帳號:guest(13.59.79.207)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳偉豪
作者(外文):Chen, Wei-Hao
論文名稱(中文):利用密度泛函理論研究銥金屬錯合物的分子間作用力和三鎳金屬串錯合物的電子結構: 局域性和非局域性的分子軌域
論文名稱(外文):Study of Intermolecular Interaction of Iridium Complexes and Electronic Structures of Trinickel Metal String Complexes by Using Density Functional Theory: Localized and Delocalized Molecular Orbitals
指導教授(中文):陳益佳
指導教授(外文):Chen, I-Chia
口試委員(中文):游靜惠
林倫年
口試委員(外文):Yu, Chin-Hui
Hayashi, Michitoshi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:107023557
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:144
中文關鍵詞:銥金屬錯合物三鎳金屬串錯合物密度泛函理論固態拉曼超低頻拉曼光譜時間相關密度泛函理論
外文關鍵詞:Iridium complexesTrinickel metal string complexesDensity functional theorySolid state RamanLow- wavenumber Raman spectroscopyTime-dependent density functional theory
相關次數:
  • 推薦推薦:0
  • 點閱點閱:73
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本次研究主要利用密度泛函理論(Density functional theory, DFT)計算銥金屬錯合物Ir(ppy)3和Ir(pmb)3和鎳金屬串錯合物Ni3(dpa)4X2 (dpa = di(2-pyridyl)-amido anion , X = Cl、NCS)之振動結構,在三-均配位體的銥金屬錯合物中,存在面式(fac)和經式(mer)的異構物,而且兩者具有不同的發光效率,透過拉曼光譜可以清楚地分辨兩者,但在超低頻的拉曼光譜區域發現Ir(ppy)3的異構物有相同的譜帶,而Ir(pmb)3的異構物則展示了不同的譜帶樣式,使用固態密度泛函方法B3LYP‒D3+gCP的計算比對下,指認Ir(ppy)3的27和69 cm-1的譜帶分別對應到π-π和CH-π的振動,且兩個異構物應該有相似的晶格才造成類似的光譜,相反地fac-Ir(pmb)3與溶劑二氯甲烷共結晶導致晶格與mer-Ir(pmb)3不一樣,但仍然可以在光譜上看見π-π和CH-π的振動譜帶,而且兩者的振動波數相近。使用密度泛函理論方法B3LYP*‒D3計算,將鎳金屬串錯合物計算得到之分子軌域區分成非局域性和局域性兩種模型,由實驗和計算的最佳幾何結構可以得知其分子軌域,由此可以清楚得知鎳金屬串錯合物是否具有金屬鍵結,發現只有在氧化態[Ni3]7+才有可能出現鎳-鎳金屬鍵結,其它中性及還原態均不具有鎳-鎳鍵結,在金奈米表面增強拉曼(SERS)光譜中觀察到242 cm-1譜帶指認為[Ni3]6+被Au奈米粒子還原成[Ni3]5+的Ni-Cl伸縮振動,而在電化學SERS光譜中外加電壓將[Ni3]6+氧化成[Ni3]7+時出現的350 cm-1譜帶改指認為配位基的剪式振動,最後也瞭解在鎳金屬串錯合物中使用B3LYP*比BP86與實驗的結果吻合度更高也更加準確。
In the present study, we used density functional theory (DFT) to calculate the vibrational structures of Iridium complexes Ir(ppy)3 and Ir(pmb)3 and nickel metal string Ni3(dpa)4X2 (dpa = di(2-pyridyl)-amido anion , X = Cl, NCS). In tris-homoleptic iridium complexes, there are two stereoisomers, facial (fac) and meridional (mer). These two isomers have different illumination efficiency and structures. Thus, Raman spectroscopy provides a convenient means to identify these stereoisomers. However, we found the similar band features in the ultra low wavenumber region are similar for the isomers of Ir(ppy)3 but different for Ir(pmb)3. Base on the results of calculations using B3LYP‒D3+gCP, we assigned the bands at 27 and 69 cm-1 of fac-Ir(ppy)3 to π-π and CH-π intermolecular vibration modes, respectively. The same band features of two isomers resulted from similar crystal lattice packing. In contrast, fac-Ir(pmb)3 co-crystallized with dichloromethane yields different lattice with that of mer-Ir(pmb)3. The bands of π-π and CH-π intermolecular vibration modes were assigned to these isomers with similar wavenumbers. We used method B3LYP*‒D3 to calculate the geometries of nickel metal string complexes, and obtained molecular orbitals. Comparing the experimental and theoretical optimized structures and the molecular orbitals, the Ni-Ni bonding strength can be understood according to the molecular orbitals arrangements of nickel ions. Only the oxidized [Ni3]7+ has a delocalized molecular orbitals (MOs) arrangements of nickel ions that exhibit metal-metal bonding; the other complexes have localized MOs and have no Ni-Ni bonding. As for the band at 242 cm-1 observed in the Au-SERS spectra, is reassigned to νNi-Cl of [Ni3]5+, where the complexes were reduced by Au nanoparticles. The band at 350 cm-1 observed in the electrochemical SERS spectrum when applied positive voltage oxidizing [Ni3]6+ to [Ni3]7+ is reassigned to the scissoring motion of pyridyl rings. The calculated results using method B3LYP* are found to be better agreement with experimental data than those of BP86 for the vibrational structures, spin states, and geometry of the trinickel metal string complexes.
第一章 序論 1
第二章 銥金屬錯合物 2
2.1 銥金屬錯合物簡介 2
2.2 研究動機與目的 7
2.2.1 Ir(ppy)3的晶體結構 7
2.2.2 Ir(pmb)3的晶體結構 8
2.2.3 分子間交互作用力 9
2.3 超低頻拉曼 13
2.3.1 分子晶體振動模式簡介 13
2.3.2 求解分子間振動之對稱性 15
2.3.2.1 Factor group analysis 15
2.3.2.2 Nuclear site group analysis 17
2.3.2.3 Molecular site group analysis 17
2.4 理論計算方法 20
2.4.1 弱交互作用力修正方法 20
2.4.1.1 DFT-D3簡介 21
2.4.2 BSSE簡介和修正方法 23
2.4.2.1 Counterpoise (CP) 24
2.4.2.2 Geometrical counterpoise (GCP) 24
2.4.3 拉曼強度修正 25
2.5 聲子振動分析方法 28
2.6 結果 32
2.6.1 幾何結構優化 32
2.6.1.1 Ir(ppy)3 33
2.6.1.2 Ir(pmb)3 34
2.6.2 振動頻率分析 35
2.6.2.1 Ir(ppy)3 35
2.6.2.2 Ir(pmb)3 38
2.7 討論 56
第三章 金屬串錯合物 57
3.1 三核金屬錯合物簡介 57
3.1.1 直線型三核金屬鍵結理論 60
3.1.2 鎳金屬串錯合物簡介 61
3.1.3 鎳金屬串錯合物的第一氧化態 64
3.1.4 鎳金屬串錯合物的第一還原態 66
3.2 研究動機與目的 78
3.3 理論計算方法 79
3.3.1 B3LYP*方法簡介 79
3.3.2 BS態計算方法 80
3.4 激發態的分析方法 85
3.4.1 空穴-電子分析 87
3.4.2 片段間電荷轉移分析 89
3.5 結果 95
3.5.1 泛函的比較與選擇 95
3.5.2 非局域性和局域性的分子軌域 96
3.5.3 Ni3(dpa)4Cl2 98
3.5.3.1 吸收光譜指認 98
3.5.3.2 拉曼光譜指認 99
3.5.4 [Ni3(dpa)4Cl2]+和[Ni3(dpa)4]3+ 101
3.5.4.1吸收光譜指認 102
3.5.4.2拉曼光譜指認 104
3.5.5 [Ni3(dpa)4Cl2]‒ 106
3.5.5.1吸收光譜指認 107
3.5.5.2拉曼光譜指認 107
3.6 討論 131
第四章 總結 135
參考文獻 136
1. Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Nearly 100% Internal Phosphorescence Efficiency in an Organic Light-Emitting Device. J Appl Phys 2001, 90, 5048-5051.
2. Kim, S. Y.; Kim, J. H.; Ha, Y.; Lee, S. H.; Seo, J. H.; Kim, Y. K., A Study on the Characteristics of Oleds Using Ir Complex for Blue Phosphorescence. Curr Appl Phys 2007, 7, 380-383.
3. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E., Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes. J Am Chem Soc 2001, 123, 4304-4312.
4. Thompson, M. E.; Burrows, P. E.; Forrest, S. R., Electrophosphorescence in Organic Light Emitting Diodes. Curr Opin Solid St M 1999, 4, 369-372.
5. Wong, W. Y.; Zhou, G. J.; Yu, X. M.; Kwok, H. S.; Tang, B. Z., Amorphous Diphenylaminofluorene-Functionalized Iridium Complexes for High-Efficiency Electrophosphorescent Light-Emitting Diodes. Adv Funct Mater 2006, 16, 838-846.
6. Wiedenhofer, H.; Schutzenmeier, S.; Vonzelewsky, A.; Yersin, H., Characterization of Triplet Sublevels by Highly Resolved Vibrational Satellite Structures - Application to Pt(2-Thpy)(2). J Phys Chem-Us 1995, 99, 13385-13391.
7. Hofbeck, T.; Yersin, H., The Triplet State of Fac-Ir(Ppy)(3). Inorg Chem 2010, 49, 9290-9299.
8. Sajoto, T.; Djurovich, P. I.; Tamayo, A.; Yousufuddin, M.; Bau, R.; Thompson, M. E.; Holmes, R. J.; Forrest, S. R., Blue and near-Uv Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl or N-Heterocyclic Carbene Ligands. Inorg Chem 2005, 44, 7992-8003.
9. Paulose, B. M. J. S.; Rayabarapu, D. K.; Duan, J. P.; Cheng, C. H., First Examples of Alkenyl Pyridines as Organic Ligands for Phosphorescent Iridium Complexes. Adv Mater 2004, 16, 2003-+.
10. Yang, C. H.; Fang, K. H.; Chen, C. H.; Sun, I. W., High Efficiency Mer-Iridium Complexes for Organic Light-Emitting Diodes. Chem Commun 2004, 2232-2233.
11. Holmes, R. J., et al., Saturated Deep Blue Organic Electrophosphorescence Using a Fluorine-Free Emitter. Appl Phys Lett 2005, 87, 243507.
12. Berger, R. J. F.; Stammler, H.-G.; Neumann, B.; Mitzel, N. W., Fac-Ir(Ppy)3: Structures in the Gas-Phase and of a New Solid Modification. European Journal of Inorganic Chemistry 2010, 2010, 1613-1617.
13. Breu, J.; Stössel, P.; Schrader, S.; Starukhin, A.; Finkenzeller, W. J.; Yersin, H., Crystal Structure Offac−Ir(Ppy)3and Emission Properties under Ambient Conditions and at High Pressure†. Chemistry of Materials 2005, 17, 1745-1752.
14. Takayasu, S.; Suzuki, T.; Shinozaki, K., Intermolecular Interactions and Aggregation of Fac-Tris(2-Phenylpyridinato-C-2,N)Iridium(Iii) in Nonpolar Solvents. J Phys Chem B 2013, 117, 9449-9456.
15. Born M, H. K., Theory of Crystal Lattice. Oxford: Clarendon Press 1998.
16. Hornig, D. F., The Vibrational Spectra of Molecules and Complex Ions in Crystals .1. General Theory. Journal of Chemical Physics 1948, 16, 1063-1076.
17. Civalleri, B.; Doll, K.; Zicovich-Wilson, C. M., Ab Initio Investigation of Structure and Cohesive Energy of Crystalline Urea. J Phys Chem B 2007, 111, 26-33.
18. Rousseau, D. L.; Bauman, R. P.; Porto, S. P. S., Normal Mode Determination in Crystals. J Raman Spectrosc 1981, 10, 253-290.
19. Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford Ct. 2013.
20. Dovesi, R. S., V. R.; Roetti, C.; Orlando, R.; Zicovich-Wilson, C. M.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison, N. M.; Bush, I. J.; D’Arco, P.; Llunell, M.; Causà, M.; Noël, Y.; Maschio, L.; Erba, A.; Rerat, M.; Casassa, S., Crystal17 User's Manual. 2017.
21. Dovesi, R. E., A.; Orlando, R.; Zicovich-Wilson, C. M.; Civalleri, B.; Maschio, L.; Rerat, M.; Casassa, S.; Baima, J.; Salustro, S.; Kirtman, B., Quantum-Mechanical Condensed Matter Simulations with Crystal. Wires Comput Mol Sci 2018, 8.
22. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (Dft-D) for the 94 Elements H-Pu. J Chem Phys 2010, 132, 154104.
23. Zhao, Y.; Truhlar, D. G., The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor Chem Acc 2008, 120, 215-241.
24. Chai, J. D.; Head-Gordon, M., Systematic Optimization of Long-Range Corrected Hybrid Density Functionals. Journal of Chemical Physics 2008, 128.
25. Grimme, S., Semiempirical Gga-Type Density Functional Constructed with a Long-Range Dispersion Correction. Journal of Computational Chemistry 2006, 27, 1787-1799.
26. Johnson, E. R.; Becke, A. D., A Post-Hartree-Fock Model of Intermolecular Interactions. Journal of Chemical Physics 2005, 123.
27. Johnson, E. R.; Becke, A. D., A Post-Hartree-Fock Model of Intermolecular Interactions: Inclusion of Higher-Order Corrections. Journal of Chemical Physics 2006, 124.
28. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the Damping Function in Dispersion Corrected Density Functional Theory. Journal of Computational Chemistry 2011, 32, 1456-1465.
29. Vanduijneveldt, F. B.; Vanduijneveldtvanderijdt, J. G. C. M.; Vanlenthe, J. H., State-of-the-Art in Counterpoise Theory. Chemical Reviews 1994, 94, 1873-1885.
30. Boys, S. F.; Bernardi, F., The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors (Reprinted from Molecular Physics, Vol 19, Pg 553-566, 1970). Mol Phys 2002, 100, 65-73.
31. Kruse, H.; Grimme, S., A Geometrical Correction for the Inter- and Intra-Molecular Basis Set Superposition Error in Hartree-Fock and Density Functional Theory Calculations for Large Systems. J Chem Phys 2012, 136, 154101.
32. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J Comput Chem 2011, 32, 1456-65.
33. Zhang, F.; Wang, H. W.; Tominaga, K.; Hayashi, M., Mixing of Intermolecular and Intramolecular Vibrations in Optical Phonon Modes: Terahertz Spectroscopy and Solid-State Density Functional Theory. Wires Comput Mol Sci 2016, 6, 386-409.
34. Lai, S. H.; Ling, J. W.; Huang, Y. M.; Huang, M. J.; Cheng, C. H.; Chen, I. C., Characterization of Ir(Ppy)(3) and [Ir(Ppy)(2) Bpy](+) by Infrared, Raman Spectra and Surface-Enhanced Raman Scattering. J Raman Spectrosc 2011, 42, 332-338.
35. Shimizu, H., High-Pressure Raman Study of Liquid and Molecular Crystal at Room Temperature. Methylene Chloride. Chemical Physics Letters 1983, 105, 268-272.
36. Tsai, H. R.; Lu, K. Y.; Lai, S. H.; Fan, C. H.; Cheng, C. H.; Chen, I. C., Metal-Ligand Bonding Strength of Fluoro-Substituted Cyclometalated Iridium(Iii) Complexes from Raman and Infrared Spectra. J Phys Chem C 2011, 115, 17163-17174.
37. Li, T. Y.; Jing, Y. M.; Liu, X.; Zhao, Y.; Shi, L.; Tang, Z. Y.; Zheng, Y. X.; Zuo, J. L., Circularly Polarised Phosphorescent Photoluminescence and Electroluminescence of Iridium Complexes. Sci Rep-Uk 2015, 5.
38. Zhang, F.; Kambara, O.; Tominaga, K.; Nishizawa, J.; Sasaki, T.; Wang, H. W.; Hayashi, M., Analysis of Vibrational Spectra of Solid-State Adenine and Adenosine in the Terahertz Region. Rsc Adv 2014, 4, 269-278.
39. Hurley, T. J.; Robinson, M. A., Nickel(2)-2,2' -Bipyridylamine System .1. Synthesis and Stereochemistry of Complexes. Inorg Chem 1968, 7, 33-&.
40. Aduldecha, S.; Hathaway, B., Crystal-Structure and Electronic-Properties of Tetrakis[Mu-3-Bis(2-Pyridyl)Amido]Dichlorotrinickel(Ii) Water Acetone (1/0.23/0.5). J Chem Soc Dalton 1991, 993-998.
41. Peng, S. M.; Wang, C. C.; Jang, Y. L.; Chen, Y. H.; Li, F. Y.; Mou, C. Y.; Leung, M. K., One-Dimensional Metal String Complexes. J Magn Magn Mater 2000, 209, 80-83.
42. Kitagawa, Y.; Matsui, T.; Nakanishi, Y.; Shigeta, Y.; Kawakami, T.; Okumura, M.; Yamaguchi, K., Theoretical Studies of Electronic Structures, Magnetic Properties and Electron Conductivities of One-Dimensional Ni-N (N=3, 5, 7) Complexes. Dalton T 2013, 42, 16200-16208.
43. Berry, J. F.; Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. P., Oxidation of Ni-3(Dpa)(4)Cl-2 and Cu-3(Dpa)(4)Cl-2: Nickel-Nickel Bonding Interaction, but No Copper-Copper Bonds. Inorg Chem 2003, 42, 2418-2427.
44. Clerac, R.; Cotton, F. A.; Dunbar, K. R.; Murillo, C. A.; Pascual, I.; Wang, X. P., Further Study of the Linear Trinickel(Ii) Complex of Dipyridylamide. Inorg Chem 1999, 38, 2655-2657.
45. Wang, C. C.; Lo, W. C.; Chou, C. C.; Lee, G. H.; Chen, J. M.; Peng, S. M., Synthesis, Crystal Structures, and Magnetic Properties of a Series of Linear Pentanickel(Ii) Complexes: [Ni-5(Mu(5)-Tpda)(4)X-2] (X = Cl-, Cn-, N-3(-), Ncs-) and [Ni-5(Mu(5)-Tpda)(4)(Ch3cn)(2)]-(Pf6)(2) (Tpda(2-) = the Tripyridyldiamido Dianion). Inorg Chem 1998, 37, 4059-4065.
46. Kiehl, P.; Rohmer, M. M.; Benard, M., Electron Delocalization in Nickel Metallic Wires: A Dft Investigation of Ni-3(Dpa)(4)Cl-2 and [Ni-3(Dpa)(4)](3+) (Dpa = Dipyridylamide) and Extension to Higher Nuclearity Chains. Inorg Chem 2004, 43, 3151-3158.
47. Onishi, T.; Takano, Y.; Kitagawa, Y.; Kawakami, T.; Yoshioka, Y.; Yamaguchi, K., Theoretical Study of the Magnetic Interaction for M-O-M Type Metal Oxides. Comparison of Broken-Symmetry Approaches. Polyhedron 2001, 20, 1177-1184.
48. Yamaguchi, K.; Fukui, H.; Fueno, T., Molecular-Orbital (Mo) Theory for Magnetically Interacting Organic-Compounds - Abinitio Mo Calculations of the Effective Exchange Integrals for Cyclophane-Type Carbene Dimers. Chem Lett 1986, 625-628.
49. Berry, J. F.; Cotton, F. A.; Lei, P.; Lu, T. B.; Murillo, C. A., Additional Steps toward Molecular Scale Wires: Further Study of Ni-5(10/11+) Chains Embraced by Polypyridylamide Ligands. Inorg Chem 2003, 42, 3534-3539.
50. Cotton, F. A.; Daniels, L. M.; Lei, P.; Murillo, C. A.; Wang, X. P., Di- and Trinuclear Complexes with the Mono- and Dianion of 2,6-Bis(Phenylamino)Pyridine: High-Field Displacement of Chemical Shifts Due to the Magnetic Anisotropy of Quadruple Bonds. Inorg Chem 2001, 40, 2778-2784.
51. Berry, J. F.; Cotton, F. A.; Daniels, L. M.; Murillo, C. A., A Trinickel Dipyridylamido Complex with Metal-Metal Bonding Interaction: Prelude to Polynickel Molecular Wires and Devices? J Am Chem Soc 2002, 124, 3212-3213.
52. Connelly, N. G.; Geiger, W. E., Chemical Redox Agents for Organometallic Chemistry. Chemical Reviews 1996, 96, 877-910.
53. Carroll, R. L.; Gorman, C. B., The Genesis of Molecular Electronics. Angew Chem Int Edit 2002, 41, 4379-4400.
54. Berry, J. F.; Cotton, F. A.; Lu, T. B.; Murillo, C. A.; Wang, X. P., Enhancing the Stability of Trinickel Molecular Wires and Switches: Ni-3(6+)/Ni-3(7+). Inorg Chem 2003, 42, 3595-3601.
55. 洪立晏,國立清華大學化學系碩士論文,西元2018年.
56. Wu, B. H.; Hung, L. Y.; Chung, J. Y.; Peng, S. M.; Chen, I. C., Determination of the Ni-Ni Bonding Strength in Metal-String Complexes Using Head-to-Head Nanorods and Electrochemical Surface-Enhanced Raman Spectroscopy. J Phys Chem C 2018, 122, 6332-6339.
57. 蕭忠仁,國立清華大學化學系碩士論文,西元2008年.
58. Reiher, M.; Salomon, O.; Hess, B. A., Reparameterization of Hybrid Functionals Based on Energy Differences of States of Different Multiplicity. Theor Chem Acc 2001, 107, 48-55.
59. Salomon, O.; Reiher, M.; Hess, B. A., Assertion and Validation of the Performance of the B3lyp(Star) Functional for the First Transition Metal Row and the G2 Test Set. Journal of Chemical Physics 2002, 117, 4729-4737.
60. Neese, F., The Orca Program System. Wires Comput Mol Sci 2012, 2, 73-78.
61. Neese, F., Software Update: The Orca Program System, Version 4.0. Wires Comput Mol Sci 2018, 8.
62. Kitagawa, Y.; Saito, T.; Ito, M.; Shoji, M.; Koizumi, K.; Yamanaka, S.; Kawakami, T.; Okumura, M.; Yamaguchi, K., Approximately Spin-Projected Geometry Optimization Method and Its Application to Di-Chromium Systems. Chemical Physics Letters 2007, 442, 445-450.
63. Martin, R. L., Natural Transition Orbitals. Journal of Chemical Physics 2003, 118, 4775-4777.
64. Lu, T., Multiwfn Manual, Version 3.6, Section 3.21.1.
65. He, G. Y.; Zhou, L. L.; Song, H. W.; Kuang, Z. R.; Wang, X.; Guo, Q. J.; Lu, H. Y.; Xia, A. D., Insights into the Effect of Donor Ability on Photophysical Properties of Dihydroindeno[2,1-C]Fluorene-Based Imide Derivatives. Phys Chem Chem Phys 2018, 20, 7514-7522.
66. Lu, T.; Chen, F. W., Multiwfn: A Multifunctional Wavefunction Analyzer. Journal of Computational Chemistry 2012, 33, 580-592.
67. Campetella, M.; Maschietto, F.; Frisch, M. J.; Scalmani, G.; Ciofini, I.; Adamo, C., Charge Transfer Excitations in Tddft: A Ghost-Hunter Index. Journal of Computational Chemistry 2017, 38, 2151-2156.
68. Lai, S. Y.; Lin, T. W.; Chen, Y. H.; Wang, C. C.; Lee, G. H.; Yang, M. H.; Leung, M. K.; Peng, S. M., Metal String Complexes: Synthesis and Crystal Structure of [Ni-4(Mu(4)-Phdpda)(4)] and [Ni-7(Mu(7)-(Teptra)(4)Cl-2] (H(2)Phdpda = N-Phenyldipyridyldiamine and H(3)Teptra = Tetrapyridyltriamine). J Am Chem Soc 1999, 121, 250-251.
69. Cheng, C. H.; Hung, R. D.; Wang, W. Z.; Peng, S. M.; Chen, I. C., Excited-State Dynamics of Metal String Complex Ni-3(Dpa)(4)X-2 from Femtosecond Transient Absorption Spectra. Chemphyschem 2010, 11, 517-524.
70. Hirao, T., Redox Systems under Nano-Space Control; Springer. 2006.
71. Hsiao, C. J.; Lai, S. H.; Chen, I. C.; Wang, W. Z.; Peng, S. M., Metal-Metal Bonding and Structures of Metal String Complexes Cr-3(Dpa)(4)Cl-2, Cr-3(Dpa)(4)(Ncs)(2), and [Cr-3(Dpa)(4)Cl-2](Pf6) from Ir, Raman, and Surface-Enhanced Raman Spectra. J Phys Chem A 2008, 112, 13528-13534.
72. Cheng, C. H.; Hung, R. D.; Wang, W. Z.; Peng, S. M.; Chen, I. C., Excited-State Dynamics of the Metal String Complex Co-3(Dpa)(4)(Ncs)(2) from Femtosecond Transient Absorption Spectra. Chemphyschem 2010, 11, 466-473.
73. Gawelda, W.; Cannizzo, A.; Pham, V. T.; van Mourik, F.; Bressler, C.; Chergui, M., Ultrafast Nonadiabatic Dynamics of [Fe-Ii(Bpy)(3)](2+) in Solution. J Am Chem Soc 2007, 129, 8199-8206.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用步進式時域解析霍氏轉換紅外光譜法研究鹵化物之光分解反應
2. 以交叉分子束方法研究雙重態氮原子及三重態碳原子與矽甲烷之反應動力學
3. 環硫丙烷在波長範圍206-230 nm之雷射誘發螢光光譜及熱解反應
4. 利用飛秒瞬態吸收光譜技術研究鍵結於金奈米粒子表面上的2-苯硫醇基,5-苯基,3-丁基呋喃之光學特性及三核鎳系、鈷系與鉻系金屬串錯合物之電子激發態動態學
5. 巴豆醛分子解離及異構化途徑之理論研究
6. 苯基-異喹啉與苯基-咪唑銥金屬錯合物之光物理性質研究
7. 4-甲基砒碇與苯胺在氬氣間質下之雷射光解光譜
8. 以矽烷基為間隔之芳香基高分子之能量轉移途徑
9. 以同步輻射光源結合雷射技術研究1D能態硫原子的自游離態、光解有機硫化物產物硫原子的分支比以及氙分子的高激發雷德堡能態
10. 利用螢光上轉換光譜技術研究光收成共聚物之能量轉移過程
11. 拉曼光譜系統架設與應用:在三-(2-苯基吡啶)銥金屬錯合物之振動模式研究與直線形三核金屬串錯合物之振動模式研究
12. 異配位甲基萘喹啉-三氟甲基吡啶吡唑與氟取代苯基吡啶-吡啶基三氮二烯五圜金屬銥錯合物之凝態光譜動力學研究
13. 奈米微粒間的靜電斥力對偵測靈敏度之影響:利用十五冠五醚修飾之金奈米微粒偵測水溶液中的鉀離子
14. 含芳香環側鏈取代之聚苯胺共聚合物之螢光與電子傳遞途徑研究
15. 直線型多核金屬串錯合物之光物理性質研究
 
* *