|
1. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637-638. 2. http://www.columbia.edu/~mhs119/Temperature/. 3. https://www.rti.org.tw/news/view/id/2020597. 4. Linsebigler, A. L.; Lu, G.; Yates, J. T., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735-758. 5. He, Y.; Zhang, L.; Teng, B.; Fan, M., New Application of Z-Scheme Ag3PO4/g-C3N4 Composite in Converting CO2 to Fuel. Environ. Sci. Technol. 2015, 49, 649-656. 6. Aguirre, M. E.; Zhou, R.; Eugene, A. J.; Guzman, M. I.; Grela, M. A., Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion. Appl. Catal. B 2017, 217, 485-493. 7. Jin, J.; Yu, J.; Guo, D.; Cui, C.; Ho, W., A Hierarchical Z-Scheme CdS–WO3 Photocatalyst with Enhanced CO2 Reduction Activity. Small 2015, 11 , 5262-5271. 8. Wu, S.-C.; Tan, C.-S.; Huang, M. H., Strong Facet Effects on Interfacial Charge Transfer Revealed through the Examination of Photocatalytic Activities of Various Cu2O–ZnO Heterostructures. Adv. Funct. Mater. 2017, 27 , 1604635. 9. Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Jaroniec, M., Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 2018, 21, 1042-1063. 10. Lakhera, S. K.; Watts, A.; Hafeez, H. Y.; Neppolian, B., Interparticle Double Charge Transfer Mechanism of Heterojunction α-Fe2O3/Cu2O Mixed Oxide Catalysts and Its Visible Light Photocatalytic Activity. Catal. Today 2018, 300, 58-70. 11. Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H., Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity. J. Am. Chem. Soc. 2012, 134, 1261-1267. 12. Huang, Y.-C.; Wu, S.-H.; Hsiao, C.-H.; Lee, A.-T.; Huang, M. H., Mild Synthesis of Size-Tunable CeO2 Octahedra for Band Gap Variation. Chem. Mater. 2020. 13. Hsieh, P.-L.; Naresh, G.; Huang, Y.-S.; Tsao, C.-W.; Hsu, Y.-J.; Chen, L.-J.; Huang, M. H., Shape-Tunable SrTiO3 Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. J. Phys. Chem. C 2019, 123 (22), 13664-13671. 14. Naresh, G.; Lee, A.-T.; Meena, V.; Satyanarayana, M.; Huang, M. H., Photocatalytic Activity Suppression of Ag3PO4- Deposited Cu2O Octahedra and Rhombic Dodecahedra. J. Phys. Chem. C 2019, 123 (4), 2314-2320. 15. Naresh, G.; Hsieh, P.-L.; Meena, V.; Lee, S.-K.; Chiu, Y.-H.; Madasu, M.; Lee, A.-T.; Tsai, H.-Y.; Lai, T.-H.; Hsu, Y.-J.; Lo, Y.-C.; Huang, M. H., Facet- Dependent Photocatalytic Behaviors of ZnS-Decorated Cu2O Polyhedra Arising from Tunable Interfacial Band Alignment. ACS Appl. Mater. Interfaces 2019, 11, 3582-3589. 16. Huang, J.-Y.; Hsieh, P.-L.; Naresh, G.; Tsai, H.-Y.; Huang, M. H., Photocatalytic Activity Suppression of CdS Nanoparticle-Decorated Cu2O Octahedra and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122, 12944-12950. 17. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K., Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angew. Chem. 2013, 52, 7372-7408. 18. https://onlinelibrary.wiley.com/doi/10.1002/ange.19820940446. 19. Bluhm, H., Photoelectron spectroscopy of surfaces under humid conditions. J Electron Spectrosc. Relat. Phenom. 2010, 177, 71-84. 21. https://www.thermofisher.com/tw/zt/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/overview-mass-spectrometry.html. 22. https://en.wikipedia.org/wiki/Quadrupole_mass_analyzer. 23. https://www.itsfun.com.tw/%E5%85%89%E9%9B%BB%E5%80%8D%E5%A2%9E%E7%AE%A1/wiki-5012396-9508176. 24. https://xpssimplified.com/elements/copper.php. 25. Biesinger, M. C., Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 2017, 49, 1325-1334. 26. Jiang, P.; Prendergast, D.; Borondics, F.; Porsgaard, S.; Giovanetti, L.; Pach, E.; Newberg, J.; Bluhm, H.; Besenbacher, F.; Salmeron, M., Experimental and theoretical investigation of the electronic structure of Cu2O and CuO thin films on Cu(110) using x-ray photoelectron and absorption spectroscopy. J. Chem. Phys. 2013, 138, 024704. 27. Deng, X.; Verdaguer, A.; Herranz, T.; Weis, C.; Bluhm, H.; Salmeron, M., Surface Chemistry of Cu in the Presence of CO2 and H2O. Langmuir 2008, 24, 9474-9478. 28. Koitaya, T.; Yamamoto, S.; Shiozawa, Y.; Yoshikura, Y.; Hasegawa, M.; Tang, J.; Takeuchi, K.; Mukai, K.; Yoshimoto, S.; Matsuda, I.; Yoshinobu, J., CO2 Activation and Reaction on Zn-Deposited Cu Surfaces Studied by Ambient-Pressure X-ray Photoelectron Spectroscopy. ACS Catal. 2019, 9, 4539-4550. 29. Li, B.; Fan, K.; Ma, X.; Liu, Y.; Chen, T.; Cheng, Z.; Wang, X.; Jiang, J.; Liu, X., Graphene-based porous materials with tunable surface area and CO2 adsorption properties synthesized by fluorine displacement reaction with various diamines. J. Colloid Interface Sci. 2016, 478, 36-45. 30. Chandra, V.; Yu, S. U.; Kim, S. H.; Yoon, Y. S.; Kim, D. Y.; Kwon, A. H.; Meyyappan, M.; Kim, K. S., Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chem. Commun. 2012, 48, 735-737. 31. Collado, L.; Reynal, A.; Fresno, F.; Barawi, M.; Escudero, C.; Perez-Dieste, V.; Coronado, J. M.; Serrano,D. P.; Durrant, J. R.; de la Peña O’Shea, V. A., Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction. Nat. Commun. 2018, 9, 4986. 32. Tiwari, D.; Goel, C.; Bhunia, H.; Bajpai, P. K., Melamine-formaldehyde derived porous carbons for adsorption of CO2 capture. J. Environ. Manage. 2017, 197, 415-427. 33. Zhang, L.; Li, N.; Jiu, H.; Qi, G.; Huang, Y., ZnO-reduced graphene oxide nanocomposites as efficient photocatalysts for photocatalytic reduction of CO2. Ceram. Int. 2015, 41, 6256-6262. 34. Shiozawa, Y.; Koitaya, T.; Mukai, K.; Yoshimoto, S.; Yoshinobu, J., The roles of step-site and zinc in surface chemistry of formic acid on clean and Zn-modified Cu(111) and Cu(997) surfaces studied by HR-XPS, TPD, and IRAS. J. Chem. Phys. 2020, 152, 044703. 35. Bai, B. C.; Kim, E. A.; Lee, C. W.; Lee, Y.-S.; Im, J. S., Effects of surface chemical properties of activated carbon fibers modified by liquid oxidation for CO2 adsorption. Appl. Surf. Sci. 2015, 353, 158-164. 36. Chang, W.-Y.; Lin, C.-A.; He, J.-H.; Wu, T.-B., Resistive switching behaviors of ZnO nanorod layers. Appl. Phys. Lett. 2010, 96, 242109. 37. Tissot, H.; Wang, C.; Stenlid, J. H.; Panahi, M.; Kaya, S.; Soldemo, M.; Ghadami Yazdi, M.; Brinck, T.; Weissenrieder, J., Interaction of Atomic Hydrogen with the Cu2O(100) and (111) Surfaces. J. Phys. Chem. C 2019, 123, 22172-22180. 38. Önsten, A.; Weissenrieder, J.; Stoltz, D.; Yu, S.; Göthelid, M.; Karlsson, U. O., Role of Defects in Surface Chemistry on Cu2O(111). J. Phys. Chem. C 2013, 117, 19357-19364. 39. Yang, M.; Zhu, J.-J., Spherical hollow assembly composed of Cu2O nanoparticles. J. Cryst. Growth 2003, 256, 134-138. 40. Niranjan, K.; Dutta, S.; Varghese, S.; Ray, A. K.; Barshilia, H. C., Role of defects in one-step synthesis of Cu-doped ZnO nano-coatings by electrodeposition method with enhanced magnetic and electrical properties. Appl. Phys. A 2017, 123, 250. 41. Vohs, J. M.; Barteau, M. A., Photoelectron spectroscopy of diethylzinc on the polar surfaces of zinc oxide. J Electron Spectrosc. Relat. Phenom. 1989, 49 , 87-96. 42. Favaro, M.; Xiao, H.; Cheng, T.; Goddard, W. A.; Yano, J.; Crumlin, E. J., Subsurface oxide plays a critical role in CO activation by Cu(111) surfaces to form chemisorbed CO, the first step in reduction of CO. Proc. Natl. Acad. Sci. 2017, 114 , 6706. 43. Brandt, R. E.; Young, M.; Park, H. H.; Dameron, A.; Chua, D.; Lee, Y. S.; Teeter, G.; Gordon, R. G.; Buonassisi, T., Band offsets of n-type electron-selective contacts on cuprous oxide (Cu2O) for photovoltaics. Appl. Phys. Lett. 2014, 105, 263901. 44. Huang, L.; Peng, F.; Ohuchi, F. S., “In situ” XPS study of band structures at Cu2O/TiO2 heterojunctions interface. Surf. Sci. 2009, 603, 2825-2834.
|