathin Germanium (111) and (211) Surface Layers. Chem.-Asian J. 2018.

24. Tan, C. S.; Huang, M. H. Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations. Chem.-Eur. J. 2017, 23 (49), 11866-11871.

25. Yang, Y.-C.; Peng, Y.-W.; Lee, A.-T.; Kumar, G.; Huang, M. H. CsPbBr3 and CsPbI3 Rhombic Dodecahedra and Nanocubes Displaying Facet-Dependent Optical Properties. Inorg. Chem. Front. 2021, 8 (21), 4685-4695.

26. Madasu, M.; Hsieh, P. L.; Chen, Y. J.; Huang, M. H. Formation of Silver Rhombic Dodecahedra, Octahedra, and Cubes through Pseudomorphic Conversion of Ag2O Crystals with Nitroarene Reduction Activity. ACS Appl. Mater. Interfaces 2019, 11 (41), 38039-38045.

27. Huang, M. H. Facet-Dependent Optical Properties of Semiconductor Nanocrystals. Small (Weinheim an der Bergstrasse, Germany) 2019, 15 (7), e1804726.

28. Chen, M.; Zou, Y.; Wu, L.; Pan, Q.; Yang, D.; Hu, H.; Tan, Y.; Zhong, Q.; Xu, Y.; Liu, H. Solvothermal Synthesis of High‐Quality all‐inorganic Cesium Lead Halide Perovskite Nanocrystals: from Nanocube to Ultrathin Nanowire. Adv. Funct. Mater. 2017, 27 (23), 1701121.

29. Yang, Z. L.; Kumar, G.; Huang, M. H. Synthesis of Zinc Blende-Phased CdSe Nanocrystals with Size-Tunable Optical Properties and Adjustable Valence Band Positions. Langmuir : the ACS journal of surfaces and colloids 2022, 38 (8), 2729-2736.

30. Huang, M. H. Semiconductor Nanocrystals Possessing Broadly Size‐and Facet‐Dependent Optical Properties. J. Chin. Chem. Soc. 2021, 68 (1), 45-50.

31. Hsiao, C.-H.; Chen, C.-W.; Chen, H.-S.; Hsieh, P.-L.; Chen, Y.-A.; Huang, M. H. Formation of Size-Tunable CdS Rhombic Dodecahedra. J. Mater. Chem. C 2021, 9 (18), 5992-5997.

32. Lee, A. T.; Tan, C. S.; Huang, M. H. Current Rectification and Photo-Responsive Current Achieved through Interfacial Facet Control of Cu2O-Si Wafer Heterojunctions. ACS Cent. Sci. 2021, 7 (11), 1929-1937.

33. Liu, Z.; Zhong, Y.; Shafei, I.; Jeong, S.; Wang, L.; Nguyen, H. T.; Sun, C. J.; Li, T.; Chen, J.; Chen, L.; Losovyj, Y.; Gao, X.; Ma, W.; Ye, X. Broadband Tunable Mid-infrared Plasmon Resonances in Cadmium Oxide Nanocrystals Induced by Size-Dependent Nonstoichiometry. Nano Lett. 2020, 20 (4), 2821-2828.

34. Choi, D.-H.; Jeong, G.-H.; Kim, S.-W. Fabrication of Size and Shape Controlled Cadmium Oxide Nanocrystals. Bull. Korean Chem. Soc. 2011, 32 (11), 3851-3852.

35. Ghoshal, T.; Biswas, S.; Nambissan, P. M. G.; Majumdar, G.; De, S. K. Cadmium Oxide Octahedrons and Nanowires on the Micro-Octahedrons: A Simple Solvothermal Synthesis. Cryst. Growth Des. 2009, 9 (3), 1287-1292.

36. Ghosh, S.; Saha, M.; Paul, S.; De, S. K. Shape Controlled Plasmonic Sn Doped CdO Colloidal Nanocrystals: A Synthetic Route to Maximize the Figure of Merit of Transparent Conducting Oxide. Small 2017, 13 (7).

37. Kuo, T. J.; Huang, M. H. Gold-catalyzed Low-Temperature Growth of Cadmium Oxide Nanowires by Vapor Transport. J. Phys. Chem. B 2006, 110 (28), 13717-21.

38. Dean, J. A. Lange’s Handbook of Chemistry. McGraw-Hill, New York, 12th edn. 1979, p 9-4–9-94.

39. Peng, Y.-W.; Wang, C.-P.; Kumar, G.; Hsieh, P.-L.; Hsieh, C.-M.; Huang, M. H., Formation of CsPbCl3 Cubes and Edge-Truncated Cuboids at Room Temperature. ACS Sustainable Chem. Eng. 2022, 10 (4), 1578-1584.

40. Patra, A. S.; Kao, J.-C.; Chan, S.-J.; Chou, P.-J.; Chou, J.-P.; Lo, Y.-C.; Huang, M. H., Photocatalytic Activity Enhancement of Cu2O Cubes Functionalized with 2-ethynyl-6-methoxynaphthalene through Band Structure Modulation. J.Mater. Chem. C 2022, 10 (10), 3980-3989.

41. Toby, B. H.; Von Dreele, R. B., GSAS-II: The Genesis of a Modern Open-source all Purpose Crystallography Software Package. J. Appl. Crystallogr. 2013, 46 (2), 544-549.

42. Li, W.; Li, M.; Xie, S.; Zhai, T.; Yu, M.; Liang, C.; Ouyang, X.; Lu, X.; Li, H.; Tong, Y. Improving the Photoelectrochemical and Photocatalytic Performance of CdO Nanorods with CdS Decoration. CrystEngComm 2013, 15 (21), 4212-4216.

43. Huang, Y.-C.; Wu, S.-H.; Hsiao, C.-H.; Lee, A.-T.; Huang, M. H. Mild Synthesis of Size-tunable CeO2 Octahedra for Band Gap Variation. Chem. Mater. 2020, 32 (6), 2631-2638.

44. Pan, L. L.; Meng, K. K.; Li, G. Y.; Sun, H. M.; Lian, J. S. Structural, Optical and Electrical Characterization of Gadolinium and Indium Doped Cadmium Oxide/p-silicon Heterojunctions for Solar Cell Applications. RSC Adv. 2014, 4 (94), 52451-52460.

Chapter 3 References
1. Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. Synthesis of Ag3PO4 Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Appl. Mater. Interfaces 2017, 9 (44), 39086-39093.

2. Huang, M. H.; Naresh, G.; Chen, H.-S. Facet-Dependent Electrical, Photocatalytic, and Optical Properties of Semiconductor Crystals and Their Implications for Applications. ACS Appl. Mater. Interfaces 2018, 10 (1), 4-15.

3. Huang, M. H.; Kumar, G. Origin and manifestation of semiconductor facet effects. J. Chin. Chem. Soc. 2022, 69, 1190-1199.

4. Kim, C. W.; Yeob, S. J.; Cheng, H.-M.; Kang, Y. S. A Selectively Exposed Crystal Facet-Engineered TiO2 Thin Film Photoanode for the Higher Performance of the Photoelectrochemical Water Splitting Reaction. Energy Environ. Sci. 2015, 8 (12), 3646-3653.

5. Liu, G.; Yin, L. C.; Pan, J.; Li, F.; Wen, L.; Zhen, C.; Cheng, H.-M. Greatly Enhanced Electronic Conduction and Lithium Storage of Faceted TiO₂ Crystals Supported on Metallic Substrates by Tuning Crystallographic Orientation of TiO₂. Adv. Mater. 2015, 27 (23), 3507-3512.

6. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett. 2015, 15 (3), 2155-60.

7. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of PbS Nanocrystals. Chem. Mater. 2016, 28 (5), 1574-1580.

8. Tan, C.-S.; Chen, Y.-J.; Hsia, C.-F.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Silver Oxide Crystals. Chem. Asian J. 2017, 12 (3), 293-297.

9. Hsieh, P.-L.; Madasu, M.; Hsiao, C.-H.; Peng, Y.-W.; Chen, L.-J.; Huang, M. H. Facet-Dependent and Adjacent Facet-Related Electrical Conductivity Properties of SrTiO3 Crystals. J. Phys. Chem. C 2021, 125 (18), 10051-10056.

10. Kumar, G.; Chen, C.-R.; Chen, B.-H.; Chen, J.-W.; Huang, M. H. Morphological Evolution of Cadmium Oxide Crystals Showing Color Changes and Facet-Dependent Conductivity Behavior. J. Mater. Chem. C 2022, 10 (33), 12125-12131.

11. Tan, C.-S.; Hsieh, P.-L.; Chen, L.-J.; Huang, M. H. Silicon Wafers with Facet-Dependent Electrical Conductivity Properties. Angew. Chem., Int. Ed. 2017, 56 (48), 15339-15343.

12. Hsieh, P.-L.; Lee, A.-T.; Chen, L.-J.; Huang, M. H., Germanium Wafers Possessing Facet‐Dependent Electrical Conductivity Properties. Angew. Chem., Int. Ed. 2018, 57 (49), 16162-16165.

13. Hsieh, P.-L.; Wu, S.-H.; Liang, T.-Y.; Chen, L.-J.; Huang, M. H. GaAs Wafers Possessing Facet-Dependent Electrical Conductivity Properties. J. Mater. Chem. C 2020, 8 (16), 5456-5460.

14. Hsieh, P.-L.; Kumar, G.; Wang, Y.-Y.; Lu, Y.-J.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of GaN Wafers. J. Mater. Chem. C 2021, 9 (42), 15354-15358.

15. Kumar, G.; Chen, J.-W.; Ma, H.-H.; Huang, X.-F.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of a 4H-SiC Wafer. J. Mater. Chem. C 2022, 10 (28), 10424-10428.

16. Hsieh, P.-L.; Naresh, G.; Huang, Y.-S.; Tsao, C.-W.; Hsu, Y.-J.; Chen, L.-J.; Huang, M. H. Shape-Tunable SrTiO3 Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. J. Phys. Chem. C 2019, 123 (22), 13664-13671.

17. Huang, M. H. Facet-Dependent Optical Properties of Semiconductor Nanocrystals. Small 2019, 15 (7), e1804726.

18. Hsiao, C.-H.; Chen, C.-W.; Chen, H.-S.; Hsieh, P.-L.; Chen, Y.-A.; Huang, M. H. Formation of Size-Tunable CdS Rhombic Dodecahedra. J. Mater. Chem. C 2021, 9 (18), 5992-5997.

19. Huang, M. H. Semiconductor Nanocrystals Possessing Broadly Size‐and Facet‐Dependent Optical Properties. J. Chin. Chem. Soc. 2021, 68 (1), 45-50.

20. Yang, Y.-C.; Peng, Y.-W.; Lee, A.-T.; Kumar, G.; Huang, M. H. CsPbBr3 and CsPbI3 Rhombic Dodecahedra and Nanocubes Displaying Facet-Dependent Optical Properties. Inorg. Chem. Front. 2021, 8 (21), 4685-4695.

21. Yang, Z.-L.; Kumar, G.; Huang, M. H. Synthesis of Zinc Blende-Phased CdSe Nanocrystals with Size-Tunable Optical Properties and Adjustable Valence Band Positions. Langmuir 2022, 38 (8), 2729-2736.

22. Huang, M. H.; Madasu, M. Facet-Dependent and Interfacial Plane-Related Photocatalytic Behaviors of Semiconductor Nanocrystals and Heterostructures. Nano Today 2019, 28, 100768.

23. Majumder, D.; Chakraborty, I.; Mandal, K.; Roy, S. Facet-Dependent Photodegradation of Methylene Blue Using Pristine CeO2 Nanostructures. ACS Omega 2019, 4 (2), 4243-4251.

24. Tan, C.-S.; Huang, M. H. Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations. Chem. Eur. J. 2017, 23 (49), 11866-11871.

25. Tan, C.-S.; Huang, M. H. Density Functional Theory Calculations Revealing Metal-like Band Structures for Ultrathin Ge {111} and {211} Surface Layers. Chem. Asian J. 2018, 13, 1972-1976.

26. Tan, C.-S.; Huang, M. H. Density Functional Theory Calculations Revealing Metal-like Band Structures and Work Function Variation for Ultrathin Gallium Arsenide (111) Surface Layers. Chem. Asian J. 2019, 14 (13), 2316-2321.

27. Tan, C.-S.; Huang, M. H. Surface-Dependent Band Structure Variations and Bond-Level Deviations in Cu2O. Inorg. Chem. Front. 2021, 8 (18), 4200-4208.

28. Tan, C.-S.; Huang, M. H. Surface-Dependent Band Structure Variations and Bond Deviations of GaN. Phys. Chem. Chem. Phys. 2022, 24 (16), 9135-9140.

29. Lyu, L.-M.; Wang, W.-C.; Huang, M. H. Synthesis of Ag2O Nanocrystals with Systematic Shape Evolution from Cubic to Hexapod Structures and Their Surface Properties. Chem. Eur. J. 2010, 16 (47), 14167-14174.

30. Huang, M. H.; Chiu, C.-Y. Achieving Polyhedral Nanocrystal Growth with Systematic Shape Control. J. Mater. Chem. A 2013, 1 (28), 8081-8092.

31. Kuo, C.-H.; Huang, M. H. Facile Synthesis of Cu2O Nanocrystals with Systematic Shape Evolution from Cubic to Octahedral Structures. J. Phys. Chem. C 2008, 112 (47), 18355-18360.

32. Kuo, C.-H.; Huang, M. H. Morphologically Controlled Synthesis of Cu2O Nanocrystals and Their Properties. Nano Today 2010, 5 (2), 106-116.

33. Wu, H.-L.; Kuo, C.-H.; Huang, M. H. Seed-Mediated Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic Dodecahedral Structures. Langmuir 2010, 26 (14), 12307-12313.

34. Cao, A. M.; Hu, J. S.; Liang, H. P.; Song, W. G.; Wan, L. J.; He, X. L.; Gao, X. G.; Xia, S. H., Hierarchically Structured Cobalt Oxide (Co3O4): the Morphology Control and Its Potential in Sensors. J. Phys. Chem. B 2006, 110 (32), 15858-63.

35. Hu, L.; Peng, Q.; Li, Y. Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion. J. Am. Chem. Soc. 2008, 130 (48), 16136-16137.

36. Xie, X.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. Low-Temperature Oxidation of CO Catalysed by Co3O4 Nanorods. Nature 2009, 458 (7239), 746-9.

37. He, T.; Chen, D.; Jiao, X. Controlled Synthesis of Co3O4 Nanoparticles through Oriented Aggregation. Chem. Mater. 2004, 16 (4), 737-743.

38. Uddin, M. K.; Baig, U. Synthesis of Co3O4 Nanoparticles and Their Performance towards Methyl Orange Dye Removal: Characterisation, Adsorption and Response Surface Methodology. J. Cleaner Prod. 2019, 211, 1141-1153.

39. Huang, H.; Zhu, W.; Tao, X.; Xia, Y.; Yu, Z.; Fang, J.; Gan, Y.; Zhang, W. Nanocrystal-Constructed Mesoporous Single-Crystalline Co3O4 Nanobelts with Superior Rate Capability for Advanced Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2012, 4 (11), 5974-5980.

40. Li, S.; Fu, K.; Xue, L.; Toprakci, O.; Li, Y.; Zhang, S.; Xu, G.; Lu, Y.; Zhang, X. Co3O4 /Carbon Composite Nanofibers for Use as Anode Material in Advanced Lithium-Ion Batteries. In Nanotechnology for Sustainable Energy, American Chemical Society: 2013; Vol. 1140, pp 55-66.

41. Yang, X.; Fan, K.; Zhu, Y.; Shen, J.; Jiang, X.; Zhao, P.; Luan, S.; Li, C. Electric Papers of Graphene-Coated Co3O4 Fibers for High-Performance Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2013, 5 (3), 997-1002.

42. Reddy, M. V.; Prithvi, G.; Loh, K. P.; Chowdari, B. V. R. Li Storage and Impedance Spectroscopy Studies on Co3O4, CoO, and CoN for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2014, 6 (1), 680-690.

43. Zhong, Y.-l.; Yu, Z.-j.; Wang, L.-t.; Liang, T.; Zhang, X.; Hong, G. Controllable Synthesis of Co3+-Enriched Anisotropy Co3O4 Hexagonal Prisms toward Enhanced Lithium Storage. ACS Appl. Energy Mater. 2020, 3 (6), 5856-5866.

44. Zhang, W.; Gao, R.; Chen, J.; Wang, J.; Zheng, J.; Huang, L.; Liu, X. Water-Induced Surface Reconstruction of Co3O4 on the (111) Plane for High-Efficiency Li–O2 Batteries in a Hybrid Electrolyte. ACS Appl. Mater. Interfaces 2022, 14 (25), 28965-28976.

45. Takada, S.; Fujii, M.; Kohiki, S.; Babasaki, T.; Deguchi, H.; Mitome, M.; Oku, M. Intraparticle Magnetic Properties of Co3O4 Nanocrystals. Nano Lett. 2001, 1 (7), 379-382.

46. Ichiyanagi, Y.; Kimishima, Y.; Yamada, S. Magnetic Study on Co3O4 Nanoparticles. J. Magnetism Magnetic Mater. 2004, 272, E1245-E1246.

47. Ichiyanagi, Y.; Yamada, S. The Size-Dependent Magnetic Properties of Co3O4 Nanoparticles. Polyhedron 2005, 24 (16-17), 2813-2816.

48. Shen, X.-P.; Miao, H.-J.; Zhao, H.; Xu, Z. Synthesis, Characterization and Magnetic Properties of Co3O4 Nanotubes. Appl. Phys. A 2008, 91 (1), 47-51.

49. Thota, S.; Kumar, A.; Kumar, J. Optical, Electrical and Magnetic Properties of Co3O4 Nanocrystallites Obtained by Thermal Decomposition of Sol–Gel Derived Oxalates. Mater. Sci. Eng.: B 2009, 164 (1), 30-37.

50. Seidov, Z.; Açıkgöz, M.; Kazan, S.; Mikailzade, F. Magnetic Properties of Co3O4 Polycrystal Powder. Ceramics Int. 2016, 42 (11), 12928-12931.

51. Gawali, S. R.; Gandhi, A. C.; Gaikwad, S. S.; Pant, J.; Chan, T.-S.; Cheng, C.-L.; Ma, Y.-R.; Wu, S. Y. Role of Cobalt Cations in Short Range Antiferromagnetic Co3O4 Nanoparticles: a Thermal Treatment Approach to Affecting Phonon and Magnetic Properties. Sci. Rep. 2018, 8 (1), 1-12.

52. Das, P.; Behera, B. C.; Dash, S. P.; E. S. R, A. N.; B, K. D.; Sahoo, N. K.; Tripathy, S. K. Co3O4 Magnetic Nanoparticles-Coated Optical Fibers for Sensing Sialic Acid. ACS Appl. Nano Mater. 2022, 5 (7), 8973-8981.

53. Jeon, H. S.; Jee, M. S.; Kim, H.; Ahn, S. J.; Hwang, Y. J.; Min, B. K. Simple Chemical Solution Deposition of Co3O4 Thin Film Electrocatalyst for Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2015, 7 (44), 24550-24555.

54. Zhou, X.; Shen, X.; Xia, Z.; Zhang, Z.; Li, J.; Ma, Y.; Qu, Y. Hollow Fluffy Co3O4 Cages as Efficient Electroactive Materials for Supercapacitors and Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2015, 7 (36), 20322-20331.

55. Farid, S.; Qiu, W.; Zhao, J.; Wu, D.; Song, X.; Ren, S.; Hao, C., Cobalt-Pyrazolate-Derived N-doped Porous Carbon with Embedded Cobalt Oxides for Enhanced Oxygen Evolution Reaction. Electrocatalysis 2020, 11 (1), 46-58.

56. Cole, K. M.; Kirk, D. W.; Thorpe, S. J. Co3O4 Nanoparticles Characterized by XPS and UPS. Surf. Sci. Spectra 2021, 28 (1), 014001.

57. Madasu, M.; Huang, M. H. Cu2O Polyhedra for Aryl Alkyne Homocoupling Reactions. Catal. Sci. Technol. 2020, 10 (20), 6948-6952.

58. Qiao, L.; Xiao, H. Y.; Meyer, H.; Sun, J.; Rouleau, C. M.; Puretzky, A. A.; Geohegan, D. B.; Ivanov, I. N.; Yoon, M.; Weber, W. J. Nature of the Band Gap and Origin of the Electro-/Photo-Activity of Co3O4. J. Mater. Chem. C 2013, 1 (31), 4628-4633.

59. Singh, V.; Kosa, M.; Majhi, K.; Major, D. T. Putting DFT to the Test: A First-Principles Study of Electronic, Magnetic, and Optical Properties of Co3O4. J. Chem. Theory Comput. 2015, 11 (1), 64-72.

60. Zhu, H. T.; Luo, J.; Liang, J. K.; Rao, G. H.; Li, J. B.; Zhang, J. Y.; Du, Z. M. Synthesis and Magnetic Properties of Antiferromagnetic Co3O4 Nanoparticles. Physica B: Cond. Matter 2008, 403 (18), 3141-3145.

Chapter 4 References
1. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano letters 2015, 15 (3), 2155-2160.

2. Tan, C. S.; Chen, Y. J.; Hsia, C. F.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Silver Oxide Crystals. Chem. Asian J. 2017, 12 (3), 293-297.

3. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of PbS Nanocrystals. Chem. Mater. 2016, 28 (5), 1574-1580.

4. Kumar, G.; Chen, C.-R.; Chen, B.-H.; Chen, J.-W.; Huang, M. H. Morphological Evolution of Cadmium Oxide Crystals Showing Color Changes and Facet-Dependent Conductivity Behavior. J. Mater. Chem. C 2022, 10 (33), 12125-12131.

5. Kim, C. W.; Yeob, S. J.; Cheng, H.-M.; Kang, Y. S. A Selectively Exposed Crystal Facet-Engineered TiO2 thin Film Photoanode for the Higher Performance of the Photoelectrochemical Water Splitting Reaction. Energy Environ. Sci. 2015, 8 (12), 3646-3653.

6. Liu, G.; Yin, L. C.; Pan, J.; Li, F.; Wen, L.; Zhen, C.; Cheng, H. M. Greatly Enhanced Electronic Conduction and Lithium Storage of Faceted TiO₂ Crystals Supported on Metallic Substrates by Tuning Crystallographic Orientation of TiO₂. Adv. Mater. 2015, 27 (23), 3507-12.

7. Hsieh, P.-L.; Madasu, M.; Hsiao, C.-H.; Peng, Y.-W.; Chen, L.-J.; Huang, M. H. Facet-Dependent and Adjacent Facet-related Electrical Conductivity Properties of SrTiO3 Crystals. J. Phys. Chem. C 2021, 125 (18), 10051-10056.

8. Kumar, G.; Chen, J.-W.; Ma, H.-H.; Huang, X.-F.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of a 4H-SiC Wafer. J. Mater. Chem. C 2022, 10 (28), 10424-10428.

9. Hsieh, P.-L.; Kumar, G.; Wang, Y.-Y.; Lu, Y.-J.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of GaN Wafers. J. Mater. Chem. C 2021, 9 (42), 15354-15358.

10. Hsieh, P.-L.; Wu, S.-H.; Liang, T.-Y.; Chen, L.-J.; Huang, M. H. GaAs Wafers Possessing Facet-Dependent Electrical Conductivity Properties. J. Mater. Chem. C 2020, 8 (16), 5456-5460.

11. Hsieh, P. L.; Lee, A. T.; Chen, L. J.; Huang, M. H. Germanium Wafers Possessing Facet-Dependent Electrical Conductivity Properties. Angew. Chem. Int. Ed. 2018, 57 (49), 16162-16165.

12. Tan, C. S.; Hsieh, P. L.; Chen, L. J.; Huang, M. H. Silicon Wafers with Facet-Dependent Electrical Conductivity Properties. Angew. Chem. Int. Ed. 2017, 56 (48), 15339-15343.

13. Kumar, G.; Chen, Z.-L.; Jena, S.; Huang, M. H. Facet-Dependent Optical and Electrical Properties of SrTiO3 Wafers. J. Mater. Chem. C 2023, 11 (11), 3885-3888.

14. Chang, C. H.; Madasu, M.; Wu, M. H.; Hsieh, P. L.; Huang, M. H. Formation of Size-Tunable CuI Tetrahedra Showing Small Band gap Variation and High Catalytic Performance towards Click reactions. J. Colloid Interface Sci. 2021, 591, 1-8.

15. Chiu, M. S.; Lin, C. C.; Lee, A. T.; Huang, Y. C.; Huang, M. H. Aqueous-Phase Synthesis of Size-Tunable PbSe Nanocubes at Room Temperature for Optical Property Characterization. Chem. Eur. J. 2019, 25 (1), 367-372.

16. Hsiao, C.-H.; Chen, C.-W.; Chen, H.-S.; Hsieh, P.-L.; Chen, Y.-A.; Huang, M. H. Formation of Size-tunable CdS Rhombic Dodecahedra. J. Mater. Chem. C 2021, 9 (18), 5992-5997.

17. Hsieh, M. S.; Su, H. J.; Hsieh, P. L.; Chiang, Y. W.; Huang, M. H. Synthesis of Ag3PO4 Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Appl. Mater. Interfaces 2017, 9 (44), 39086-39093.

18. Huang, Y.-C.; Wu, S.-H.; Hsiao, C.-H.; Lee, A.-T.; Huang, M. H. Mild Synthesis of Size-Tunable CeO2 Octahedra for Band gap Variation. Chem. Mater. 2020, 32 (6), 2631-2638.

19. Huang, Y.-C.; Yang, Z.-L.; Hsieh, P.-L.; Huang, M. H. Size-tunable Cu3Se2 Nanocubes Possessing Surface Plasmon Resonance Properties for Photothermal Applications. ACS Appl. Nano Mater. 2020, 3 (8), 8446-8452.

20. Lee, A. T.; Huang, M. H. Synthesis of Size‐tunable Zinc Blende ZnS Nanocrystals. J. Chin. Chem. Soc. 2020, 67 (3), 339-343.

21. Wu, S. H.; Hsiao, C. H.; Hsieh, P. L.; Huang, X. F.; Huang, M. H. Growth of CeO2 Nanocubes Showing Size-dependent Optical and Oxygen Evolution Reaction Behaviors. Dalton Trans. 2021, 50 (42), 15170-15175.

22. Yang, Z. L.; Kumar, G.; Huang, M. H. Synthesis of Zinc Blende-Phased CdSe Nanocrystals with Size-Tunable Optical Properties and Adjustable Valence Band Positions. Langmuir 2022, 38 (8), 2729-2736.

23. Hsu, S. C.; Liu, S. Y.; Wang, H. J.; Huang, M. H. Facet-dependent Surface Plasmon Resonance Properties of Au-Cu2O Core-shell Nanocubes, Octahedra, and Rhombic dodecahedra. Small 2015, 11 (2), 195-201.

24. Yang, Y. C.; Wang, H. J.; Whang, J.; Huang, J. S.; Lyu, L. M.; Lin, P. H.; Gwo, S.; Huang, M. H. Facet-Dependent Optical Properties of Polyhedral Au-Cu₂O Core-Shell Nanocrystals. Nanoscale 2014, 6 (8), 4316-24.

25. Huang, M. H.; Kumar, G. Origin and Manifestation of Semiconductor Facet Effects. J. Chin. Chem. Soc. 2022, 69, 1190-1199.

26. Chen, Y. J.; Chiang, Y. W.; Huang, M. H. Synthesis of Diverse Ag2O Crystals and Their Facet-Dependent Photocatalytic Activity Examination. ACS Appl. Mater. Interfaces 2016, 8 (30), 19672-9.

27. Harn, Y. W.; Yang, T. H.; Tang, T. Y.; Chen, M. C.; Wu, J. M. Facet‐Dependent Photocatalytic Activity and Facet‐Selective Etching of Silver (I) Oxide Crystals with Controlled Morphology. Chem. Cat. Chem. 2015, 7 (1), 80-86.

28. Huang, M.; Weng, S.; Wang, B.; Hu, J.; Fu, X.; Liu, P. Various Facet Tunable ZnO Crystals by a Scalable Solvothermal Synthesis and Their Facet-Dependent Photocatalytic Activities. J. Phys. Chem. C 2014, 118 (44), 25434-25440.

29. Majumder, D.; Chakraborty, I.; Mandal, K.; Roy, S. Facet-Dependent Photodegradation of Methylene Blue Using Pristine CeO2 Nanostructures. ACS Omega 2019, 4 (2), 4243-4251.

30. Hsieh, P.-L.; Naresh, G.; Huang, Y.-S.; Tsao, C.-W.; Hsu, Y.-J.; Chen, L.-J.; Huang, M. H. Shape-tunable SrTiO3 Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. J. Phys. Chem. C 2019, 123 (22), 13664-13671.

31. Tan, C. S.; Huang, M. H. Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations. Chem. Eur. J. 2017, 23 (49), 11866-11871.

32. Tan, C. S.; Huang, M. H. Density Functional Theory Calculations Revealing Metal-like Band Structures and Work Function Variation for Ultrathin Gallium Arsenide (111) Surface Layers. Chem. Asian J. 2019, 14 (13), 2316-2321.

33. Tan, C. S.; Huang, M. H. Density Functional Theory Calculations Revealing Metal‐like Band Structures for Ultrathin Germanium (111) and (211) Surface Layers. Chem. Asian J. 2018, 13 (15), 1972-1976.

34. Tan, C.-S.; Huang, M. H. Surface-dependent band structure variations and bond-level deviations in Cu2O. Inorg. Chem. Front. 2021, 8 (18), 4200-4208.

35. Tan, C.-S.; Huang, M. H. Surface-Dependent Band Structure Variations and Bond Deviations of GaN. Phys. Chem. Chem. Phys. 2022, 24 (16), 9135-9140.

36. Madasu, M.; Huang, M. H. Cu2O Polyhedra for Aryl alkyne Homocoupling Reactions. Catal. Sci. Technol. 2020, 10 (20), 6948-6952.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以植晶法合成多截面的金奈米粒子及具分支的金奈米晶體
2. 氧化鋅與氧化鎘奈米線的合成
3. 利用中孔洞沸石材料形成氮化鈦奈米金屬線及合成規則性中孔洞有機矽薄膜
4. 垂直式奈米碳管的合成及碳管-金奈米粒子複合物的製備與光譜鑑定
5. 1. Hydrothermal Synthesis of ZnO, Au2S and CuS Nano/Microstructures and the Characterization of Their Properties 2. Growth of Ultralong and Highly Blue Luminescent Gallium Oxide Nanowires and Nanobelts and Direct Horizontal Nanowire Growth on Substrates
6. 氮化鎵奈米柱結構於中孔洞沸石粉末的製備與光譜分析
7. 水溶液加熱還原法合成二維金奈米晶體
8. 高產量高長寬比金奈米棒的製備與多分支金奈米粒子的直接合成
9. 一、奈米金結構之合成、官能基化與組裝 二、水相加熱法合成三角與六角金奈米片狀結構之成長機制研究
10. Growth of ZnO and CdO Nanowires by Vapor Transport. Synthesis of Core-Shell Ga-GaN Nanostructures and GaN Hollow Spheres via Reflux Method
11. 一、水相加熱法合成極小三角金奈米片狀結構 二、以植晶法製備具雙錐狀金奈米結構及其形狀轉換成多分支楊桃狀金奈米粒子
12. 利用中孔洞氧化矽材料形成氮化銦及氧化銦奈米棒的製備與光譜分析
13. 以植晶法製備鈀奈米棒和具分支的鈀奈米晶體與可調控之高徑長比金奈米棒的合成
14. 合成規則性中孔洞有機矽薄膜並在有機矽孔壁存在分子尺寸規則排列
15. 水熱法合成金奈米八面體與不同金屬離子對其形狀的影響
 
* *