帳號:guest(3.137.178.9)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):阿克謝
作者(外文):Akshay Subhash Narode
論文名稱(中文):金金屬催化炔烴和重氮形成官能化的碳環和雜環
論文名稱(外文):Gold-Catalyzed Reaction between Alkynes and Diazo to afford Functionalized Carbo and Heterocycles
指導教授(中文):劉瑞雄
指導教授(外文):Liu, Rai-Shung
口試委員(中文):李文泰
侯敦仁
蔡易州
黃國柱
口試委員(外文):Li, Wen-Tai
Hou, Duen-Ren
Tsai, Yi-Chou
Hwang, Kuo-Chu
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:107023856
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:473
中文關鍵詞:金催化化的碳環和雜環
外文關鍵詞:Gold catalysisCarbocycles and Heterocycles
相關次數:
  • 推薦推薦:0
  • 點閱點閱:70
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文描述了使用金或銀催化劑進行的新合成有機轉化的發展。使用這些金屬使易取得的起始物可以進行溫和、選擇性和高效的轉化,形成多樣的雜環和碳環產物。
本論文分為四個章節,第一章包括金催化的酮乙烯基重氮化合物與N-(鄰位-炔苯基)亞胺的加成反應,生成3-(呋喃-2-基甲基)-1H-吲哚化合物,涉及骨架重排;這些新的催化反應適用於多樣的起始物。我們提出了一個新的機理,其中酮二氮甲烷先與亞甲基亞胺中間體進行初始加成反應,生成含金的N-烷基化吲哚中間體,然後經歷質子誘導的1,3-基團遷移生成偶氮基金和烯丙基陽離子對。

第二章包括從金催化的N-(o-炔基苯基)亞胺和α-酮二氮甲烷之間的環化反應中,一鍋法合成5,6-二氫吲哚[2,1-a]異喹啉化合物。這個聯級反應包括酮二氮甲烷的初始加成到亞胺形成順式環丙胺,接著是選擇性的[3+3]-環化反應與鏈接的炔芳基。我們利用這個新的催化反應來合成一個生物活性的5,6-二氫吲哚[2,1-a]異喹啉分子。

第三章包括Ag(I)/Au(I)催化劑的中繼反應過程,從2-炔基苯甲醛和α-酮二氮甲烷的一鍋法合成骨架重排的(1-羥甲基亞甲基)茚衍生物。這個聯級反應序列包括Au(I)催化下高度烯酮化醛順式環內5-endo-dig攻擊鏈接的炔烴,引導產生一個形式為1,3-羥甲基亞甲基轉移的碳環化反應。基於DFT計算,該機制可能涉及環丙基金卡賓的形成,接著是1,2-環丙烷遷移。

第四章包含合成取代的-(呋喃-3-基)乙基)-1氫-吡唑-5-基)甲酮衍生物的方法,該方法是通過1-(1-炔基)環丙基酮和乙烯基重氮酮在溫和反應條件下在金(I)催化作用下反應得到的。在反應步驟中,觀察到乙烯基重氮酮經歷熱環化產生吡唑中間體,該中間體作為親核基以良好至優秀的產率得到目標產物。
This dissertation describes the development of new synthetic organic transformations by using gold or silver catalysts. The use of these metals enables mild, selective, and efficient transformations of readily available substrates into wide range of heterocyclic and carbocyclic product. This dissertation is split into four chapters for convenience of comprehension.
Chapter one is comprised of gold catalyzed additions of vinyldiazo ketones to N-(o-alkynylphenyl)imines to yield 3-(furan-2-ylmethyl)-1H-indoles involving skeletal rearrangement; these new catalytic reactions are applicable to a wide range of substrates. We postulate a new mechanism involving an initial addition of diazo ketones to azomethine ylide intermediates to yield gold-containing N-alkylated indole intermediates that undergo proton-induced 1,3-group migrations, generating azallyl gold and allylic cation pairs.

Chapter two is comprised of one-pot synthesis of 5,6-dihydroindolo[2,1-a]isoquinolines from gold-catalyzed annulations between N-(o-alkynylphenyl)imines and α-diazo esters. This cascade reaction involves an initial attack of diazo ester at the imine to form cis-aziridine, followed by a stereoselective [3+3]-annulations with the tethered arylalkyne. We have employed this new catalysis to prepare one bioactive 5,6-dihydroindolo[2,1-a]isoquinoline molecule.


Chapter three is comprised relay process of Ag(I)/Au(I) catalysts, one-pot synthesis of skeletally rearranged (1-hydroxymethylidene)indene derivatives from 2-alkynylbenzaldehydes and α-diazo esters. This cascade sequence involves Au(I)-catalyzed 5-endo-dig attack of highly enolizable aldehydes at the tethered alkynes, leading to carbocyclizations with a formal 1,3-hydroxymethylidene transfer. Based on DFT calculations, the mechanism likely involves formation of cyclopropylgold carbenes, followed by an appealing 1,2-cyclopropane migration.


Chapter four is comprised an efficient approach to synthesize the substituted -(furan-3-yl)ethyl)-1H-pyrazol-5-yl)methanone derivative through a gold (I) catalyzed reaction between 1-(1-alkynyl)cyclopropyl ketones and vinyldiazo ketone under mild reaction condition. In the reaction sequence we observed the vinyldiazo ketone undergo the thermal cyclization to produced a pyrazole intermediate that acted as a nucleophile to afford the desired product in good to excellent yields.

TABLE OF CONTENTS
Abstract
I
Acknowledgment
IV
Table of content
VI
List of Schemes
IX
List of Tables
XI
List of Figures
XII
List of Publications
XIV
Abbreviations
XV









Chapter 1: Gold(I)-Catalyzed Reactions between N-(o-Alkynylphenyl)imines and Vinyldiazo Ketones to Form 3-(Furan-2-ylmethyl)-1H-indoles via Postulated Azallyl Gold and Allylic Cation Intermediates
Introduction 02
Result and Discussion 17
Conclusion 30
Experimental Procedure 30
Spectral Data 35
References 47
X-ray Crystallographic Data 51
1H and 13C NMR Spectra 53


Chapter 2: Gold-Catalyzed Bicyclic Annulations of N-(o-alkynylphenyl)imines with α-Diazo Esters to Form 5,6-Dihydroindolo[2,1-a]isoquinolines
Introduction 100
Result and Discussion 112
Conclusion 129
Experimental Procedure 129
Spectral Data 136
References 158
X-ray Crystallographic Data 162
1H and 13C NMR Spectra 166

Chapter 3: Gold-Catalyzed Addition of β-Oxo Enols at Tethered Alkynes via a Non Conia-ene Pathway: Observation of a Formal 1,3-Hydroxymethylidene Migration
Introduction 259
Result and Discussion 270
Conclusion 286
Experimental Procedure 286
Spectral Data 299
References 316
X-ray Crystallographic Data 323
1H and 13C NMR Spectra 326

Chapter 4: Gold(I)‐Catalyzed Reaction of 1‐(1‐Alkynyl)‐cyclopropyl Ketones with Vinyldiazo Ketones for Divergent Synthesis of substituted Furanyl Heterocycles.
Introduction 404
Result and Discussion 413
Conclusion 423
Experimental Procedure 423
Spectral Data 427
References 435
X-ray Crystallographic Data 438
1H and 13C NMR Spectra 440
Chapter-1
References:
1) E. Aguilar, J. Santamaria, Org. Chem. Front, 2019, 6, 1513–1540. b) L. S. Hegedus and B. C. G. Södeberg, in Transition Metals in the Synthesis of Complex Organic Molecules, 3rd edition, University Science Books, Sausalito, CA, 2010.
2) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896−7936.
3) Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410−3449.
4) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180−3211.
5) (a) Li, Z. G.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239−3265. (b) Jimenez-Nu ́ ń ̃ez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326−3350. (c) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351−3378. (d) Arcadi, A. Chem. Rev. 2008, 108, 3266−3325. (e) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994−2009.
6) (a) Corma, A.; Leyva-Perez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657−1712. (b) Garayalde, D.; Nevado, C. ACS Catal. 2012, 2, 1462−1479. (c) Yang, W.; Hashmi, A. S. K. Chem. Soc. Rev. 2014, 43, 2941−2955.
7) Pflasterer, D.; Hashmi, A. S. K. Chem. Soc. Rev. 2016, 45, 1331−1367.
8) Rudolph, M.; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 41, 2448−2462.
9) Lauterbach, T.; Asiri, A. M.; Hashmi, A. S. K. Adv. Organomet. Chem. 2014, 62, 261−297.
10) Liu, L.-P.; Hammond, G. B. Chem. Soc. Rev. 2012, 41, 3129− 3139
11) Zhang, L. A Acc. Chem. Res. 2014, 47, 877−888.
12) Wang, T.; Hashmi, A. S. K. Chem. Rev. 2021, 121, 8948− 8978.
13) (a) Fructos, M. R.; Belderrain, T. R.; Fremont, P.; Scott, N. M.; ́ Nolan, S. P.; Díaz-Requejo, M. M.; Perez, P. J. Angew. Chem., Int. Ed. 2005, 44, 5284−5288. (b) Ung, G.; Soleilhavoup, M.; Bertrand, G. Angew. Chem., Int. Ed. 2013, 52, 758−761. (c) Solorio-Alvarado, C. R.; Wang, Y.; Echavarren, A. M. J. Am. Chem. Soc. 2011, 133, 11952−11955. (d) Hadfield, M. S.; Lee, A. Chem. Commun. 2011, 47, 1333−1335. (e) Wang, Y.; Muratore, M. E.; Rong, Z.; Echavarren, A. M. Angew. Chem., Int. Ed. 2014, 53, 14022−14026. (f) Marion, N.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2750−2752. (g) Chen, L.; Chen, K.; Zhu, S. Chem. 2018, 4, 1208−1262. (h) Zhang, L. A. Acc. Chem. Res. 2014, 47, 877−888.
14) Yuan, S. Y.; Yan, Q. Q.; Wang, D.; Dan, T. T.; He, L.; He, C. Y.; Chu, W. D.; Liu, Q. Z. Org. Lett.2021,23, 4823–4827.
15) Chakrabarty, I.; Inamdar, S. M.; Akram, M. O.; Gade, A. B.; Banerjee, S.; Bera, S.; Patil, N. T. Chem. Commun. 2017, 53, 196−199.
16) Kusama, H.; Takaya, J.; Iwasawa, N. A. J. Am. Chem. Soc. 2002, 124, 11592−11593.
17) Kusama, H.; Suzuki, Y.; Takaya, J.; Iwasawa, N. Org. Lett. 2006, 8, 895−897.
18) Takaya, J.; Miyashita, Y.; Kusama, H.; Iwasawa, N. Tetrahedron 2011, 67, 4455−4466.
19) Jadhav, A. M.; Pagar, V. V.; Liu, R.-S. Angew. Chem. Int. Ed. 2012, 51, 11809.
20) Kardile, R. D.; Liu, R.-S. Org. Lett. 2019, 21, 6452−6456.
21) Kardile, R. D.; Liu, R.-S. Org. Lett. 2020, 22, 8229−8233.
22) See selected reviews: (a) Sharma, V.; Kumar, P.; Pathak, D. J. Heterocycl. Chem. 2010, 47, 491-502. (b) Kaushik, N. K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C. H.; Verma, A. K.; Choi, E. H. Molecules 2013, 18, 6620-6662. (c) Zhang, M.-Z.; Chen, Q.; Yang, G.-F. Eur. J. Med. Chem. 2015, 89, 421-441. (d) Singh, T. P.; Singh, O. M. Mini-Rev. Med. Chem. 2018, 18, 9-25.
23) (a) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873-2920. (b) McLaughlin, M.; Palucki, M.; Davies, I. W. Org. Lett. 2006, 8, 3307-3310. (c) Burton, R. R.; Tam, W. Org. Lett. 2007, 9, 3287-3290. (d) Stokes, B. J.; Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driver, T. G. J. Am. Chem. Soc. 2007, 129, 7500-7501. (e) Trost, B. M.; McClory, A. Angew. Chem., Int. Ed. 2007, 46, 2074-2077. (f) Ohta, Y.; Chiba, H.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2008, 10, 3535-3538. (g) Fang, Y. Q.; Lautens, M. J. Org. Chem. 2008, 73, 538-549. (h) Shi, Z.; Zhang, C.; Li, S.; Pan, D.; Ding, S.; Cui, Y.; Jiao, N. Angew. Chem. 2009, 121, 4642-4646. (i) Youn, S. W.; Ko, T. Y. Asian J. Org. Chem. 2018, 7, 1467-1487. (j) Sharma, P.; Liu, R.-S. Org. Lett. 2016, 18, 412-415. (k) Kawade, R. K.; Huang, P.-H.; Karad, S. N.; Liu, R.-S. Org. Biomol. Chem. 2014, 12, 737-740. (l) Singh, R. R.; Liu, R.-S. Chem. Commun. 2017, 53, 4593-4596.
24) For recent reviews, see (a) Dudnik, A.; Chernyak, N.; Ge-vorgyan, V. Aldrichimica Acta 2010, 43, 37-46. (b) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084-3213. (c) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873-2920. (d) Shapiro, N. D.; Toste, F. D. Synlett 2010, 2010, 675-691. (e) Pflästerer, D.; Hashmi, A. S. K. Chem. Soc. Rev. 2016, 45, 1331-1367.
25) (a) Nakamura, I.; Mizushima, Y.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 15022-15023. (b) Fürstner, A.; Davies, P. W. J. Am. Chem. Soc. 2005, 127, 15024-15025. (c) Fürstner, A.; Heil-mann, E. K.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 4760-4763. (d) Nakamura, I.; Chan, C. S.; Araki, T.; Terada, M.; Yama-moto, Y. Adv. Synth. Catal. 2009, 351, 1089-1100. (e) Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 12598-12599. (f) Zi, W.; Toste, F. D. J. Am. Chem. Soc. 2013, 135, 12600-12603. (f) Yu, Y.; Yang, W.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2013, 52, 7586-7589.
26) (a) Cacchi, S.; Fabrizi, G.; Moro, L. Synlett 1998, 1998, 741-745. (b) Liang, Z.; Ma, S.; Yu, J.; Xu, R. J. Org. Chem. 2007, 72, 9219-9224. (c) Majumdar, K. C.; Hazra, S.; Roy, B. Tetrahedron Lett. 2011, 52, 6697-6701. (d) Shi, Y.; Roth, K. E.; Ramgren, S. D.; Blum, S. A. J. Am. Chem. Soc. 2009, 131, 18022-18023. (e) Ackermann, M.; Bucher, J.; Rappold, M.; Graf, K.; Rominger, F.; Hashmi, A. S. K. Chem. Asian J. 2013, 8, 1786-1794.
27) (a) Nakamura, I.; Sato, T.; Terada, M.; Yamamoto, Y. Org. Lett. 2008, 10, 2649-2651. (b) Sato, T.; Nakamura, I.; Terada, M. Eur. J. Org. Chem. 2009, 5509-5512. (c) Benzyl and cinnamyl groups: Hashmi, A. S. K.; Lothschütz, C.; Döpp, R.; Ackermann, M.; De Buck Becker, J.; Rudolph, M.; Scholz, C.; Rominger, F. Adv. Synth. Catal. 2012, 354, 133-147. (d) Benzyl group: Komeyama, K.; Takahashi, K.; Takaki, K. Org. Lett. 2008, 10, 5119-5122.
28) (a) Shimada, T.; Nakamura, I.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 10546-10547. (b) Nakamura, I.; Mizushima, Y.; Yamagishi, U.; Yamamoto, Y. Tetrahedron 2007, 63, 8670-8676. (c) Nakamura, I.; Sato, Y.; Konta, S.; Terada, M. Tetrahedron Lett. 2009, 50, 2075-2077.
29) Zeng, X.; Kinjo, R.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2010, 49, 942-945.
30) (a) Nakamura, I.; Yamagishi, U.; Song, D.; Konta, S.; Yamamo-to, Y. Angew. Chem., Int. Ed. 2007, 46, 2284-2287. (b) Nakamura, I.; Yamagishi, U.; Song, D.; Konta, S.; Yamamoto, Y. Chem. - Asian J. 2008, 3, 285-295.
31) (a) Hirner, J. J.; Faizi, D. J.; Blum, S. A. J. Am. Chem. Soc. 2014, 136, 4740-4745. (b) Chong, E.; Blum, S. A. J. Am. Chem. Soc. 2015, 137, 10144-10147. (c) Faizi, D. J.; Issaian, A.; Davis, A. J.; Blum, S. A. J. Am. Chem. Soc. 2016, 138, 2126-2129.
32) (a) Oh, C. H.; Karmakar, S.; Park, H. S.; Ahn, Y. C.; Kim, J. W. J. Am. Chem. Soc. 2010, 132, 1792-1793. (b) Oh, C. H.; Park, H. S.; Park, N.; Kim, S. Y.; Piao, L. Synlett 2014, 25, 579-585.
33) Kusama, H.; Miyashita, Y.; Takaya, J.; Iwasawa, N. Org. Lett. 2006, 8, 289-292.
34) (a) Siddiqui, S. K.; SahayaSheela, V. J.; Kolluru, S.; Pandian, G. N.; Santhoshkumar, T. R.; Dan, V. M.; Ramana, C. V. Bioorg. Med. Chem. Lett. 2020, 30, 127431. (b) Khan, I.; Sharma, A.; Kamboj, P.; Maity, B.; Tyagi, V.; ChemistrySelect 2020, 5, 591-600. (c) Lézé, M.-P.; Borgne, M. L.; Marchand, P.; Loquet, D.; Kogler, M.; Baut, G. L.; Palusczak, A.; Hartmann, R. W. Med. Chem. 2004, 19, 549-557. (d) Ruengsangtongkul, S.; Taprasert, P.; Sirion, U.; Jaratjaroonphong, J. Org. Biomol. Chem. 2016, 14, 8493-8502. (e) Jillella, R.; Oh, D. H.; Oh, C. H. New J. Chem. 2018, 42, 16886-16890.
35) CCDC 2049435 (1-4c) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
36) (a) Hinman, R. L.; Whipple, E. B. J. Am. Chem. Soc. 1962, 84, 2534-2539. (b) Morozov, O. S.; Lunchev, A. V.; Bush, A. A.; Tu-kov, A. A.; Asachenko, A. F.; Khrustalev, V. N.; Zalesskiy, S. S.; Ananikov, V. P.; Nechaev, M. S. Chem. Eur. J. 2014, 20, 6162-6170. (c) Michalska, M.; Grela, K. Synlett 2016, 27, 599-603. (d) Gao, J.; Shao, Y.; Zhu, J.; Zhu, J.; Mao, H.; Wang, X.; Lv, X. J. Org. Chem. 2014, 79, 9000-9008.
37) Kardile, R. D.; Liu, R.-S. Org. Lett. 2020, 22, 8229-8233.
38) For the use of vinyldiazo ketones to attack electrophiles see: (a) Raj, A. S. K.; Liu, R.-S. Angew.Chem., Int. Ed. 2019, 58, 10980-10984. (b) Raj, A. S. K.; Liu, R.-S. Adv. Synth. Catal. 2020, 362, 2517-2522. (c) Pagar, V. V.; Liu, R.-S. Angew. Chem., Int. Ed. 2015, 54, 4923-4926.
39) (a) Chakrabarty, I.; Inamdar, S. M.; Akram, M. O.; Gade, A. B.; Banerjee, S.; Bera, S.; Patil, N. T. Chem. Commun. 2017, 53, 196-199. (b) Kusama, H.; Miyashita, Y.; Takaya, J.; Iwasawa, N. Org. Lett. 2006, 8, 289-292; (c) Gabriele, B.; Veltri, L.; Salerno, G.; Mancuso, R.; Costa, M. Adv. Synth. Catal. 2010, 352, 3355−3363. (d) Kusama, H.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 11592-11593. (e) Takeda, A.; Kamijo, S.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 5662-5663.
40) (a) Raj, A. S. K.; Liu, R.-S. Angew.Chem., Int. Ed. 2019, 58,10980-10984. (b) Raj, A. S. K.; Liu, R.-S. Adv. Synth. Catal. 2020, 362, 2517-2522. (c) Marichev, K. O.; Wang, Y.; Carranco, A. M.; Garcia, E. C.; Yu, Z.-X.; Doyle, M. P. Chem. Commun., 2018, 54, 9513- 9516.

Chapter-2
References:
1) Comperhensive review on α-diazocarobnyl compounds, see (a) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091−1160. (b) Padwa, A.; Austin, D. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 1797−1815. (c) Padwa, A.; Weingarten, M.D. Chem. Rev. 1996, 96, 223. (d) Doyle, M.P; McKervey, M.A.; Ye, T. in modern catalytic methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998. (e) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911−936. (f) Padwa, A. J. Organomet. Chem. 2001, 30, 50. (g) Davies H.M. L.; Beckwith, R.E.J. Chem. Rev. 2003, 103, 2861.
2) For a discussion on nucleophilicity of diazo compounds, see: Bug, T.; Hartnagel, M.; Schlierf, C.; Mayr, H. Chem. - Eur. J. 2003, 9, 4068−4076.
3) (a) Wenkert, E.; McPherson, A. A. J. Am. Chem. Soc. 1972, 94, 8084. (b) Burkoth, T.L. Tetrahedron Lett. 1969, 57, 5049. (c) Woolsey, N.F.; Khalil, M. H. J. Org. Chem. 1972, 37, 2405.
4) Jiang, N.; Qu. Z.; Wang, J. Org. Lett. 2001, 3, 2989.
5) (a) Schollkopf, U.; Frasnelli, H.; Hoppe, D. Angew. Chem., Int. Ed. 1970, 9, 300. (b) Schollkopf, U.; Banhidai, B.; Frasnelli, H.; Meyer, R.; Beckhaus, H. Liebigs Ann. Chem.1974, 1767.
6) Pellicciari, R.; Natalini, B. J. Chem.Soc., Perkin trans. 1977, 1, 1882. (b) Pellicciari, R.; Natalini, B.; Sadeghpour, B. M.; Marinozzi, M.; Snyder, J. P.; Williamson, B. L.; Kuethe, J. T.; Padwa, A. J Am. Chem. Soc. 1996, 118,1. (c) Moody, C. J.; Taylor, R. J. Tetrahedron Lett. 1987, 28, 5351.
7) (a) Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, 91, 263-309. (b) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577-6605. (c) Davies, H. M. L.; Denton, J. R. Chem. Soc. Rev. 2009, 38, 3061-3071. (d) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704-724. (e) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
8) For recent reviews on phototransformations of diazo compounds see: (a) Candeias, N.; Afonso. C. Curr. Org. Chem. 2009, 13, 763. (b) Galkina, O. S.; Rodina, L. L. Russ. Chem. Rev. 2016. 85. 537. (c) Ciszewski, Ł. W.; Rybicka-Jasinska, ́ K.; Gryko, D. Org. Biomol. Chem. 2019, 17, 432−448.
9) Knimper, I. R., Gerisch, M., Suh, I. lW.; Bergman, H.G.; Tilley, T. D. J. Org. Chem. 2003, 68, 9705-9710.
10) Ranocchiari, M.; Mezzetti, A. Orgariimetallics 2009, 28, 3611-3613.
11) Lee, S.-H.; Han, T.-D.; Yu, K.; Ahn, K.-H. Bull. Korean Chem. Soc. 2001, 22, 449.
12) Lee, S.-H.; Song, I.-W. Bull. Korean Chem. Soc. 2005, 26, 223.
13) (a) Casamibios, L.; Perez, J. A.; Brookhart, M.; Templeton, J. L. J. Org. Chem. 1996. 61, 8358-8359 (b) D. Morales, J. Perez, L. Riera, V. Riera, R. C.-Suarez, S. G.-Granda. D. Miguel Organometallics 2002, 21, 1540-1545. (c) J. S. Yadav, B. V. S. Reddy, M. S. Rao. P. fi. Reddj, Tetrahedron Lett. 2003, 44, 5275-5278. (d) J. C. Antilla, W. D. Wulff, J. Am. Chem. Soc. 1999, 121, 5099-5100.
14) (a) Desai, A. A.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 13100-13103. (b) Zeng. X.; Xu, Z.; Lu, M.; Zhong, G. Org. Lett. 2009, 11, 3036-3039. (c) Bew, S. P.; Carrington. R.; Hughes, D. L.; Liddle, J.; Pesce, P. Adv.Synt.Catal. 2009, 351, 2579-2588. (d) Akiyama, T.; Suzuki, T.; Mori, K. Org. Lett. 2009, 11, 2445-2447. (e) Williams, A. L.; Johnston. J. N. J. Am. Chem. Soc. 2004, 126, 1612-1613. (f) Bew, S.P.; Liddle, J.; Hughes, D. L.; Pesce, P.; Thurston, S.M. Angew. Chem. Int. Ed. 2017, 56, 5322-5326. (g) Hashimoto, T.: Nakatsu. H.; Watanabe, S.; Maruoka, K. Org. lett. 2010, 12, 1668-1671. (h) Huang, L.; Wullf, J. Am. Chem. Soc.2011, 133, 8892-8895.
15) Feng, J.-J.; Zhang, J. ACS Catal. 2016, 6, 6651−6661.
16) Wender, P. A.; Strand, D. J. Am. Chem. Soc. 2009, 131, 7528−7529.
17) Fan, J.; Gao, L.; Wang, Z. Chem. Commun. 2009, 5021−5023.
18) Pankova, A. S.; Voronin, V. V.; Kuznetsov, M. A. Tetrahedron Lett. 2009, 50, 5990−5993.
19) Oh, C. H.; Karmakar, S.; Park, H. S.; Ahn, Y. C.; Kim, J. W. J. Am. Chem. Soc. 2010, 132, 1792−1793.
20) Kulandai Raj, A. S.; Narode, A. S.; Liu, R.-S. Org. Lett. 2021, 23, 1378−1382
21) Kardile, R. D.; Liu, R.-S. Org. Lett, 2020, 22, 8229-8233.
22) See selected reviews: (a) Sharma, V.; Kumar, P.; Pathak, D. Biological importance of the indole nucleus in recent years: A com-prehensive review. J. Heterocycl. Chem. 2010, 47, 491-502. (b) Zhang, M.-Z.; Chen, Q.; Yang, G.-F. Eur. J. Med. Chem. 2015, 89, 421-441. (c) Singh, T. P.; Singh, O. M. MiniRev. Med. Chem. 2017, 18, 9−25. (d) Wang, Y.; Liu, L.; Zhang, L. Chem. Sci. 2013, 4, 739–746. (e) Wang, Y.; Ye, L.; Zhang, L. Chem. Commun. 2011, 47, 7815-7817.
23) (a) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873−2920. (b) McLaughlin, M.; Palucki, M.; Davies, I. W. Org. Lett. 2006, 8, 3307-3310. (c) Stokes, B. J.; Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driv-er, T. G. J. Am. Chem. Soc. 2007, 129, 7500-7501. (d) Trost, B. M.; McClory, A. Angew. Chem., Int. Ed. 2007, 46, 2074-2077. (e) Ohta, Y.; Chiba, H.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2008, 10, 3535-3538. (f) Sharma, P.; Liu, R.-S. Org. Lett. 2016, 18, 412-415. (g) Singh, R. R.; Liu, R.-S. Chem. Commun. 2017, 53, 4593-4596.
24) (a) Kusama, H.; Suzuki, Y.; Takaya, J.; Iwasawa, N. Org. Lett. 2006, 8, 895−897. (b) Chakrabarty, I.; Inamdar, S. M.; Akram, M. O.; Gade, A. B.; Banerjee, S.; Bera, S.; Patil, N. T. Chem. Commun. 2017, 53, 196−199. (c) Kusama, H.; Takaya, J.; Iwasawa, N. A. J. Am. Chem. Soc. 2002, 124, 11592−11593.
25) Kusama, H.; Miyashita, Y.; Takaya, J.; Iwasawa, N. Org. Lett. 2006, 8, 289-292.
26) Degennaro, L.; Trinchera, P.; Luisi, R. Chem. Rev. 2014, 114, 7881.
27) See selected examples: (a) Henke, B. R.; Kouklis, A. J.; Heathcock, C. H. J. Org. Chem. 1992, 57, 7056−7066. (b) Wender, P. A.; Strand, D. J. Am. Chem. Soc. 2009, 131, 7528−7529. (c) Fan, J.; Gao, L.; Wang, Z. Chem. Commun. 2009, 5021−5023. (d) Madhushaw, R. J.; Hu, C.-C.; Liu, R.-S. Org. Lett. 2002, 4, 4151−4153. (e) Dalili, S.; Yudin, A. K. Org. Lett. 2005, 7, 1161−1164. (f) Zhu, W.; Cai, G.; Ma, D. Org. Lett. 2005, 7, 5545−5548.
28) (a) Polossek, T.; Ambros, R.; Von Angerer, S.; Brandl, G.; Mannschreck, A.; VonAngerer, E. J. Med. Chem. 1992, 35, 3537−3547. (b) Goldbrunner, M.; Loidl, G.; Polossek, T.; Mannschreck, A.; von Angerer, E. V. J. Med. Chem. 1997, 40, 3524−3533. (C) Faust, R.; Garratt, P. J.; Jones, R.; Yeh, L.-K.; Tsotinis, A.; Panoussopoulou, M.; Calogeropoulou, T.; Teh, M.-T.; Sugden, D. J. Med. Chem. 2000, 43, 1050−1061. (d) Xia, Y. Q.; Dong, L. Org. Lett. 2017, 19, 2258−2261. (e) Yang, X.; Lu, H.; Zhu, X.; Zhou, L.; Deng, G.; Yang, Y.; Liang, Y. Org. Lett. 2019, 21, 7284.
29) CCDC 2050058 (2-3d) and 2049423 (2-4d) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
30) Karad, S. N.; Bhunia, S.; Liu, R.-S. Retention of Stereochemistry in Gold-Catalyzed Formal [4+3] Cycloaddition of Epoxides with Arenynamides. Angew. Chem., Int. Ed. 2012, 51, 8722−8726.
31) (a) Rasmussen, K. G.; Jorgensen, K. Chem. Commun. 1995, 1401. (b) Vetticatt, M. J.; Desai, A. A.; Wulff, W. D. J. Org. Chem. 2013, 78, 5142−5152. (c) Antilla, J. C.; Wulff, W. D. Angew. Chem., Int. Ed. 2000, 39,4518−4521.
32) Chakrabarty, I.; Inamdar, S. M.; Akram, M. O.; Gade, A. B.; Banerjee, S.; Bera, S.; Patil, N. T. Chem. Commun. 2017, 53, 196-199. (b) Kusama, H.; Miyashita, Y.; Takaya, J.; Iwasawa, N. Org. Lett. 2006, 8, 289-292; (c) Gabriele, B.; Veltri, L.; Salerno, G.; Mancuso, R.; Costa, M.. Adv. Synth. Catal. 2010, 352, 3355−3363. (d) Kusama, H.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 11592-11593. (e) Takeda, A.; Kamijo, S.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 5662-5663.
33) (a) Torna, T.; Shimokawa, J.; Fukuyama, T. Org. Lett. 2007, 9, 3195–3197; (b) Mao, H.; Lin, A.; Shi, Y.; Mao, Z.; Zhu, X.; Li, W.; Hu, H.; Cheng, Y.; Zhu, C. Angew. Chem. Int. Ed. 2013, 52, 6288–6292; (c) Doyle, M. P.; Dyatkin, A. B. J. Org. Chem. 1995, 60, 3035–3038; (d) Kardile, R. D.; Liu, R.-S. Org. Lett. 2019, 21, 6452−6456.
34) Lawlor, M. D.; Lee, T. W.; Danheiser, R. L. J. Org. Chem. 2000, 65, 4375–4384.
35) Liu, Q.; Li, M.; Xiong, R.; Mo, F. Org. Lett. 2017, 19, 6756.

Chapter-3
References:
1. Trost, B. M. Science, 1991, 254, 1471-1477.
2. For reviews on ene and ene-related reactions, see (a) Hoffmann, H. M. R. The Ene Reaction. Angew. Chem., Int. Ed. Engl. 1969, 8, 556−577. (b)Snider, B. B. Acc. Chem. Res., 1980, 13, 426. (c) Mikami, K.; Terada, M.; Narisawa, S.; Nakai, T. Synlett 1992, 255. (d) Mikami, K.; Shimizu, M. Chem. Rev. 1992, 92, 1021. (e) Berrisford, D. J.; Bolm, C. Angew. Chem., Int. Ed. 1995, 34, 1717−1719. (f) Clarke, M. L.; France, M. B. Tetrahedron 2008, 64, 9003.
3. Woodward, R. B.; Hoffmann, R. Selection Rules for Sigmatropic Reactions. J. Am. Chem. Soc. 1965, 87, 2511−2513.
4. For a review of thermal Conia-ene reactions, see: Conia, J. M.; Le Perchec, P. The Thermal Cyclisation of Unsaturated Carbonyl Compounds. Synthesis 1975, 1975, 1−19.
5. Eglinton, G.; Whiting, M. C. J. Chem. Soc. 1953, 3052–3059.
6. (a) Dénes,̀ F.; Pérez-Luna, A.; Chemla, F. Chem. Rev. 2010, 110, 2366−2447. (b) Hack, D.; Blümel, M.; Chauhan, P.; Philipps, A. R.; Enders, D. Chem. Soc. Rev. 2015, 44, 6059−6093. (c) Lin, E.-Z.; Xu, Y.; Ji, K.; Ye, L.-W. Chin. Chem. Lett. 2021, 32, 954−962.
7. Itoh, Y.; Tsuji, H.; Yamagata, K. I.; Endo, K.; Tanaka, I.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 17161−17167.
8. For Ti-mediated reactions, see: Kitagawa, O.; Suzuki, T.; Inoue, T.; Watanabe, Y.; Taguchi, T. J. Org. Chem. 1998, 63, 9470–9475.
9. For Sn-mediated reactions, see: Kitagawa, O.; Fujiwara, H.; Suzuki, T.; Taguchi, T.; Shiro, M. J. Org. Chem. 2000, 65, 6819–6825.
10. For Pd catalysis, see: (a) Lomberget, T.; Bouyssi, D.; Balme, G. Synthesis 2005, 311–329. (b) Corkey, B. K.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 17168–17169. (c) Pei, T.; Wang, X.; Widenhoefer, R. A. J. Am. Chem. Soc. 2003, 125, 648. (d) Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2003, 125, 2056−2057. (e) Han, X.; Wang, X.; Pei, T.; Widenhoefer, R. A. Chem. - Eur. J. 2004, 10, 6333−6342.
11. (a) Chaładaj, W.; Kołodziejczyk, A.; Domanski, S. ChemCatChem 2017, 9, 4334−4339. (b) Pan, J.-H.; Yang, M.; Gao, Q.; Zhu, N.-Y.; Yang, D. Synthesis 2007, 2539–2544.
12. (a) Gao, Q.; Zheng, B.-F.; Li, J.-H.; Yang, D. Org. Lett. 2005, 7, 2185–2188. (b) Cruciani, P.; Stammler, R.; Aubert, C.; Malacria, M. J. Org. Chem. 1996, 61, 2699–2708. (c) Kuninobu, Y.; Kawata, A.; Takai, K. Org. Lett. 2005, 7, 4823–4825.
13. (a) Itoh, Y.; Tsuji, H.; Yamagata, K. I.; Endo, K.; Tanaka, I.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 17161−17167. (b) Hess, W.; Burton, J. W. A. Adv. Synth. Catal. 2011, 353, 2966−2970. (c) Chan, L. Y.; Kim, S.; Park, Y.; Lee, P. H. J. Org. Chem. 2012, 77, 5239−5244. (d) Montel, S.; Bouyssi, D.; Balme, G. Adv. Synth. Catal. 2010, 352, 2315.
14. (a) Deng, C.; Zou, T.; Wang, Z.; Song, R.; Li, J. J. Org. Chem. 2009, 74, 412-414. (b)Matsuzawa, A.; Mashiko, T.; Kumagai, N.; Shibasaki, M. Angew. Chem., Int. Ed. 2011, 50, 7616−7619.
15. Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526−4527.
16. Staben, S. T.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem., Int. Ed. 2004, 43, 5350−5352.
17. Ochida, A.; Ito, H.; Sawamura, M. J. Am. Chem. Soc. 2006, 128, 16486−16487.
18. Itoh, Y.; Tsuji, H.; Yamagata, K.; Endo, K.; Tanaka, I.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 17161−17167.
19. Blümel, M.; Hack, D.; Ronkartz, L.; Vermeeren, C.; Enders, D. Chem. Commun. 2017, 53, 3956−3959.
20. Mahmood, S. J.; Hossain, M. M. J. Org. Chem. 1998, 63, 3333−3336.
21. Kanemasa, S.; Kanai, T.; Araki, T.; Wada, E. Tetrahedron Lett. 1999, 40, 5055−5058.
22. Raj, A. S. K.; Liu, R.-S. Angew. Chem., Int. Ed. 2019, 58, 10980− 10984.
23. (a) Y.-C. Hsu, C.-M. Ting, R.-S. Liu, J. Am. Chem. Soc. 2009, 131, 2090-2091; b) X.-Z. Shu, S.-C. Zhao, K.-G. Ji, Z.-J. Zheng, X.-Y. Liu, Y.-M. Liang, Eur. J. Org. Chem. 2009, 117-122; c) N. Asao, T. Kasahara, Y. Yamamoto, Angew. Chem. Int. Ed. 2003, 42, 3504-3506; d) H. Kusama, H. Funami, N. Iwasawa, Synthesis 2007, 2014-2024; e) H. Kusama, H. Funami, J. Takaya, N. Iwasawa, Org. Lett. 2004, 6, 605-608; f) H. Kusama, H. Funami, M. Shido, Y. Hara, J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2005, 127, 2709-2716; g) N. Iwasawa, M. Shido, H. Kusama, J. Am. Chem. Soc. 2001, 123, 5814-5815.
24. Caine, D. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I.; Eds.; Pergamon Press: New York, 1991, 3, 1-63.
25. (a) Corkey, B. K.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 17168−17169. (b) Matsuzawa, A.; Mashiko, T.; Kumagai, N.; Shibasaki, M. Angew. Chem., Int. Ed. 2011, 50, 7616−7619. (c) Suzuki Suzuki, S.; Tokunaga, E.; Reddy, D. S.; Matsumoto, T.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2012, 51, 4131−4135. (d) Clerc, A.; Marelli, E.; Adet, N.; Monot, J.; Martín-Vaca, B.; Bourissou, D. Chem. Sci. 2021, 12, 435−441.
26. (a) Yang, T.; Ferrali, A.; Sladojevich, F.; Campbell, L.; Dixon, D. J. J. Am. Chem. Soc. 2009, 131, 9140−9141. (b) Shaw, S.; White, J. D. J. Am. Chem. Soc. 2014, 136, 13578−13581. (c) Tsuji, H.; Yamagata, K.; Itoh, Y.; Endo, K.; Nakamura, M.; Nakamura, E. Angew. Chem., Int. Ed. 2007, 46, 8060−8062. (d) Cao, M.; Ye-silcimen, A.; Wasa, M. J. Am. Chem. Soc. 2019, 141, 4199−4203.
27. (a) Hartrampf, F. W. W.; Furukawa, T.; Trauner, D. Angew. Chem., Int. Ed. 2017, 56, 893−896. (b) McDonald, F. E.; Olson, T. C. Tetrahedron Lett. 1997, 38, 7691−7692.
28. See selected examples: (a) Huang, S.; Du, G.; Lee, C.-S. J. Org. Chem. 2011, 76, 6534−6541. (b) Xiong, X.; Li, Y.; Lu, Z.; Wan, M.; Deng, J.; Wu, S.; Shao, H.; Li, A. Chem. Commun. 2014, 50, 5294. (c) Persich, P.; Llaveria, J.; Lhermet, R.; de Haro, T.; Stade, R.; Kondoh, A.; Fürstner, A. Chem.Eur. J. 2013, 19, 13047−13058. (d) Huwyler, N.; Carreira, E. M. Angew. Chem., Int. Ed. 2012, 51, 13066. (e) Itazaki, H.; Nagashima, K.; Kawamura, Y.; Matsumoto, K.; Nakai, H.; Terui, Y. Cinatrins, J. Antibiot. 1992, 45, 38−49. (f) Liu, X.; Lee, C.-S. Org. Lett. 2012, 14, 2886−2889.
29. (a) Femia, A. P.; Soares, P. V.; Luceri, C.; Lodovici, M.; Giannini, A.; Caderni, G. Sulindac, BMC Cancer 2015, 15, 611. (b) Prade, E.; Barucker, C.; Sarkar, R.; Althoff-Ospelt, G.; Lopez del Amo, J. M.; Hossain, S.; Zhong, Y.; Multhaup, G.; Reif, B. Biochemistry 2016, 55, 1839−1849. (c) Lee, P. C.; Lee, H. J.; Kakadiya, R.; Sanjiv, K.; Su, T. L.; Lee, T. C. Oncogene 2013, 32, 1144−1154. (d) Das, B. G.; Chirila, A.; Tromp, M.; Reek, J. N. H.; de Bruin, B. J. Am. Chem. Soc. 2016, 138, 8968−8975. (e) Lane, A. L.; Nam, S.-J.; Fukuda, T.; Yamanaka, K.; Kauffman, C. A.; Jensen, P. R.; Fenical, W.; Moore, B. S. J. Am. Chem. Soc. 2013, 135, 4171−4174. (f) Rajan Sruthi, P.; Venu Saranya, T.; Anas, S. Chemistry Select, 2020, 5, 1648-1654.
30. For recent review in Gold catalysis, see: (a) Rocchigiani, L.; Bochmann, M. Chem. Rev. 2021, 121, 8364−8451. (b) Lu, Z.; Li, T.; Mudshinge, S. R.; Xu, B.; Hammond, G. B. Chem. Rev. 2021, 121, 8452−8477. (c) Collado, A.; Nelson, D. J.; Nolan, S. P. Chem. Rev. 2021, 121, 8559−8612. (d) Chint-awar, C. C.; Yadav, A. K.; Kumar, A.; Sancheti, S. P.; Patil, N. T. Chem. Rev. 2021, 121, 8478−8558.
31. (a) Rahaman, M.; Ali, M. S.; Jahan, K.; Belayet, J. B.; Rah-man, A. F. M. T.; Hossain, M. M. Org. Chem. Front. 2021, 8, 169−191. (b) Dudley, M. E.; Morshed, M. M.; Brennan, C. L.; Islam, M. S.; Ahmad, M. S.; Atuu, M. R.; Branstet-ter, B.; Hossain, M. M. J. Org. Chem. 2004, 69, 7599−7608. (c) Kanemasa, S.; Kanai, T.; Araki, T.; Wada, E. Tetrahedron Lett. 1999, 40, 5055−5058.
32. Compounds 3n (CCDC 2211461) and 4h (CCDC 2167061), contain the supplementary crystallographic data for this paper†. Data have been deposited at Cambridge Crystallographic Data Center.
33. Zhou, Q.; Li, Y. J. Am. Chem. Soc. 2014, 136, 1505−1513.
34. (a) Jiménez-Nuń ̃ez, E.; Echavarren, A. M. Chem. Rev. 2008, 108 (8), 3326−3350. (b) Pérez-Galán, P.; Martin, N. J. A.; Campaña, A. G.; Cárdenas, D. J.; Echavarren, A. M. Chem. – Asian J. 2011, 6, 482.
35. Lin, M.-Y.; Das, A.; Liu, R.-S. J. Am. Chem. Soc. 2006, 128, 9340 −9341.
36. (a) Patil, N. T.; Kavthe, R. D.; Yamamoto, Y. Adv. Heterocycl. Chem. 2010, 101, 75−95. (b) Li, W.; Yuan, D.; Wang, G.; Zhao, Y.; Xie, J.; Li, S.; Zhu, C. J. Am. Chem. Soc. 2019, 141, 3187−3197. (c) Patil, N. T.; Shinde, V. S.; Gajula, B. A. Org. Biomol. Chem. 2012, 10, 211−224.
37. Compound 1a-1r: a) Raj, A. S. K.; Liu, R. S. Adv. Synth. Catal. 2020, 362, 2517– 2522. b) Raj, A. S. K.; Liu, R. S. Angew. Chem. Int. Ed. 2019, 58, 10980 –10984. c) Giri, S. S.; Liu, R. S. ACS Catal. 2019, 9, 7328–7334. d) Manojveer, S.; Balamurugan, R. Chem. Commun. 2014, 50, 9925-9928. e) Lehnherr, D.; Alzola, J. M.; Lobkovsky, E. B.; Dichtel, W. R. Chem. Eur. J. 2015, 21, 18122-18127. f) Cao, Z.; Zhu, H.; Meng, X.; Tian, L.; Sun, X.; Chen, G.; You, J. Chem. Eur. J. 2016, 22, 9125-9129. g)- Lauterbach, T.; Gatzweiler, S.; Nösel, P.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Adv. Synth. Catal. 2013, 355, 2481-2487. h) Hsu, Y.; Ting, C. M.; Liu, R. S. J. Am. Chem. Soc. 2009, 131, 2090-2091. i) Kitamura, M.; Moriyasu, Y.; Okauchi, T. Synlett, 2011, 643-646. j) Ohta, Y.; Kubota, Y.; Watabe, T.; Chiba, H.; Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem. 2009, 74, 6299–6302. k) Luo, K.; Cao, T.; Jiang, H.; Chen, L.; Zhu, S. Org. Lett. 2017, 19, 5856−5859. l) Yamada, T.; Park, K.; Tachikawa, T.; Fujii, A.; Rudolph, M.; Hashmi, A. S. K.; Sajiki, H. Org. Lett. 2020, 22, 1883−1888.
38. W. Fang, Y. Wei and M. Shi, Chem. Commun., 2017, 53, 11666.
39. (a) Torna, T.; Shimokawa, J.; Fukuyama, T. Org. Lett. 2007, 9, 3195–3197; (b) Mao, H.; Lin, A.; Shi, Y.; Mao, Z.; Zhu, X.; Li, W.; Hu, H.; Cheng, Y.; Zhu, C. Angew. Chem. Int. Ed. 2013, 52, 6288–6292; (c) Doyle, M. P.; Dyatkin, A. B. J. Org. Chem. 1995, 60, 3035–3038; (d) Kardile, R. D.; Liu, R.-S. Org. Lett. 2019, 21, 6452−6456. (e) Narode, A. S.; Liu, R.-S. Org. Lett. 2022, 24, 2165–2169.
40. Lawlor, M. D.; Lee, T. W.; Danheiser, R. L. J. Org. Chem. 2000, 65, 4375–4384.
41. Zhu, S.; Huang, X.; Zhao, T.; Ma, T.; Jiang, H. Org. Biomol. Chem. 2015, 13, 1225−1233.
42. Dell’Acqua, M.; Pirovano, V.; Confalonieri, G.; Arcadi, A.; Rossi, E.; Abbiati, G. Org. Biomol. Chem. 2014, 12, 8019−8030.

Chapter-4
References:
1) Hudlicky, T.; Natchus, M.G. In Organic synthesis: Theory and application; ED.; Hudlicky, T.: JAI: Greenwich, CT, 1993; Vol.2, pp 1-23.
2) Lu, B.-L.; Dai, L.; Shi, M. Chem. Soc. Rev. 2012, 41, 3318−3339.
3) (a) Li, D.; Zang, W.; Bird, M. J.; Hyland, C. J. T.; Shi, M. Chem. Rev. 2021, 121, 8685−8755. (b) Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, Chem. Rev. 2014, 114, 7317−7420. (c) Yu, L.-Z.; Chen, K.; Zhu, Z.-Z.; Shi, M. Chem. Commun. 2017, 53, 5935−5945. (d) Shi, M.; Shao, L.-X.; Lu, J.-M.; Wei, Y.; Mizuno, K.; Maeda, H. Chem. Rev. 2010, 110, 5883−5913.
4) Fang, W.; Shi, M. Chem. - Eur. J. 2018, 24, 9998−10005.
5) Yu, L.-Z.; Liu, M.; Chen, F.; Xu, Q. Org. Biomol. Chem. 2015, 13, 8379−8392.
6) Zhang, G.; Huang, X.; Li, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 1814−1815.
7) (a) Labsch, S.; Ye, S.; Adler, A.; Neudö rfl, J.-M.; Schmalz, H.-G. Tetrahedron: Asymmetry 2010, 21, 1745−1751. (b) Zhang, J.; Schmalz, H.-G. Angew. Chem., Int. Ed. 2006, 45, 6704− 6707.
8) (a) Bai, Y.; Fang, J.; Ren, J.; Wang, Z. Chem. Eur. J., 2009, 15, 8975. (b)Bai, Y.; Tao, W.; Ren, J.; Wang, Z. Lewis Acid Catalyzed Intramolecular [4 + 2] and [3 + 2] Cross-Cycloaddition of Alkynylcyclopropane Ketones with Carbonyl Compounds and Imines. Angew. Chem., Int. Ed. 2012, 51, 4112−4116. Angew. Chem., 2012, 124, 4188
9) Zhang, Y.; Liu F.; Zhang, J.Chem. Eur. J., 2010, 16, 6146-6150.
10) Zhang, Y.; Zhang, J. Chem. Commun. 2012, 48, 4710.
11) Zhang, Z.-M.; Chen, P.; Li, W.; Niu, Y.; Zhao, X.-L.; Zhang, J. Angew. Chem. Int. Ed. 2014, 53, 4350; Angew. Chem. 2014, 126, 4439.
12) Zhang, Y.; Xiao, Y.; Zhang, J. Synthesis 2016, 48, 512.
13) Zhang, Y.; Chen, Z.; Xiao, Y.; Zhang, J. Chem. - Eur. J. 2009, 15, 5208.
14) Zhu, M.; Fu, W.; Xu, C.; Zou, G.; Wang, Z.; Ji, B. Eur. J. Org. Chem. 2012, 4609.
15) Li, G.; Huang, X.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 6944−6945.
16) (a) Kashiwabara, M.; Kamo, T.; Makabe, H.; Shibata, H.; Hirota, M. Biosci., Biotechnol., Biochem. 2006, 70, 1502–1505. (b) Ko¨nig, G. M.; Wright, A. D. J. Org. Chem. 1997, 62, 3837.
17) Pan, D.; Wei, Y.; Shi, M. Org. Lett. 2016, 18, 3930.
18) Zhang, S.; Tang, A.; Chen, P.; Zhao, Z.; Miao, M.; Ren, H. Org. Lett. 2020, 22, 848−853.
19) Manna,S.K; Mondal,S; Sana,R; Samal,A.K; Mandal.A; Giri,S. ChemistrySelect 2023, 8, e202203150 (1-32).
20) a) Katritzky, A. R. Advances in Heterocyclic Chemistry, Academic Press, New York, 1982; b) Sargent, M. V.; Dean, F. M. in Comprehensive Heterocyclic Chemistry (Eds.: Katritzky, A. R.; Rees, C. W.), Pergamon Press, New York, 1984, 4, 599–656 c) K. Nakanishi, Natural Products Chemistry, Kodansha, Tokyo, 1974. d) Bird, C. W.; Cheeseman, G. W. H. Comprehensive Organic Chemistry, Pergamon, New York, 1984; e) Vernin, G. The Chemistry of Heterocyclic Flavouring and Aroma Compounds; Ellis Harwood, Chichester, 1982.
21) For reviews, see: a) Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y. T.; Wong, H. N. C. Tetrahedron 1998, 54, 1955. b) Keay, B. A. Chem. Soc. Rev. 1999, 28, 209. c) Gilchrist, T. L. J. Chem. Soc. Perkin Trans. 1 1999, 2849; d) Hou, X. L.; Yang, Z. Y, K-S.; Wong H. N. C. in Progress in Heterocyclic Chemistry, Vol. 19 (Eds.: G. W. Gribble, J. A. Joule), Pergamon, Oxford, 2008, p. 176.
22) Lu, B.-L.; Dai, L.; Shi, M. Chem. Soc. Rev. 2012, 41, 3318
23) Zhang, Y.; Xiao, Y.; Zhang, J. Synthesis 2016, 48, 512.
24) For reactivity vinyldiazo ketones see: (a) Raj, A. S. K.; Liu, R.-S. Angew.Chem., Int. Ed. 2019, 58, 10980-10984. (b) Raj, A. S. K.; Liu, R.-S. Adv. Synth. Catal. 2020, 362, 2517-2522. (c) Pagar, V. V.; Liu, R.-S. Angew. Chem., Int. Ed. 2015, 54, 4923-4926. (d) Jadhav, A. M.; Pagar, V. V.; Liu, R.-S. Angew. Chem., Int. Ed. 2012, 51, 11809 -11813.
25) CCDC- 2250883 (4-4a). These data can be obtained free of charge from the center contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
26) Chen, G. Q.; Zhang, X. N.; Wei, Y.; Tang, X. Y.; Shi, M. Angew. Chem., Int. Ed. 2014, 53, 8492−8497.
27) (a) Raj, A. S. K.; Liu, R.-S. Angew.Chem., Int. Ed. 2019, 58,10980-10984. (b) Raj, A. S. K.; Liu, R.-S. Adv. Synth. Catal. 2020, 362, 2517-2522. (c) Marichev, K. O.; Wang, Y.; Carranco, A. M.; Garcia, E. C.; Yu, Z.-X.; Doyle, M. P. Chem. Commun., 2018, 54, 9513- 9516.
28) Kardile, R. D.; Liu, R.-S. Org. Lett. 2020, 22, 8229−8233.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *