帳號:guest(3.148.115.173)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江雁婷
作者(外文):Jiang, Yan-Ting.
論文名稱(中文):金金屬催化N-醯胺-1,3-雙炔類的氧化和醯胺化反應
論文名稱(外文):Gold-catalyzed reactions of 1,3-diynamides with 8-methylquinoline N-oxides and anthranils to form 1,4-dioxo-2-ynes and quinoline oxides
指導教授(中文):劉瑞雄
指導教授(外文):Liu, Rai-Shung
口試委員(中文):彭之皓
吳明忠
口試委員(外文):Peng, Chi-How
Wu, Ming-Jung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:107023573
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:308
中文關鍵詞:金催化1,3-雙炔醯胺一,三號位碳烯遷移苯并異噁唑喹啉氧化物
外文關鍵詞:gold-catalyzed1,3-diynamide1,3-carbene shiftanthranilquinoline oxide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:505
  • 評分評分:*****
  • 下載下載:22
  • 收藏收藏:0
第一章利用1,3-雙炔醯胺與氧化劑(8-methylquinoline N-oxide)進行金催化反
應。如圖示,反應機構中會先產生α-氧代金碳烯中間體,接著進行一、三號位碳烯遷移後,再次跟氧化劑反應,最後產生二次氧化之產物。此催化反應可以在溫合的反應條件下進行並且具有不錯的官能基容忍度。
第二章利用1,3-雙炔醯胺與苯并異噁唑進行金催化反應。反應過程中將產生α-亞氨基金碳烯,接著經由兩種不同路徑的環化方式分別形成7-醯基吲哚(7-acylindole)與喹啉氧化物(quinoline oxide),其中喹啉氧化物可在高溫的金催化環境或是路易斯酸條件下反應,進一步成環形成有用的呋喃[3,2-c]喹啉之骨架結構。
The first chapter describes gold catalyzed reactions of 1,3-diynamides and oxidants (8-methylquinoline N-oxide). α-oxo gold carbene intermediate undergoes 1,3-carbene shift, can react with oxidant again, afford secondary oxidation product. This catalytic reaction can be carried out under mild conditions and has a good tolerance for functional groups.
The second chapter describes the synthesis of quinoline oxide and 7-acylindole derivatives via gold-catalyzed annulation of anthranils and 1,3-diynamides. In a postulated mechanism, α-amino gold carbenes occurs as a result of an anthranil ring opening, undergo two different pathways, one is an ortho C-H activation followed by re-aromatization to furnish 7-acylindoles, the other is carbene/carbonyl addition to deliver quinoline oxides. Furthermore, the triple bonds tethered to quinoline oxides react with gold catalyst again, trigger the cyclization of the structures to afford furo[3,2-c]quinoline tricyclic products.
中文摘要 ................................................................................................................... i
Abstract ..................................................................................................................... ii
誌謝 ......................................................................................................................... iii
目錄 ......................................................................................................................... iv
圖目錄 第一章 ........................................................................................................ vi
圖目錄 第二章 ........................................................................................................ vi
表目錄 第一章 ...................................................................................................... viii
表目錄 第二章 ...................................................................................................... viii
第一章 ...................................................................................................................... 1
第一節 緒論............................................................................................................. 1
1-1金催化劑與多重鍵反應之簡介 .................................................................. 1
第二節 文獻參考 ..................................................................................................... 2 2-1 α-氧代金碳烯(α-oxo gold-carbene)之形成 ................................................. 2
2-2 炔醯胺(ynamide)的化學性質 ..................................................................... 3
2-3 過渡金屬碳烯之[1,3]-遷移反應 ............................................................... 8
第三節 結果與討論 ............................................................................................... 13
3-1實驗動機與構思 ....................................................................................... 13
3-2最佳化反應條件 ....................................................................................... 13 3-3金催化多種1,3-二炔醯胺與8-甲基喹啉氧化劑反應範圍 ..................... 15 3-4反應機構探討 ........................................................................................... 17
3-5結構鑑定................................................................................................... 18
第四節 結論 ......................................................................................................... 20
第五節 實驗部分 ................................................................................................. 21
5-1 實驗之一般操作 ...................................................................................... 21
5-2 實驗基質之合成 ...................................................................................... 23
5-3 催化反應之操作 ...................................................................................... 26
5-4 實驗光譜數據資料 .................................................................................. 28
5-5 化合物I-3a的X-射線結晶結構和數據 ................................................. 42
第六節 參考文獻 ................................................................................................. 50
第二章 ...................................................................................................................104
第一節 緒論 ........................................................................................................104 第二節 文獻參考 ................................................................................................105
2-1 苯並異噁唑(Benzisoxazole)的化學特性 ...............................................105
第三節 結果與討論 ............................................................................................111
3-1 實驗動機與構思 ...................................................................................111
3-2 最佳化反應條件 ...................................................................................111
v
3-3 金催化多種1,3-二炔醯胺與苯並異噁唑反應範圍 .............................114
3-4 金催化1,3-二炔醯胺與多種苯並異噁唑反應的範圍 .........................115 3-5 功能化實驗之探討 ...............................................................................116 3-6 反應機構探討 .......................................................................................117
3-7 結構鑑定 ...............................................................................................118
第四節 結論 ........................................................................................................121
第五節 實驗部分 ................................................................................................122
5-1 實驗之一般操作.................................................................................122
5-2 實驗基質之合成.................................................................................124
5-3 催化反應之操作.................................................................................127
5-4 功能化反應之合成方法 .....................................................................129
5-5 實驗光譜數據資料 .............................................................................132
5-6 化合物II-3a、II-4a、II-6a的X-射線結晶結構和數據 ....................167
第六節 參考文獻 ................................................................................................195
chapter 1
[1] (a) Thomé, I.; Nijsa, A.; Bolm, C. Chem. Soc. Rev. 2012, 41, 979. (b) Crabtree, R. H. Chem. Rev. 2015, 115, 127. (c) Franke, R.; Selent, D.; Bo¨rner, A. Chem. Rev. 2012, 112, 5675. (d) Cornils, B.; Herrmann, W. A. Applied Homogeneous Catalysis with Organometallic Compounds, Wiley-VCH, Weinheim, Germany, 2nd edn, 2002. (e) Sheldon, R. A.; Arends, I.; Hanefeld, U.Green Chemistry and Catalysis, Wiley-VCH, Weinheim, Germany, 2007. (f) Rothenberg, G. Catalysis, Wiley-VCH, Weinheim, Germany, 2008.
[2] (a) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180. (b) Lopez, F.; Mascarenas, J. L. Chem. Soc. Rev. 2014, 43, 2904. (c) Muratore, M. E.; Homs, A.; Obradors, C.; Echavarren, A. M. Chem. – Asian J. 2014, 9, 3066. (d) Wagh, S. B.; Hsu, Y.-C.; Liu, R.-S. ACS Catal. 2016, 6, 7160. (e) Sharma, P.; Liu, R.-S. Org. Lett. 2016, 18, 412. (f) Giri, S. S.; Lin, L.-H.; Jadhav, P. D.; Liu, R.-S. Adv. Synth. Catal. 2017, 359, 590. (g) Giri, S. S.; Liu, R.-S. Adv. Synth. Catal. 2017, 359, 3311. (h) Teng, T.-M.; Liu, R.-S. J. Am. Chem. Soc. 2010, 132, 9298. (i) Dateer, R. B.; Patia, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200. (j) Singh, R. R.; Liu, R.-S. Chem. Commun. 2017, 53, 4593. (k) Singh, R. R.; Pawar, S. K.; Huang, M.-J.; Liu, R.-S. Chem. Commun. 2016, 52, 11434. (l) Sahani, R. L.; Liu, R.-S. Chem. Commun. 2016, 52, 7482. (m) Chen, Y.-L.; Sharma, P.; Liu, R.-S. Chem. Commun. 2016, 52, 3187.
[3] (a) A. S. K. Hashmi, Gold Bull. (London, U. K.), 2003, 36, 3. (b) A. S. K. Hashmi, Gold Bull. (London, U. K.), 2004, 37, 51. (c) A. Hoffmann-Ro¨ der ; N. Krause, Org. Biomol. Chem. 2005, 3, 387–391. (d) S. Ma, S. Yu; Z. Gu, Angew. Chem. Int. Ed. 2005, 44, 200. (e) A. S. K. Hashmi, Angew. Chem. Int. Ed. 2005, 44, 6990.
[4] (a) Davies, P. W.; Garzon, M. Asian J. Org. Chem. 2015, 4, 694. (b) L. Zhang, Acc. Chem. Res. 2014, 47, 3, 877.
[5] (a) G. Evano; A. Coste; K. Jouvin Angew. Chem. Int. Ed. 2010, 49, 2840. (b) C. A. Zificsak; J. A. Mulder; R. P. Hsung; C. Rameshkumar; L.‐L. Wei, Tetrahedron, 2001, 57, 7575.
[6] Pan, F.; Liu, S.; Shu, C.; Lin, R.-K.; Yu, Y.-F.; Zhou, J.-M.; Ye, L.-W., Chem. Commun. 2014, 50, 10726.
[7] Sánchez-Cantalejo, F.; Priest, J. D.; Davies, P. W., Chem. - Eur. J. 2018, 24, 17215.
[8] Dateer, R. B.; Pati, K.; Liu, R.-S., Chem. Commun. 2012, 48, 7200.
[9] Manisha Skaria; Hsu Y.-C.; Jiang Y.-T.; Lu M.-Y.; T.-C. Kuo; M.-J. Cheng; Liu, R.-S., Org. Lett. 2020, 22, 11, 4478.
[10] Liu J.; Zhu L.; Wan W.; Huang X., Org. Lett. 2020, 22, 3279.
51
[11] (a) K. Miki; K. Ohe; S. Uemura, Tetrahedron Lett., 2003, 44, 2019. (b) K. Miki; K. Ohe; S. Uemura, J. Org. Chem., 2003, 68, 8505. (c) S. Lopez; E. Herrero-Gomez; P. Perez-Galan; C. NietoOberhuber; A. M. Echavarren, Angew. Chem., Int. Ed., 2006, 45, 6029. (d) C. Nieto-Oberhuber; S. Lopez; M. P. Munoz; E. JimenezNunez; E. Bunuel; D. J. Cardenas; A.M. Echavarren, Chem.–Eur. J., 2006, 12, 1694. (e) B. Martin-Matute; C. Nevado; D. J. Cardenas; A. M. Echavarren, J. Am. Chem. Soc., 2003, 125, 5757.
[12] Lee, D.; Kim, M., Org. Biomol. Chem. 2007, 5, 3418.
[13] A. Padwa; D. J. Austin; J. M. Kassir; S. L. Xu, J. Am. Chem. Soc. 1993, 115, 2637.
[14] K. Ohe; M. Fujita; H. Matsumoto; Y. Tai; K. Miki, J. Am. Chem. Soc. 2006, 128, 9270.
[15] D. J. Gorin; P. Dube; F. D. Toste, J. Am. Chem. Soc. 2006, 128, 14480.
[16] (a) A. Hentz; P. Retailleau; V. Gandon; K. Cariou; R. H. Dodd, Angew. Chem. Int. Ed., 2014, 53, 8333. (b) Hsu Y. -C.; Hsieh S. -A.; R. -S. Liu, Chem. Eur. J. 2019, 25, 5288.
[17] I. Talbi; C. Alayrac; J. Lohier; S. Touil; B. Witulski, Org. Lett., 2016, 18, 2656.
[18] G. Henrion; T. E. J. Chavas; X. L. Goff; F. Gagosz, Angew. Chem. Int. Ed. 2013, 52, 6277.

chapter 2
[1] (a) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348. (b) Li, L.; Tan, T.-D.; Zhang, Y.-Q.; Liu, X.; Ye, L.-W. Org. Biomol. Chem. 2017, 15, 8483.
[2] (a) Zhou, A.-H.; He, Q.; Shu, C.; Yu, Y.-F.; Liu, S.; Zhao, T.; Zhang, W.; Lu, X.; Ye, L.-W. Chem. Sci. 2015, 6, 1265. (b) Xiao, X.-Y.; Zhou, A.-H.; Shu, C.; Pan, F.; Li, T.; Ye, L.-W. Chem. Asian J. 2015, 10, 1854. (c) Shen, W.-B.; Xiao, X.-Y.; Sun, Q.; Zhou, B.; Zhu, X.-Q.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Angew. Chem. Int. Ed. 2017, 56, 605. (d) Giri, S. S.; Liu, R.-S. Chem. Sci. 2018, 9, 2991. (e) Mokar, B. D.; Jadhav, P. D.; Pandit, Y. B.; Liu, R.-S. Chem. Sci., 2018, 9, 4488. (f) Kardile, R. D.; Kale, B. S.; Sharma, P.; Liu, R.-S. Org. Lett. 2018, 20, 3806. (g) Raj, A. S. K.; Tan, K.-C.; Chen, L.-Y.; Cheng, M.-J.; Liu, R.-S. Chem. Sci. 2019, 10, 6437.
[3] (a) Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 12688. (b) Zeng, Z.; Jin, H.; Sekine, K.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2018, 57, 6935. (c) Zeng, Z.; Jin, H.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2018, 57, 16549. (d) Song, L.; Tian, X.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Chem. Commun. 2019, 55, 9007.
[4] (a) Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed. 2017, 56, 1026. (b) Patil, M. D.; Liu, R.-S. Org. Biomol. Chem. 2019, 17, 4452. (c) Hsu, Y.-C.; Hsieh, S.-A.; Liu, R.-S. Chem. - Eur. J. 2019, 25, 5288. (d) Singh, R. R.; Skaria, M.; Chen, L.-Y.; Cheng, M.-J.; Liu, R.-S. Chem. Sci. 2019, 10, 1201. (e) Hsieh, H.-C.; Tan, K.-C.; Raj, A. S. K.; Liu, R.-S. Chem. Commun. 2019, 55, 1979.
[5] Lin Y.; Xing D.; Wu W. B.; Xu G. Y.; Yu L.; Tang J.; Zhou Y. B.; Li J.; Yang F. Molecules , 2020, 25(1) , 203.
[6] (a) Bennett, F.; Kezar, H. S. III; Girijavallabhan, V.; Huang, Y. H.; Huelgas, R.; Rossman, R.; Shih, N. Y.; Piwinski, J. J.; MacCoss, M.; Kwong, C. D.; et al. Bioorg. Med. Chem. Lett. 2012, 22, 5144. (b) Ciustea, M.; Silverman, J. E .Y.; Druck Shudofsky, A. M.; Ricciardi, R. P. J. Med. Chem. 2008, 51, 6563.(c) Martini, M. L.; Ray, C.; Yu, X. F.; Liu, J.; Pogorelov, V. M.; Wetsel,W. C.; Huang, X. P.; McCorvy, J. D.; Caron, M. G.; Jin, J. ACS Chem. Neuro. 2019, 10, 4160.
[7] (a) Chen, Y.; Lin, H. Z.; Yang, H. Y.; Tan, R. X.; Bian, Y. Y.; Fu, T. M.; Li, W.; Wu, L.; Pei, Y. Q.; Sun, H. P. RSC Adv. 2017, 7, 3429. (b) Wu, P. C.; Huang, Y. B.; Chang, C. K.; Chen, Y. L.; Tzeng, C. C.; Tsai, Y. H. Chromatographia, 2009, 70, 265. (c) Vaidya, A.; Jain, S.; Jain, A. K.; Prashanthakumar, B. R.; Kashaw, S. K.; Agrawal, R. K. Med. Chem. Res. 2015, 24, 383.196
[8] K. P. Rakesh; C. S. Shantharam; M. B. Sridhara; H. M. Manukumar and H. L. Qin, Med. Chem. Commun. 2017, 8, 2023.
[9] Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; A. S. K. Hashmi, Angew. Chem., Int. Ed. 2016, 55, 794.
[10] Sahani, R. L.; Liu, R. S. Angew. Chem., Int. Ed. 2017, 56, 12736.
[11] Tsai, M. H.; Wang, C. Y.; Raj, A. S. K.; Liu, R. S. Chem. Commun. 2018, 54, 10866.
[12] Tian, X.; Song, L.; Farshadfar, K.; Rudolph, M.; Rominger, F.; Oeser, T.; Ariafard, A.; A. S. K. Hashmi, Angew. Chem., Int. Ed. 2020, 59, 471.
[13] (a) A. Hentz; P. Retailleau; V. Gandon; K. Cariou; R. H. Dodd, Angew. Chem. Int. Ed., 2014, 53, 8333. (b) Hsu Y. C.; Hsieh S. A.; Liu R. S., Chem. Eur. J. 2019, 25, 5288.
[14] I. Talbi; C. Alayrac; J. Lohier; S. Touil; B. Witulski, Org. Lett., 2016, 18, 2656.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *