帳號:guest(18.226.226.121)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳聖羱
作者(外文):Chen, Sheng-Yuan
論文名稱(中文):藉由近室壓X光光電子能譜進行光輔助反應的原位研究:有機鉛鹵化物鈣鈦礦的降解和氧鹵化鉍上的氮氣還原反應
論文名稱(外文):In-Situ Investigation of Photo-Assisted Reactions Using Ambient Pressure X-ray Photoelectron Spectroscopy: Degradation of Organo-Lead Halide Perovskite and Nitrogen Reduction on Bismuth Oxyhalide
指導教授(中文):楊耀文
陳益佳
指導教授(外文):Yang, Yaw-Wen
Chen, I-Chia
口試委員(中文):黃暄益
林彥谷
郭俊宏
口試委員(外文):Huang, Michael H
Lin, Yan-Gu
Kuo, Chun-Hong
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學系
學號:107023801
出版年(民國):111
畢業學年度:111
語文別:中文
論文頁數:118
中文關鍵詞:近室壓X光光電子能譜術鈣鈦礦太陽能電池降解機制鹵氧化鉍氮氣還原反應光催化
外文關鍵詞:APXPSperovskitedegradation mechanismbismuth oxyhalidenitrogen reduction reactionphotocatalysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:95
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近室壓X光光電子能譜術 (APXPS) 由於能夠在毫巴等級的壓力下執行 X 光光電子能譜的量測,已被認知是一個提供界面電子結構信息和識別各種界面處化學狀態的不可或缺的工具。作為在同步輻射研究中心建設近室壓X光光電子能譜術實驗站(台灣光源源 光束線24A)的早期團隊成員之一,我有幸使用實驗站進行了博士論文研究的實驗。
在此論文中,我將討論藉由近室壓X光光電子能譜術研究的兩種不同表面反應所獲得的結果。第一個主題是關於環境氣體和太陽光照射所誘導的三陽離子鹵化鉛鈣鈦礦的降解。有機無機混合鈣鈦礦太陽能電池的快速發展取得了顯著成功,其太陽能電池的性能在短短幾年內達到了商業門檻。但儘管如此,鈣鈦礦太陽能電池在大氣下操作的穩定性還是一個有待解決的重要問題。值得注意的是,最近研究發現,將不同類型的陽離子摻入鈣鈦礦晶胞中可以顯著提高元件的穩定性。為了闡明為什麼多陽離子鈣鈦礦會提高元件穩定性,我們著手研究 Cs0.1(FA0.83MA0.17)0.9Pb(I0.83Br0.17)3在暴露於不同氣體環境且也光照時材料性質的變化。具體來說,我們採用近室壓X光光電子能譜術研究了三陽離子鈣鈦礦薄膜在 0.5 kW/m2 太陽輻射照射下並在 1 mbar 壓力下暴露於 H2O 和/或 O2 氣體的化學成分變化。水氣和氧分子以不同的方式影響鈣鈦礦的降解過程。鈣鈦礦暴露於水氣和光下會產生鹵化鉛和金屬鉛,而鈣鈦礦上暴露於氧氣和光下會導致氧化鉛的形成。當氧分子與被光激發的鈣鈦礦接觸時形成的超氧離子(O2-)可能是導致鈣鈦礦高度氧化的可能。且在氧氣和光暴露的環境下,發現鈣鈦礦表面的碘化物和溴化物都大量消失,但對於水氣暴露的情況則沒有此狀況。有趣的是,水氣和氧氣的共存對鈣鈦礦造成的損害比純氧要小,這可能是由於在鈣鈦礦表面形成了惰性水合層,從而延緩了超氧化物的形成,從而提供了更好的保護。
第二個主題是關於單層石墨烯覆蓋的 Bi5O7Br0.5I0.5 表面上的光催化氮氣還原反應,此研究探討氧缺陷在反應中所扮演的關鍵作用。光催化氮氣還原反應對於以永續能源發展的方式進行人工合成氨是一重要的策略。與傳統的哈伯法工業製氨相比,光催化法提供了一種低能耗、低二氧化碳排放的替代方案。但是,需要跨越低轉換效率的障礙。但是,其需要跨越低轉換效率的障礙。根據其他研究顯示,鹵氧化鉍化合物系列(BixOyXz, X = Cl, Br, I)在光催化氮氣還原反應中的轉換效率很高。其高轉換效率歸因於材料表面在反應中易於形成的氧缺陷,此缺陷不但增強了氮氣的吸附也激活吸附的氮氣分子,從而提高了氨的產率。在本主題中,將會在接近真實反應條件下,藉由近室壓X光光電子能譜術探討Bi5O7Br0.5I0.5表面上存在的氧缺陷對氮氣還原反應的影響,藉由偵測存在的表面物質且追蹤表面反應中間物的演變,來推倒氮氣還原反應的反應機制。APXPS O 1s 數據顯示在可見光照射下,鹵氧化鉍表面產生了氧缺陷的明確證據。APXPS N 1s 數據表明氮分子的吸附在有可見光照射下增強,隨後在表面形成部分氫化的氮產物,證明了 Bi5O7Br0.5I0.5光催化劑的高反應性。此外,通過對表面反應中間物的形態分析,可得出結論,在Bi5O7Br0.5I0.5上光催化氮氣還原反應的反應機制很可能遵循締合交替途徑(associative alternating pathway)。
Thanks to its ability to perform X-ray photoelectron spectroscopy at a pressure higher than mbar, ambient pressure X-ray photoelectron spectroscopy (APXPS) has proven to be an indispensable tool in providing the interfacial electronic structure information and identifying the chemical state present at various interfaces. As one of the earlier team members in constructing the APXPS endstation at NSRRC, I have the privilege of using the endstation to conduct the experiments detailed in this dissertation to partially fulfill the Ph. D. requirement.
Herein, I will report the results obtained from investigating two different surface reactions using the APXPS technique available at BL24A of Taiwan Light Source. The first topic is related to the degradation of triple-cation lead halide perovskite induced by gas exposure and solar-light illumination. The rapid development in hybrid perovskite solar cells has been a remarkable success with the device performance reaching a commercial threshold in a few short years. Nonetheless, one important problem related to device’s operational stability remains to be solved. A recent finding that the incorporation of different types of cations into the perovskite unit cell can significantly increase the device stability is worth noting. To shed light on why the multi-cation perovskite yields improved device stability, we set up to investigate the changes in material properties of Cs0.1(FA0.83MA0.17)0.9Pb(I0.83Br0.17)3 when exposed to different gas ambient in conjunction with light illumination. Specifically, we employed APXPS technique to study the chemical composition change of triple-cation perovskite thin films illuminated with 0.5 kW/m2 solar radiation and exposed to gases of H2O and/or O2 at 1 mbar pressure. Water vapor and molecular oxygen affect the degradation process in a different way. The perovskite exposed to water vapor and light produces lead halide and metallic lead, whereas oxygen exposure with light illumination on the perovskite results in the formation of lead oxide. The high degree of oxidation is made possible by the superoxide ion formed when molecular oxygen contacts the photoexcited perovskites. A large disappearance of both iodide and bromide is found for oxygen exposed and light-illuminated perovskite, but not for water vapor exposure case. Interestingly, a co-presence of water vapor and oxygen causes less damage to the perovskite than the pure oxygen, presumably due to the formation of an inert hydration layer on the perovskite surface that retards the superoxide formation and hence offers better protection.
The second topic is related to photocatalytic nitrogen reduction reaction on monolayer graphene-covered Bi5O7Br0.5I0.5 surface with an emphasis given to assess the critical role played by oxygen vacancy. The photocatalytic nitrogen reduction plays a critically important role in realizing the artificial synthesis of ammonia in a sustainable energy economy. Compared with the traditional industrial ammonia production via the Haber-Bosch process, the photocatalytic method offers an attractive alternative of low energy consumption and low emission of carbon dioxide. However, the hurdle of low conversion efficiency needs to be crossed. A series of bismuth oxyhalide compounds (BixOyXz, X = Cl, Br, I) have been reported to exhibit high yields in photocatalytic reduction of nitrogen. The high yield is attributed to readily available oxygen vacancies in the materials that in turn enhance the nitrogen adsorption and activate the nitrogen molecules, leading to an increasing ammonia production rate. In this topic, APXPS, capable of identifying surface species present under near-real reaction conditions, has been used to assess the influence of oxygen vacancies present on the Bi5O7Br0.5I0.5 on NRR, to track the evolution of surface reaction intermediates, and to delineate the reaction mechanism of NRR. APXPS O 1s data offer clear evidence of oxygen vacancy creation via visible light illumination. APXPS N 1s data evidence an enhancement of molecular nitrogen adsorption followed by the formation of partially hydrogenated products on the surface, attesting to the high reactivity of Bi5O7Br0.5I0.5 photocatalyst. In addition, after the speciation of reaction intermediates on the surface, one can conclude that the reaction mechanism of NRR on Bi5O7Br0.5I0.5 is likely to follow the associative alternating pathway.
I. Chapter 1: Ambient pressure X-ray photoelectron spectroscopy 1
I-1 Performing XPS in elevated pressure: APXPS 1
I-2 APXPS endstation in BL24A of Taiwan Light Source 4
I-3 APXPS applications 10
I-3-1 Gas/ solid interfaces 11
I-3-2 Solid/liquid interfaces 14
I-3-3 Liquid/ vapor interfaces 18
I-4 Reference 22
II. Chapter 2: Degradation of triple cations lead halide perovskite induced by light and ambient gases 27
II-1 High efficiency solar cell materials: metal halide perovskites 27
II-1-1 Characterization of metal halide perovskite 28
II-1-2 Understanding the instability of metal halide perovskite 32
II-1-3 Mixing cations to improve the stability of metal halide perovskite 38
II-2 Motivation 39
II-3 Experimental section 41
II-3-1 Preparation of samples, triple-cation perovskite on PEDOT:PSS/ FTO, for APXPS experiments 41
II-3-2 Experimental setup for in-situ APXPS measurements 42
II-4 Results and discussion 43
II-4-1 Characterization of Cs0.1(FA0.83MA0.17)0.9PbI0.83Br0.17 43
II-4-2 Aging by water vapor and light illumination 45
II-4-3 Aging by oxygen and light illumination 50
II-4-4 Aging by water vapor – oxygen mixture and light illumination 53
II-4-5 Degradation of single-cation perovskite: MAPbI3 and FAPbI3 56
II-4-6 Possible degradation mechanism for triple-cation perovskite 59
II-4-7 Progressive p-doping in degraded Cs0.1-PSK 62
II-5 Conclusion 65
II-6 Reference 67
III. APXPS investigation of photocatalytic nitrogen reduction reaction in Bi5O7Br0.5I0.5: the critical role played by oxygen vacancy 74
III-1 A visible approach for efficient nitrogen reduction reaction: photocatalysis 74
III-1-1 Basic understanding of bismuth oxyhalides 76
III-1-2 Importance of oxygen vacancies in bismuth oxyhalides 77
III-1-3 Nitrogen reduction reaction mechanism derived from DFT calculation 80
III-2 Motivation 82
III-3 Experimental section 82
III-3-1 Material preparation 82
III-3-2 Synthesis of Bi5O7Br0.5I0.5 photocatalyst 83
III-3-3 Preparation of graphene/Bi5O7Br0.5I0.5 pellet for APXPS experiment 83
III-4 Results and discussion 84
III-4-1 Characterization of synthesized Bi5O7Br0.5I0.5 84
III-4-2 Chemical analysis of as-prepared graphene/Bi5O7Br0.5I0.5 pellet 92
III-4-3 Controlling the density of oxygen vacancies on the surface of Bi5O7Br0.5I0.5 with atomic hydrogen 94
III-4-4 In-situ investigation of NRR 100
III-5 Conclusion 109
III-6 Reference 110
1. Schnadt, J.; Knudsen, J.; Johansson, N., Present and new frontiers in materials research by ambient pressure x-ray photoelectron spectroscopy. J. Condens. Matter Phys. 2020, 32, 413003.
2. Takagi, Y.; Nakamura, T.; Yu, L.; Chaveanghong, S.; Sekizawa, O.; Sakata, T.; Uruga, T.; Tada, M.; Iwasawa, Y.; Yokoyama, T., X-ray photoelectron spectroscopy under real ambient pressure conditions. Appl. Phys. Express 2017, 10, 076603.
3. Koitaya, T.; Yamamoto, S.; Matsuda, I.; Yoshinobu, J., Surface Chemistry of Carbon Dioxide on Copper Model Catalysts Studied by Ambient-Pressure X-ray Photoelectron Spectroscopy. e-J. Surf. Sci. Nanotechnol. 2019, 17, 169-178.
4. Head, A. R.; Bluhm, H., Ambient Pressure X-Ray Photoelectron Spectroscopy. In Encyclopedia of Interfacial Chemistry, Wandelt, K., Ed. Elsevier: Oxford, 2018; pp 13-27.
5. Wang, C.-H.; Chang, S.-T.; Chen, S.-Y.; Yang, Y.-W., New ambient pressure X-ray photoelectron spectroscopy endstation at Taiwan light source. AIP Conf. Proc. 2019, 2054 (1), 040012.
6. Wang, Z.; Zhang, Z.; Xie, L.; Wang, S.; Yang, C.; Fang, C.; Hao, F., Recent Advances and Perspectives of Photostability for Halide Perovskite Solar Cells. Adv. Opt. Mater. 2022, 10 (3), 2101822.
7. Ogletree, D. F.; Bluhm, H.; Lebedev, G.; Fadley, C. S.; Hussain, Z.; Salmeron, M., A differentially pumped electrostatic lens system for photoemission studies in the millibar range. Rev. Sci. Instrum. 2002, 73 (11), 3872-3877.
8. Arble, C.; Jia, M.; Newberg, J. T., Lab-based ambient pressure X-ray photoelectron spectroscopy from past to present. Surf. Sci. Rep. 2018, 73 (2), 37-57.
9. Lin, P.-S.; Chang, S.-T.; Chen, S.-Y.; Luh, D.-A.; Wang, C.-H.; Yang, Y.-W., Hydrogenation of CO2 on NiGa thin films studied by ambient pressure x-ray photoelectron spectroscopy. J. Phys. D: Appl. Phys. 2021, 54 (42), 424004.
10. Stoerzinger, K. A.; Favaro, M.; Ross, P. N.; Yano, J.; Liu, Z.; Hussain, Z.; Crumlin, E. J., Probing the Surface of Platinum during the Hydrogen Evolution Reaction in Alkaline Electrolyte. J. Phys. Chem. B 2018, 122 (2), 864-870.
11. Ali-Löytty, H.; Louie, M. W.; Singh, M. R.; Li, L.; Sanchez Casalongue, H. G.; Ogasawara, H.; Crumlin, E. J.; Liu, Z.; Bell, A. T.; Nilsson, A.; Friebel, D., Ambient-Pressure XPS Study of a Ni–Fe Electrocatalyst for the Oxygen Evolution Reaction. J. Phys. Chem. C 2016, 120 (4), 2247-2253.
12. Ferrah, D.; Haines, A. R.; Galhenage, R. P.; Bruce, J. P.; Babore, A. D.; Hunt, A.; Waluyo, I.; Hemminger, J. C., Wet Chemical Growth and Thermocatalytic Activity of Cu-Based Nanoparticles Supported on TiO2 Nanoparticles/HOPG: In Situ Ambient Pressure XPS Study of the CO2 Hydrogenation Reaction. ACS Catal. 2019, 9 (8), 6783-6802.
13. Palomino, R. M.; Hamlyn, R.; Liu, Z.; Grinter, D. C.; Waluyo, I.; Rodriguez, J. A.; Senanayake, S. D., Interfaces in heterogeneous catalytic reactions: Ambient pressure XPS as a tool to unravel surface chemistry. J. Electron Spectrosc. Relat. Phenom. 2017, 221, 28-43.
14. Abdel-Mageed, A. M.; Klyushin, A.; Rezvani, A.; Knop-Gericke, A.; Schlögl, R.; Behm, R. J., Negative Charging of Au Nanoparticles during Methanol Synthesis from CO2/H2 on a Au/ZnO Catalyst: Insights from Operando IR and Near-Ambient-Pressure XPS and XAS Measurements. Angew. Chem. Int. Ed. 2019, 58 (30), 10325-10329.
15. Axnanda, S.; Crumlin, E. J.; Mao, B.; Rani, S.; Chang, R.; Karlsson, P. G.; Edwards, M. O. M.; Lundqvist, M.; Moberg, R.; Ross, P.; Hussain, Z.; Liu, Z., Using “Tender” X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface. Sci. Rep. 2015, 5 (1), 9788.
16. Bluhm, H., Photoelectron spectroscopy of surfaces under humid conditions. J. Electron Spectrosc. Relat. Phenom. 2010, 177 (2), 71-84.
17. Novotny, Z.; Aegerter, D.; Comini, N.; Tobler, B.; Artiglia, L.; Maier, U.; Moehl, T.; Fabbri, E.; Huthwelker, T.; Schmidt, T. J.; Ammann, M.; van Bokhoven, J. A.; Raabe, J.; Osterwalder, J., Probing the solid–liquid interface with tender x rays: A new ambient-pressure x-ray photoelectron spectroscopy endstation at the Swiss Light Source. Rev. Sci. Instrum. 2020, 91 (2), 023103.
18. Velasco-Vélez, J.-J.; Falling, L. J.; Bernsmeier, D.; Sear, M. J.; Clark, P. C. J.; Chan, T.-S.; Stotz, E.; Hävecker, M.; Kraehnert, R.; Knop-Gericke, A.; Chuang, C.-H.; Starr, D. E.; Favaro, M.; Mom, R. V., A comparative study of electrochemical cells for in situ x-ray spectroscopies in the soft and tender x-ray range. J. Phys. D: Appl. Phys. 2021, 54 (12), 124003.
19. Carbonio, E. A.; Velasco-Velez, J.-J.; Schlögl, R.; Knop-Gericke, A., Perspective—Outlook on Operando Photoelectron and Absorption Spectroscopy to Probe Catalysts at the Solid-Liquid Electrochemical Interface. J. Electrochem. Soc. 2020, 167 (5), 054509.
20. Wang, W.; Wang, Y.; Wang, C.-H.; Yang, Y.-W.; Lu, Y.-C., In Situ probing of solid/liquid interfaces of potassium–oxygen batteries via ambient pressure X-ray photoelectron spectroscopy: New reaction pathways and root cause of battery degradation. Energy Storage Mater. 2021, 36, 341-346.
21. Artiglia, L.; Edebeli, J.; Orlando, F.; Chen, S.; Lee, M.-T.; Corral Arroyo, P.; Gilgen, A.; Bartels-Rausch, T.; Kleibert, A.; Vazdar, M.; Andres Carignano, M.; Francisco, J. S.; Shepson, P. B.; Gladich, I.; Ammann, M., A surface-stabilized ozonide triggers bromide oxidation at the aqueous solution-vapour interface. Nat. Commun. 2017, 8 (1), 700.
22. Buttersack, T.; Mason, P. E.; McMullen, R. S.; Martinek, T.; Brezina, K.; Hein, D.; Ali, H.; Kolbeck, C.; Schewe, C.; Malerz, S.; Winter, B.; Seidel, R.; Marsalek, O.; Jungwirth, P.; Bradforth, S. E., Valence and Core-Level X-ray Photoelectron Spectroscopy of a Liquid Ammonia Microjet. J. Am. Chem. Soc. 2019, 141 (5), 1838-1841.
23. Eperon, G. E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J., Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 2015, 3, 19688.
24. Dualeh, A.; Gao, P.; Seok, S. I.; Nazeeruddin, M. K.; Grätzel, M., Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvesters. Chem. Mater. 2014, 26, 6160.
25. Choi, H.; Jeong, J.; Kim, H.-B.; Kim, S.; Walker, B.; Kim, G.-H.; Kim, J. Y., Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 2014, 7, 80.
26. Lee, J.-W.; Kim, D.-H.; Kim, H.-S.; Seo, S.-W.; Cho, S. M.; Park, N.-G., Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell. Adv. Energy Mater. 2015, 5, 1501310.
27. Yi, C.; Luo, J.; Meloni, S.; Boziki, A.; Ashari-Astani, N.; Grätzel, C.; Zakeeruddin, S. M.; Röthlisberger, U.; Grätzel, M., Entropic stabilization of mixed A-cation ABX3metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 2016, 9, 656.
28. Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989.
29. Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982.
30. Masi, S.; Gualdrón-Reyes, A. F.; Mora-Seró, I., Stabilization of Black Perovskite Phase in FAPbI3 and CsPbI3. ACS Energy Lett. 2020, 5, 1974.
31. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Lett. 2013, 13, 1764.
32. Niu, G.; Li, W.; Meng, F.; Wang, L.; Dong, H.; Qiu, Y., Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2014, 2, 705.
33. Milot, R. L.; Eperon, G. E.; Snaith, H. J.; Johnston, M. B.; Herz, L. M., Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films. Adv. Funct. Mater. 2015, 25, 6218.
34. Juarez-Perez, E. J.; Hawash, Z.; Raga, S. R.; Ono, L. K.; Qi, Y., Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis. Energy Environ. Sci. 2016, 9, 3406.
35. Ji, J.; Liu, X.; Jiang, H.; Duan, M.; Liu, B.; Huang, H.; Wei, D.; Li, Y.; Li, M., Two-Stage Ultraviolet Degradation of Perovskite Solar Cells Induced by the Oxygen Vacancy-Ti4+ States. iScience 2020, 23, 101013.
36. Aristidou, N.; Sanchez-Molina, I.; Chotchuangchutchaval, T.; Brown, M.; Martinez, L.; Rath, T.; Haque, S. A., The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. Angew. Chem. Int. Ed. 2015, 54, 8208.
37. Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A., Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 2017, 8, 15218.
38. Ouyang, Y.; Li, Y.; Zhu, P.; Li, Q.; Gao, Y.; Tong, J.; Shi, L.; Zhou, Q.; Ling, C.; Chen, Q.; Deng, Z.; Tan, H.; Deng, W.; Wang, J., Photo-oxidative degradation of methylammonium lead iodide perovskite: mechanism and protection. J. Mater. Chem. A 2019, 7, 2275.
39. Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.; Chotchunangatchaval, T.; Wheeler, S.; Durrant, J. R.; Haque, S. A., Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 2016, 9, 1655.
40. Chi, W.; Banerjee, S. K., Stability Improvement of Perovskite Solar Cells by Compositional and Interfacial Engineering. Chem. Mater. 2021, 33, 1540.
41. Motoki, K.; Miyazawa, Y.; Kobayashi, D.; Ikegami, M.; Miyasaka, T.; Yamamoto, T.; Hirose, K., Degradation of CH3NH3PbI3 perovskite due to soft x-ray irradiation as analyzed by an x-ray photoelectron spectroscopy time-dependent measurement method. J. Appl. Phys. 2017, 121, 085501.
42. Li, Y.; Xu, X.; Wang, C.; Ecker, B.; Yang, J.; Huang, J.; Gao, Y., Light-Induced Degradation of CH3NH3PbI3 Hybrid Perovskite Thin Film. J. Phys. Chem. C 2017, 121, 3904.
43. Ke, J. C.-R.; Walton, A. S.; Lewis, D. J.; Tedstone, A.; O'Brien, P.; Thomas, A. G.; Flavell, W. R., In situ investigation of degradation at organometal halide perovskite surfaces by X-ray photoelectron spectroscopy at realistic water vapour pressure. Chem. Commun. 2017, 53, 5231.
44. Li, H.; Shang, J.; Ai, Z.; Zhang, L., Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed (001) Facets. J. Am. Chem. Soc. 2015, 137, 6393.
45. Pearson, A. J.; Eperon, G. E.; Hopkinson, P. E.; Habisreutinger, S. N.; Wang, J. T.-W.; Snaith, H. J.; Greenham, N. C., Oxygen Degradation in Mesoporous Al2O3/CH3NH3PbI3-xClx Perovskite Solar Cells: Kinetics and Mechanisms. Adv. Energy Mater. 2016, 6, 1600014.
46. Alberti, A.; Deretzis, I.; Pellegrino, G.; Bongiorno, C.; Smecca, E.; Mannino, G.; Giannazzo, F.; Condorelli, G. G.; Sakai, N.; Miyasaka, T.; Spinella, C.; La Magna, A., Similar Structural Dynamics for the Degradation of CH3NH3PbI3 in Air and in Vacuum. ChemPhysChem 2015, 16, 3064.
47. Sterling, C. M.; Kamal, C.; Man, G. J.; Nayak, P. K.; Simonov, K. A.; Svanström, S.; García-Fernández, A.; Huthwelker, T.; Cappel, U. B.; Butorin, S. M.; Rensmo, H.; Odelius, M., Sensitivity of Nitrogen K-Edge X-ray Absorption to Halide Substitution and Thermal Fluctuations in Methylammonium Lead-Halide Perovskites. J. Phys. Chem. C 2021, 125, 8360.
48. Lindblad, R.; Bi, D.; Park, B.-w.; Oscarsson, J.; Gorgoi, M.; Siegbahn, H.; Odelius, M.; Johansson, E. M. J.; Rensmo, H., Electronic Structure of TiO2/CH3NH3PbI3 Perovskite Solar Cell Interfaces. J. Phys. Chem. Lett. 2014, 5, 648.
49. Xie, H.; Liu, X.; Lyu, L.; Niu, D.; Wang, Q.; Huang, J.; Gao, Y., Effects of Precursor Ratios and Annealing on Electronic Structure and Surface Composition of CH3NH3PbI3 Perovskite Films. J. Phys. Chem. C 2016, 120, 215.
50. Jung, M.-C.; Lee, Y. M.; Lee, H.-K.; Park, J.; Raga, S. R.; Ono, L. K.; Wang, S.; Leyden, M. R.; Yu, B. D.; Hong, S.; Qi, Y., The Presence of CH3NH2 Neutral Species in Organometal Halide Perovskite Films. Appl. Phys. Lett. 2016, 108, 073901.
51. Stevens, J. S.; Luca, A. C.; Pelendritis, M.; Terenghi, G.; Downes, S.; Schroeder, S. L. M., Quantitative analysis of complex amino acids and RGD peptides by X-ray photoelectron spectroscopy (XPS). Surf. Interface Anal. 2013, 45, 1238.
52. Morgan, W. E.; Van Wazer, J. R., Binding energy shifts in the x-ray photoelectron spectra of a series of related Group IVa compounds. J. Phys. Chem. C 1973, 77, 964.
53. Rondon, S.; Sherwood, P. M. A., Core Level and Valence Band Spectra of PbO by XPS. Surf. Sci. Spectra 1998, 5, 97.
54. Kumar, S.; Kishore, B.; Munichandraiah, N., Electrochemical studies of non-aqueous Na–O2 cells employing Ag-RGO as the bifunctional catalyst. RSC Adv. 2016, 6, 63477.
55. Lin, C. L.; Qiu, S. L.; Chen, J.; Tranquada, J. M.; Strongin, M.; Crow, J. E.; Chu, C. W., The identification of oxygen related species in the XPS and near edge spectra of the high Tc superconductors. Phys. C: Supercond. Appl. 1989, 162-164, 1325.
56. Olthof, S.; Meerholz, K., Substrate-dependent electronic structure and film formation of MAPbI3 perovskites. Sci. Rep. 2017, 7, 40267.
57. Chen, J. J.; Winograd, N., The Adsorption and Decomposition of Methylamine on Pd(111). Surf. Sci. 1995, 326, 285.
58. Vincent, S.; Mioskowski, C.; Lebeau, L., Hydrolysis and Hydrogenolysis of Formamidines: N,N-Dimethyl and N,N-Dibenzyl Formamidines as Protective Groups for Primary Amines. J. Org. Chem. 1999, 64, 991.
59. Rouxhet, P. G.; Doren, A.; Dewez, J. L.; Heuschling, O., Chemical composition and physico-chemical properties of polymer surfaces. Prog. Org. Coat. 1993, 22, 327.
60. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D., In Handbook of X-ray Photoelectron Spectroscopy, Chastain, J., Ed. Perkin-Elmer Corp.: Eden Prairie, MN, 1992.
61. Baltrusaitis, J.; Jayaweera, P. M.; Grassian, V. H., XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions. Phys. Chem. Chem. Phys. 2009, 11, 8295.
62. Kim, J.; Lee, S.-H.; Lee, J. H.; Hong, K.-H., The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. J. Phys. Chem. Lett. 2014, 5, 1312.
63. Wang, Q.; Shao, Y.; Xie, H.; Lyu, L.; Liu, X.; Gao, Y.; Huang, J., Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett. 2014, 105, 163508.
64. Xiao, Z.; Yuan, Y.; Shao, Y.; Wang, Q.; Dong, Q.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J., Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 2015, 14, 193.
65. Yin, W.-J.; Shi, T.; Yan, Y., Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 2014, 104, 063903.
66. Chen, S.; Liu, D.; Peng, T., Fundamentals and Recent Progress of Photocatalytic Nitrogen-Fixation Reaction over Semiconductors. Sol. RRL 2021, 5, 2000487.
67. Guo, C.; Ran, J.; Vasileff, A.; Qiao, S.-Z., Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45.
68. Mao, C.; Yu, L.; Li, J.; Zhao, J.; Zhang, L., Energy-confined solar thermal ammonia synthesis with K/Ru/TiO2-xHx. Appl. Catal. B: Environ. 2018, 224, 612.
69. Hao, Y.; Dong, X.; Zhai, S.; Ma, H.; Wang, X.; Zhang, X., Hydrogenated Bismuth Molybdate Nanoframe for Efficient Sunlight-Driven Nitrogen Fixation from Air. Chem. Eur. J. 2016, 22, 18722.
70. Dong, G.; Ho, W.; Wang, C., Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J. Mater. Chem. A 2015, 3, 23435.
71. Hirakawa, H.; Hashimoto, M.; Shiraishi, Y.; Hirai, T., Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide. J. Am. Chem. Soc. 2017, 139, 10929.
72. Lashgari, M.; Zeinalkhani, P., Photocatalytic N2 conversion to ammonia using efficient nanostructured solar-energy-materials in aqueous media: A novel hydrogenation strategy and basic understanding of the phenomenon. Appl. Catal. A: Gen. 2017, 529, 91.
73. Xian, H.; Guo, H.; Xia, J.; Chen, Q.; Luo, Y.; Song, R.; Li, T.; Traversa, E., Iron-Doped MoO3 Nanosheets for Boosting Nitrogen Fixation to Ammonia at Ambient Conditions. ACS Appl. Mater. Interfaces 2021, 13, 7142.
74. Zhang, N.; Jalil, A.; Wu, D.; Chen, S.; Liu, Y.; Gao, C.; Ye, W.; Qi, Z.; Ju, H.; Wang, C.; Wu, X.; Song, L.; Zhu, J.; Xiong, Y., Refining Defect States in W18O49 by Mo Doping: A Strategy for Tuning N2 Activation towards Solar-Driven Nitrogen Fixation. J. Am. Chem. Soc. 2018, 140, 9434.
75. Bi, Y.; Wang, Y.; Dong, X.; Zheng, N.; Ma, H.; Zhang, X., Efficient solar-driven conversion of nitrogen to ammonia in pure water via hydrogenated bismuth oxybromide. RSC Adv. 2018, 8, 21871.
76. Bai, Y.; Shi, X.; Wang, P.; Wang, L.; Xie, H.; Li, Z.; Qu, L.; Ye, L., Synthesis of one-dimensional Bi5O7Br0.5I0.5 solid solution for effective real oilfield wastewater treatment via exciton photocatalytic process. J. Taiwan Inst. Chem. Eng. 2018, 91, 358.
77. Han, J.; Lu, C.; Wang, Y.; Zhang, S.; Zhang, L.; Yin, Q., Fabrication of TiO2-BiOBrxI1-x heterojunctions with adjustable band structure for enhanced visible light photocatalytic activity. J. Alloys Compd. 2020, 825, 152047.
78. Xia, Y.; He, Z.; Su, J.; Liu, Y.; Tang, B., Fabrication and Photocatalytic Property of Novel SrTiO3/Bi5O7I Nanocomposites. Nanoscale Res. Lett. 2018, 13, 148.
79. Chen, Y.; Zhu, G.; Hojamberdiev, M.; Gao, J.; Zhu, R.; Wang, C.; Wei, X.; Liu, P., Three-dimensional Ag2O/Bi5O7I p–n heterojunction photocatalyst harnessing UV–vis–NIR broad spectrum for photodegradation of organic pollutants. J. Hazard. Mater. 2018, 344, 42.
80. Yang, N.; Lv, X.; Zhong, S.; Qian, D.; Han, S.; Li, D.; Geng, X.; Fang, H.; Jiang, W., Preparation of Z-scheme AgI/Bi5O7I plate with high visible light photocatalytic performance by phase transition and morphological transformation of BiOI microspheres at room temperature. Dalton Trans. 2018, 47, 11420.
81. Di, J.; Xia, J.; Chisholm, M. F.; Zhong, J.; Chen, C.; Cao, X.; Dong, F.; Chi, Z.; Chen, H.; Weng, Y.-X.; Xiong, J.; Yang, S.-Z.; Li, H.; Liu, Z.; Dai, S., Defect-Tailoring Mediated Electron–Hole Separation in Single-Unit-Cell Bi3O4Br Nanosheets for Boosting Photocatalytic Hydrogen Evolution and Nitrogen Fixation. Adv. Mater. 2019, 31, 1807576.
82. Liao, H.; Li, Z.; Luo, L.; Zhong, J.; Li, J., Water hyacinth powder -assisted preparation of defects-rich and flower-like BiOI/Bi5O7I heterojunctions with excellent visible light photocatalytic activity. Surf. Interfaces 2021, 27, 101470.
83. Bu, T.-A.; Hao, Y.-C.; Gao, W.-Y.; Su, X.; Chen, L.-W.; Zhang, N.; Yin, A.-X., Promoting photocatalytic nitrogen fixation with alkali metal cations and plasmonic nanocrystals. Nanoscale 2019, 11, 10072.
84. Hao, L.; Huang, H.; Zhang, Y.; Ma, T., Oxygen Vacant Semiconductor Photocatalysts. Adv. Funct. Mater. 2021, 31, 2100919.
85. Renqi, Z.; Bin, Z.; Bo, Z.; Wenfeng, P.; Ning, Q.; Bo, W.; Zhiquan, C., Theoretical study of native defects and positron annihilation states in BiOBr. JJAP Conf. Proc. 2018, 011002, 7.
86. Xiao, X.; Liu, C.; Hu, R.; Zuo, X.; Nan, J.; Li, L.; Wang, L., Oxygen-rich bismuth oxyhalides: generalized one-pot synthesis, band structures and visible-light photocatalytic properties. J. Mater. Chem. 2012, 22, 22840.
87. Wang, S.; Hai, X.; Ding, X.; Chang, K.; Xiang, Y.; Meng, X.; Yang, Z.; Chen, H.; Ye, J., Light-Switchable Oxygen Vacancies in Ultrafine Bi5O7Br Nanotubes for Boosting Solar-Driven Nitrogen Fixation in Pure Water. Adv. Mater. 2017, 29, 1701774.
88. Wang, H.; Yong, D.; Chen, S.; Jiang, S.; Zhang, X.; Shao, W.; Zhang, Q.; Yan, W.; Pan, B.; Xie, Y., Oxygen-Vacancy-Mediated Exciton Dissociation in BiOBr for Boosting Charge-Carrier-Involved Molecular Oxygen Activation. J. Am. Chem. Soc. 2018, 140, 1760.
89. Bai, Y.; Bai, H.; Qu, K.; Wang, F.; Guan, P.; Xu, D.; Fan, W.; Shi, W., In-situ approach to fabricate BiOI photocathode with oxygen vacancies: Understanding the N2 reduced behavior in photoelectrochemical system. Chem. Eng. J. 2019, 362, 349.
90. Li, H.; Shang, J.; Zhu, H.; Yang, Z.; Ai, Z.; Zhang, L., Oxygen Vacancy Structure Associated Photocatalytic Water Oxidation of BiOCl. ACS Catal. 2016, 6, 8276.
91. Yu, Y.; Cao, C.; Liu, H.; Li, P.; Wei, F.; Jiang, Y.; Song, W., A Bi/BiOCl heterojunction photocatalyst with enhanced electron–hole separation and excellent visible light photodegrading activity. J. Mater. Chem. A 2014, 2, 1677.
92. Zhao, Y.; Zhou, S.; Zhao, J.; Du, Y.; Dou, S. X., Control of Photocarrier Separation and Recombination at Bismuth Oxyhalide Interface for Nitrogen Fixation. J. Phys. Chem. Lett. 2020, 11, 9304.
93. Xue, X.; Chen, R.; Yan, C.; Zhao, P.; Hu, Y.; Zhang, W.; Yang, S.; Jin, Z., Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229.
94. Li, H.; Shang, J.; Shi, J.; Zhao, K.; Zhang, L., Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway. Nanoscale 2016, 8, 1986.
95. Li, P.; Zhou, Z.; Wang, Q.; Guo, M.; Chen, S.; Low, J.; Long, R.; Liu, W.; Ding, P.; Wu, Y.; Xiong, Y., Visible-Light-Driven Nitrogen Fixation Catalyzed by Bi5O7Br Nanostructures: Enhanced Performance by Oxygen Vacancies. J. Am. Chem. Soc. 2020, 142, 12430.
96. Xue, X.; Chen, R.; Chen, H.; Hu, Y.; Ding, Q.; Liu, Z.; Ma, L.; Zhu, G.; Zhang, W.; Yu, Q.; Liu, J.; Ma, J.; Jin, Z., Oxygen Vacancy Engineering Promoted Photocatalytic Ammonia Synthesis on Ultrathin Two-Dimensional Bismuth Oxybromide Nanosheets. Nano Lett. 2018, 18, 7372.
97. Suzuki, S.; Haruyama, Y.; Yamaguchi, A.; Yamamoto, T.; Yoshizumi, T.; Fujii, A.; Nakashima, S.; Fuchiwaki, Y.; Fujisawa, H.; Ohkochi, T.; Ishihara, M.; Sumida, H., X-ray absorption and photoemission spectroscopy of bulk insulating materials using graphene. J. Appl. Phys. 2020, 128, 015304.
98. Yang, C.-C.; Tsai, M.-H.; Yang, Z.-R.; Yang, Y.-W.; Tseng, Y.-C.; Wang, C.-H., An effective charge neutralization enabled by graphene overlayer in ambient pressure XPS measurements of insulators. Submitted 2022.
99. Han, J.; Zhu, G.; Hojamberdiev, M.; Peng, J.; Liu, P., Temperature effect on phase transition and morphological transformation of BiOI microspheres to Bi5O7I microstructures. Mater. Lett. 2016, 169, 122.
100. Yu, C.; Fan, C.; Yu, J. C.; Zhou, W.; Yang, K., Preparation of bismuth oxyiodides and oxides and their photooxidation characteristic under visible/UV light irradiation. Mater. Res. Bull. 2011, 46, 140.
101. Chen, Z.; Kronawitter, C. X.; Waluyo, I.; Koel, B. E., Investigation of Water Dissociation and Surface Hydroxyl Stability on Pure and Ni-Modified CoOOH by Ambient Pressure Photoelectron Spectroscopy. J. Phys. Chem. B 2018, 122, 810.
102. Wendt, S.; Schaub, R.; Matthiesen, J.; Vestergaard, E. K.; Wahlström, E.; Rasmussen, M. D.; Thostrup, P.; Molina, L. M.; Lægsgaard, E.; Stensgaard, I.; Hammer, B.; Besenbacher, F., Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: A combined high-resolution STM and DFT study. Surf. Sci. 2005, 598, 226.
103. Sinhamahapatra, A.; Jeon, J.-P.; Kang, J.; Han, B.; Yu, J.-S., Oxygen-Deficient Zirconia (ZrO2−x): A New Material for Solar Light Absorption. Sci. Rep. 2016, 6, 27218.
104. Hai-Bo, F.; Shao-Yan, Y.; Pan-Feng, Z.; Hong-Yuan, W.; Xiang-Lin, L.; Chun-Mei, J.; Qin-Sheng, Z.; Yong-Hai, C.; Zhan-Guo, W., Investigation of Oxygen Vacancy and Interstitial Oxygen Defects in ZnO Films by Photoluminescence and X-Ray Photoelectron Spectroscopy. Chin. Phys. Lett. 2007, 24, 2108.
105. Lin, J.; Hu, Z.; Li, H.; Qu, J.; Zhang, M.; Liang, W.; Hu, S., Ultrathin Nanotubes of Bi5O7I with a Reduced Band Gap as a High-Performance Photocatalyst. Inorg. Chem. 2019, 58, 9833.
106. Schmeißer, D.; Henkel, K.; Pożarowska, E.; Kegelmann, L.; Tsud, N.; Kot, M., Point Defect-Mediated Interface Formation and Appearance of a Cooper Minimum for AlOx Atomic-Layer-Deposited Films on CH3NH3PbI3. J. Phys. Chem. C 2019, 123, 23352.
107. Wang, Z.; Wang, L., Role of oxygen vacancy in metal oxide based photoelectrochemical water splitting. EcoMat 2021, 3, e12075.
108. Li, C.-F.; Zhao, J.-W.; Xie, L.-J.; Wu, J.-Q.; Li, G.-R., Fe doping and oxygen vacancy modulated Fe-Ni5P4/NiFeOH nanosheets as bifunctional electrocatalysts for efficient overall water splitting. Appl. Catal. B: Environ. 2021, 291, 119987.
109. Wang, Z.; Mao, X.; Chen, P.; Xiao, M.; Monny, S. A.; Wang, S.; Konarova, M.; Du, A.; Wang, L., Understanding the Roles of Oxygen Vacancies in Hematite-Based Photoelectrochemical Processes. Angew. Chem. Int. Ed. 2019, 58, 1030.
110. Gao, X.; Gao, K.; Fu, F.; Liang, C.; Li, Q.; Liu, J.; Gao, L.; Zhu, Y., Synergistic introducing of oxygen vacancies and hybrid of organic semiconductor: Realizing deep structure modulation on Bi5O7I for high-efficiency photocatalytic pollutant oxidation. Appl. Catal. B: Environ. 2020, 265, 118562.
111. Andreu, N.; Flahaut, D.; Dedryvère, R.; Minvielle, M.; Martinez, H.; Gonbeau, D., XPS Investigation of Surface Reactivity of Electrode Materials: Effect of the Transition Metal. ACS Appl. Mater. Interfaces 2015, 7, 6629.
112. Hu, C.; Chen, X.; Jin, J.; Han, Y.; Chen, S.; Ju, H.; Cai, J.; Qiu, Y.; Gao, C.; Wang, C.; Qi, Z.; Long, R.; Song, L.; Liu, Z.; Xiong, Y., Surface Plasmon Enabling Nitrogen Fixation in Pure Water through a Dissociative Mechanism under Mild Conditions. J. Am. Chem. Soc. 2019, 141, 7807.
113. Ben Yaala, M.; Marot, L.; Steiner, R.; Moser, L.; De Temmerman, G.; Porosnicu, C.; Lungu, C. P.; Oberkofler, M.; Meyer, E., Quartz micro-balance and in situ XPS study of the adsorption and decomposition of ammonia on gold, tungsten, boron, beryllium and stainless steel surfaces. Nucl. Fusion 2018, 58, 106012.
114. Galtayries, A.; Laksono, E.; Siffre, J. M.; Argile, C.; Marcus, P., XPS study of the adsorption of NH3 on nickel oxide on Ni(111). Surf. Interface Anal. 2000, 30, 140.
115. Artyushkova, K., Misconceptions in interpretation of nitrogen chemistry from x-ray photoelectron spectra. J. Vac. Sci. Technol. A 2020, 38, 031002
(此全文20270919後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *