帳號:guest(3.149.234.209)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):顏暐儒
作者(外文):Yen, Wei-Ju
論文名稱(中文):光游離誘發雙官能基陽離子超快電荷轉移動態學之距離相依性研究
論文名稱(外文):Distance Dependence of Ultrafast Photoionization Induced Charge Transfer Dynamics in Bifunctional Molecular Cations
指導教授(中文):鄭博元
指導教授(外文):Cheng, Po-Yuan
口試委員(中文):陳益佳
李英裕
口試委員(外文):Chen, I-Chia
Lee, Yin-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:107023562
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:131
中文關鍵詞:電荷轉移氣相雙官能基分子飛行時間質譜儀飛秒雷射
外文關鍵詞:charge transfergas phasebifunctional moleculestime-of-flight mass spectrometerfemtosecond laser
相關次數:
  • 推薦推薦:0
  • 點閱點閱:304
  • 評分評分:*****
  • 下載下載:107
  • 收藏收藏:0
在本篇論文中,我們利用飛秒激發-探測技術搭配光游離-光裂解機制觀察MNMA (methyl[(1,2,3,4-tetrahydronaphthalen-2-yl)methyl]amine)、MPPA (N-methyl -3-phenylpropan-1-amine)、MPEA (N-methylphenylethylamine)及MPMA (N-methyl benzylamine)陽離子激發態的緩解動態學過程。首先我們以波長266 nm的飛秒雷射將分子透過苯環端的局部S1 state以1 + 1共振增強多光子游離技術將苯環端局部游離,再以波長798 nm的飛秒雷射作為探測脈衝觀察陽離子的電子傳遞到苯環端及其他動態學行為。由於分子在中性基態時會有數類構型(例如:彎曲及展開構性)且會影響到電子供給端與接收端在空間中的直線距離(RPh---N),為了釐清此距離對電荷轉移的影響,我們以碳橋含有六碳環結構的MNMA分子做為參考,六碳環的存在會使MNMA分子的構型相對較單純,而其他三種分子則會有數種穩定存在的構型,我們改變分子束振動冷卻效果讓各構型的佈居數分佈發生變化進而對瞬時訊號產生影響,並以理論計算找出各個分子在不同分子束條件下的構型分佈情形。我們以連續動力學模型擬合所有瞬時訊號,並得到2或3個時間常數(τi)。其中τ1我們認為是陽離子在D1 state的初始分子內振動能重新分配過程,τ2則為陽離子從D1 state緩解至D0 state的電荷轉移過程(τCT),而τ3則指認為陽離子緩解至D0 state後的構型再平衡過程,經過理論計算發現若陽離子在D0 state時,有兩個以上較穩定的構型,那我們就可以觀察到此構型分佈的平衡過程。最後我們得出當RPh---N大於5.8 Å時,τCT約為15~16 ps;RPh---N縮短至4.5 Å時,τCT會變為4.2 ps;最後當RPh---N再縮短至3.7 Å時,τCT會加快至1.3~1.7 ps,此τCT隨RPh---N的變化概略符合指數衰減的趨勢。但是我們也發現有些數據並不完全符合上述的趨勢,這暗示我們RPh---N雖然會顯著的影響τCT,但似乎尚存在其他會影響τCT的重要因素。
We used femtosecond pump-probe photoionization-photofragmentation (fs-PIPF) spectroscopy to study ultrafast charge transfer (CT) dynamics in methyl[(1,2,3,4-tetrahydronaphthalen-2-yl)methyl]amine (MNMA), N-methyl-N-(3-phenylpropyl) amine (MPPA), N-methylphenylethylamine (MPEA), and N-methyl benzylamine (MPMA) cations. We used 1+1 resonance-enhanced multiphoton ionization to locally ionize their phenyl group via their S1 state and probed the subsequent relaxation dynamics in the cations by using a delayed femtosecond probe pulse that resulted in ion fragmentation. Because these molecules exist as different kinds of conformers at their neutral ground states, which can change the distance between amino group and phenyl group (RPh---N) that might affect charge transfer rate in the cations, therefore, we monitored the transients under different vibrational cooling conditions, which would change the population of neutral conformers. Based on the results of theoretical calculations, we obtained the relative energies and the populations among all neutral ground state conformers. Using a consecutive kinetic model to fit the ion depletion transients, we obtained two or three time constants (τi). We assigned τ1 to be the initial intermolecular vibrational energy redistribution process in the D1 state, τ2 the internal conversion from the D1 state to D0 state that is equivalent to a charge transfer process. τ3 was assigned to be the equilibrium process among conformers in the D0 state. If there are more than two stable conformers in the D0 state, we can observe equilibrium processes among these conformers. According to our experimental and theoretical results, when RPh---N are around 5.8~6.3 Å, 4.5 Å, and 3.7 Å, the τCT are about 15~16, 4.2, 1.3~1.7 ps, respectively. Most of the results are consistent with an exponential decay relationship between RPh---N and τCT. However, not all data point agrees with above relationship, implying that RPh---N is probably not the only factor that affects τCT.
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1 引文 1
1.2 文獻回顧 3
1.3 研究動機 7
第二章 實驗系統與技術 10
2.1 飛秒激發-探測技術 10
2.2 共振增強多光子游離技術 11
2.3 激發-探測光激發-光游離以及激發-探測光游離-光裂解 12
2.3.1 激發-探測光激發-光游離 13
2.3.2 激發-探測光游離-光裂解 13
2.4 飛秒雷射系統 14
2.4.1 振盪器系統 15
2.4.2 脈衝能量放大器 19
2.5 波長調變器:倍頻與混頻技術 26
2.6 分子束系統 27
2.6.1 超音速分子束 28
2.6.2 實驗站裝置 31
2.7 飛行時間質譜儀 34
2.8 實驗光路設計 37
2.9 訊號擷取系統 38
2.10 儀器響應函數 40
2.11 藥品來源 41
第三章 實驗結果與討論 42
3.1 MNMA、MPPA、MPEA及MPMA分子的質譜介紹 42
3.1.1 MNMA分子的質譜 42
3.1.2 MPPA、MPEA及MPMA分子的質譜 43
3.2 激發-探測光游離-光裂解的實驗條件 45
3.2.1 激發脈衝波長 45
3.2.2 激發與探測脈衝能量比例對離子瞬時訊號之影響 46
3.2.3 光游離-光裂解離子損耗訊號驗證 49
3.2.4 離子損耗率及其對雷射脈衝能量依存性 51
3.2.5 MNMA母離子及碎片離子訊號對激發脈衝能量之依存性 53
3.2.6 MNMA的時間解析質譜 54
3.3 各個分子之質譜與雷射脈衝能量依存性及分子束條件的影響 56
3.4 各分子的碎片與母離子比例與backing pressure之相依性 59
3.5 各個分子之光游離-光裂解離子損耗瞬時訊號 62
3.6 各個分子在不同分子束條件下的離子損耗瞬時訊號比較 64
3.7 離子損耗瞬時訊號動力學模型分析 70
第四章 理論計算與結果分析 83
4.1 中性S0 state構型對電荷轉移行為的影響 83
4.1.1 MNMA分子 85
4.1.2 MPPA分子 88
4.1.3 MPEA分子 93
4.1.4 MPMA分子 95
4.1.5 綜合討論 97
4.2 陽離子D0 state之構型 99
4.2.1 MNMA陽離子 101
4.2.2 MPPA陽離子 102
4.2.3 MPEA陽離子 102
4.2.4 MPMA陽離子 103
4.2.5 綜合討論 103
第五章 結論 107
附錄 110
附錄I 各個分子之質譜與雷射脈衝能量依存性及分子束條件的影響 110
附錄II 各個分子的質譜與backing pressure之相依性 115
附錄III 各分子以G4MP2計算之結果 117
附錄IV 以G4MP2計算所得之ΔEZPE估計佈居數分佈 119
附錄V MNMA分子在中性S0 state的其他構型 121
附錄VI 各分子在中性S0 state時的每種構型實際結構圖 122
附錄VII 各陽離子在D0 state時的每種構型實際結構圖 126
參考文獻 128

1. Barber, J.; Andersson, B. Revealing the Blueprint of Photosynthesis. Nature 1994, 370, 31-34.
2. Scholes, G. D.; Fleming, G. R.; Olaya-Castro, A.; van Grondelle, R. Lessons from Nature about Solar Light Harvesting. Nat. Chem. 2011, 3, 763-774.
3. Schlag, E. W.; Sheu, S. Y.; Yang, D. Y.; Selzle, H. L.; Lin, S. H. Distal Charge Transport in Peptides. Angew. Chem. Int. Ed. 2007, 46, 3196-3210.
4. Yu, J.; Horsley, J. R.; Moore, K. E.; Shapter, J. G.; Abell, A. D. The Effect of a Macrocyclic Constraint on Electron Transfer in Helical Peptides: A Step Towards Tunable Molecular Wires. Chem. Commun. 2014, 50, 1652-1654.
5. Shah, A.; Adhikari, B.; Martic, S.; Munir, A.; Shahzad, S.; Ahmad, K.; Kraatz, H.-B. Electron Transfer in Peptides. Chem. Soc. Rev. 2015, 44, 1015-1027.
6. Meggers, E.; Michel-Beyerle, M. E.; Giese, B. Sequence Dependent Long Range Hole Transport in DNA. J. Am. Chem. Soc. 1998, 120, 12950-12955.
7. Kawai, K.; Majima, T. Hole Transfer Kinetics of DNA. Acc. Chem. Res. 2013, 46, 2616-2625.
8. Jortner, J.; Bixon, M.; Wegewijs, B.; Verhoeven, J. W.; Rettschnick, R. P. Long-Range, Photoinduced Charge Separation in Solvent-Free Donor—Bridge—Acceptor Molecules. Chem. Phys. Lett. 1993, 205, 451-455.
9. Bixon, M.; Jortner, J.; Cortes, J.; Heitele, H.; Michel-Beyerle, M. Energy Gap Law for Nonradiative and Radiative Charge Transfer in Isolated and in Solvated Supermolecules. J. Phys. Chem. 1994, 98, 7289-7299.
10. Weinkauf, R.; Schanen, P.; Yang, D.; Soukara, S.; Schlag, E. W. Elementary Processes in Peptides: Electron Mobility and Dissociation in Peptide Cations in the Gas Phase. J. Phys. Chem. 1995, 9, 11255-11265.
11. Weinkauf, R.; Schanen, P.; Metsala, A.; Schlag, E. W.; Bürgle, M.; Kessler, H. Highly Efficient Charge Transfer in Peptide Cations in the Gas Phase:  Threshold Effects and Mechanism. J. Phys. Chem. 1996, 100, 18567-18585.
12. Isied, S. S.; Ogawa, M. Y.; Wishart, J. F. Peptide-Mediated Intramolecular Electron Transfer: Long-Range Distance Dependence. Chem. Rev. 1992, 92, 381-394.
13. Lewis, F. D.; Letsinger, R. L.; Wasielewski, M. R. Dynamics of Photoinduced Charge Transfer and Hole Transport in Synthetic DNA Hairpins. Acc. Chem. Res. 2001, 34, 159-170.
14. Adams, D. M.; Brus, L.; Chidsey, C. E. D.; Creager, S.; Creutz, C.; Kagan, C. R.; Kamat, P. V.; Lieberman, M.; Lindsay, S.; Marcus, R. A.; Metzger, R. M.; Michel-Beyerle, M. E.; Miller, J. R.; Newton, M. D.; Rolison, D. R.; Sankey, O.; Schanze, K. S.; Yardley, J.; Zhu, X. Charge Transfer on the Nanoscale:  Current Status. J. Phys. Chem. B 2003, 107, 6668-6697.
15. Gilbert, M.; Albinsson, B. Photoinduced Charge and Energy Transfer in Molecular Wires. Chem. Soc. Rev. 2015, 44, 845-862.
16. Davis, W. B.; Svec, W. A.; Ratner, M. A.; Wasielewski, M. R. Molecular-Wire Behaviour in p-Phenylenevinylene Oligomers. Nature 1998, 396, 60-63.
17. Chiu, C.-C.; Hung, C.-C.; Cheng, P.-Y. Ultrafast Charge Recombination Dynamics in Ternary Electron Donor–Acceptor Complexes: (Benzene) 2-Tetracyanoethylene Complexes. J. Phys. Chem. B 2016, 120, 12390-12403.
18. 鄭博元. Conference in Memory of the Nobel Laureate Ahmed Zewail演講之投影片; 2018.
19. Weinkauf, R.; Lehr, L.; Metsala, A. Local Ionization in 2-Phenylethyl-N,N-dimethylamine:  Charge Transfer and Dissociation Directly after Ionization. J. Phys. Chem. A 2003, 107, 2787-2799.
20. Lehr, L.; Horneff, T.; Weinkauf, R.; Schlag, E. W. Femtosecond Dynamics after Ionization:  2-Phenylethyl-N,N-dimethylamine as a Model System for Nonresonant Downhill Charge Transfer in Peptides. J. Phys. Chem. A 2005, 109, 8074-8080.
21. Cheng, W.; Kuthirummal, N.; Gosselin, J. L.; Sølling, T. I.; Weinkauf, R.; Weber, P. M. Control of Local Ionization and Charge Transfer in the Bifunctional Molecule 2-Phenylethyl-N,N-dimethylamine Using Rydberg Fingerprint Spectroscopy. J. Phys. Chem. A 2005, 109, 1920-1925.
22. Sun, S.; Mignolet, B.; Fan, L.; Li, W.; Levine, R. D.; Remacle, F. Nuclear Motion Driven Ultrafast Photodissociative Charge Transfer of the PENNA Cation: An Experimental and Computational Study. J. Phys. Chem. A 2017, 121, 1442-1447.
23. 楊博竣. 超快光游離誘發2-苯基乙基-N,N-二甲基胺陽離子內之電荷轉移動態學研究. 國立清華大學, 新竹市, 2018.
24. 宋桓宇. 氣相超快光游離誘發雙官能基陽離子內之電荷轉移動態學研究. 國立清華大學, 新竹市, 2019.
25. Closs, G. L.; Calcaterra, L. T.; Green, N. J.; Penfield, K. W.; Miller, J. R. Distance, Stereoelectronic Effects, and the Marcus Inverted Region in Intramolecular Electron Transfer in Organic Radical Anions. J. Phys. Chem. 1986, 90, 3673-3683.
26. Closs, G. L.; Miller, J. R. Intramolecular Long-Distance Electron Transfer in Organic Molecules. Science 1988, 240, 440-447.
27. Johnson, M. D.; Miller, J. R.; Green, N. S.; Closs, G. L. Distance Dependence of Intramolecular Hole and Electron Transfer in Organic Radical Ions. J. Phys. Chem. 1989, 93, 1173-1176.
28. Smalley, R. E.; Wharton, L.; Levy, D. H. Molecular Optical Spectroscopy with Supersonic Beams and Jets. Acc. Chem. Res. 1977, 10, 139-145.
29. Sun, S.; Bernstein, E. Spectroscopy of Neurotransmitters and Their Clusters. 1. Evidence for Five Molecular Conformers of Phenethylamine in a Supersonic Jet Expansion. J. Am. Chem. Soc. 1996, 118, 5086-5095.
30. Li, S.; Bernstien, E. R.; Seeman, J. I. Stable Conformations of Benzylamine and N,N-Dimethylbenzylamine. J. Phys. Chem. 1992, 96, 8808-8813.
31. Im, H.-S.; Bernstein, E. Determination of the Minimum Energy Conformations of Benzyl Alcohol and 2-Phenethyl Alcohol; Colorado State Univ Fort Collins Dept of Chemistry: 1989.
32. Law, K.; Bernstein, E. Molecular Jet Study of Van Der Waals Complexes of Flexible Molecules: n‐Propyl Benzene Solvated by Small Alkanesa. J. Chem. Phys. 1985, 82, 2856-2866.
33. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09, revision A.02; Gaussian, Inc.:Wallingford, CT, 2009.
34. Chai, J. D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
35. Burns, L. A.; Mayagoitia, Vázquez-Mayagoitia, Á.; Sumpter, B. G.; Sherrill, C. D. Density-Functional Approaches to Noncovalent Interactions: A Comparison of Dispersion Corrections (DFT-D), Exchange-Hole Dipole Moment (XDM) Theory, and Specialized Functionals. J. Chem. Phys. 2011, 134, 084107.
36. Li, A.; Muddana, H. S.; Gilson, M. K. Quantum Mechanical Calculation of Noncovalent Interactions: A Large-Scale Evaluation of PMx, DFT, and SAPT Approaches. J. Chem. Theory Comput. 2014, 10, 1563-1575.
37. Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. Gaussian-4 Theory Using Reduced Order Perturbation Theory. J. Chem. Phys. 2007, 127, 124105.
38. Amirav, A.; Even, U.; Jortner, J. Cooling of Large and Heavy Molecules in Seeded Supersonic Beams. Chem. Phys. 1980, 51, 31-42.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以超快時間解析光分解光譜研究具剛性環烷基橋雙官能基陽離子之電荷轉移與構型緩解動態學
2. 具烷基橋電子供體-受體陽離子電荷轉移與構型緩解動力學之超快光游離-光裂解光譜研究
3. 以超快時間解析光裂解光譜研究具烷基橋之電子供體-受體陽離子電荷轉移及構型緩解動力學
4. 飛秒光游離誘發雙官能基陽離子之電荷轉移動態學研究
5. 超快光游離誘發2-苯基乙基-N,N-二甲基胺陽離子內之電荷轉移動態學研究
6. 雙官能基陽離子電荷轉移超快動態學之距離相依性研究
7. N,N-二甲基-3-苯基丙基胺陽離子內之超快光游離誘發電荷轉移動態學研究
8. 用超快速雷射研究鄰-羥基苯乙酮及其相關分子的激發態分子內質子轉移反應
9. 以超快時間解析螢光光譜研究烯烴類-四氰基乙烯錯合物之分子間電荷轉移動力學
10. 利用飛秒雷射光譜技術研究丙酮與二甲基亞碸分子之三體光分解反應動態學
11. 大氣中小分子吸收光譜之研究 1. 利用共振腔振盪衰減法研究CO及CH3OO近紅外吸收光譜 2. 利用同步輻射光研究H2O及其同位素分子之真空紫外吸收光譜
12. 氣相飛秒化學反應動態學研究 1.二甲基亞碸之超快三體光解反應動態學 2.偶氮苯陽離子在異構化途徑之同調振動
13. 以時間解析螢光光譜研究苯乙烯比啶分子及其銥錯合物之光化學
14. 分子衍生物在溶液中單體與聚集體之光譜研究
15. 氣相飛秒瞬時吸收光譜之建立與應用
 
* *