帳號:guest(18.220.74.157)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉哲瑜
作者(外文):Liu, Zhe-Yu
論文名稱(中文):雙官能基陽離子電荷轉移超快動態學之距離相依性研究
論文名稱(外文):Distance Dependence of Ultrafast Charge Transfer Dynamic in Bifunctional Molecular Cations
指導教授(中文):鄭博元
指導教授(外文):Cheng, Po-Yuan
口試委員(中文):朱立岡
王念夏
口試委員(外文):Chu, Li-Kang
Wang, Nian-Xia
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:107023548
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:116
中文關鍵詞:飛秒雷射雷射化學光游離光裂解電荷轉移
外文關鍵詞:femtosecondradiochemistrychargetransferpumpprobe
相關次數:
  • 推薦推薦:0
  • 點閱點閱:177
  • 評分評分:*****
  • 下載下載:29
  • 收藏收藏:0
本論文中,我們使用飛秒泵浦-探測光游離-光裂解結合質譜偵測技術研究一系列具有雙官能基之陽離子電荷轉移動態學,此一系列分子為methyl[(1,2,3,4-tetrahydronaphthalen-2-yl)methyl]amine (MNMA)、N-methyl-3-phenylpropylamine (MPPA)、N-methylphenylethylamine (MPEA)和N-methyl-phenylmethylamine (MPMA)。這四種分子之陽離子皆以胺基作為電子予體、苯環作為電子受體,並以飽和碳橋連接兩者。MNMA及MPPA為三碳鏈分子,MPEA為二碳鏈分子,MPMA則為單碳鏈分子。本實驗利用1+1 REMPI的技術使中性S0態的分子經由各分子之苯環S1態吸收兩個泵浦脈衝光子,選擇性游離苯環端到達陽離子D1態,隨後陽離子系統可透過電荷轉移行為緩解至陽離子D0態,之後導入探測脈衝將陽離子裂解成碎片離子,且調控不同的泵浦-探測脈衝延遲時間,得到離子損耗瞬時訊號並利用連續動力學模型適解之。我們亦利用不同震動冷卻效果之攜帶氣體(He及Ar)改變各分子於中性S0態時之構型分佈。MNMA+及MPEA+皆得到三個時間常數τ1、τ2和τ3,而MPPA+及MPMA+則僅得到兩個時間常數τ1和τ2。我們指認τ1代表陽離子D1態快速的分子內振動能重分配行為,τ2代表陽離子D1緩解至陽離子D0態的電荷轉移行為,τ3則為陽離子D0態不同構型間轉換達到最終平衡分佈的行為。根據簡單理論模型,電荷轉移速率與電子予體及受體間距離呈現指數衰減的關係,本實驗研究分子胺基端與苯環端距離以MNMA最長,MPPA次之,MPEA再次之,而MPMA最短,故MNMA、MPPA、MPEA及MPMA的τ2在以He為攜帶氣體時大致符合上述預期,分別為16、11、2.1及1.2 ps。而在以Ar為攜帶氣體時τ2則分別為15、4.2、8.5及1.7 ps,其中MPEA分子之結果明顯與上述之預測趨勢有些出入,這暗示我們除了距離外,或許尚有其他因素也會影響電荷轉移速率。
In this thesis, we study the ultrafast charge-transfer (CT) dynamics in a series of bifunctional molecular cations: N-methyl-1,2,3,4-tetrahydronaphthalen-2-amine (MNMA)、N-methyl-3-phenylpropylamine (MPPA)、N-methylphenethylamine (MPEA) and N-methylphenylmethylamine (MPMA)。They all have amino groups as electron donor connecting to phenyl groups as electron acceptor by different lengths of saturated carbon bridge. MNMA and MPPA are three-carbon-bridged molecules MPEA is two-carbon-bridged molecule and MPMA is one-carbon-bridged molecule.We utilize the femtosecond 1+1 resonance-enhanced multiphoton ionization via their S1 state, and the subsequent dynamics taking place in the cations is probed by delayed pulses, which leads to ion fragmentation.We acquired ion depletion transients by monitoring ion signals with different pump-probe delay time. We used two carrier gases (He and Ar) with different vibrational cooling effects to change the neutral ground state confermer distributions. We used a sequential first-order kinetic model in order to obtain time constants (τ) of cation relaxation processes. Two or three time constants are found from the ion depletion transients of MNMA+、MPPA+、MPEA+ and MPMA+ separately.We assigned τ1、τ2 and τ3 to the rapid intramolecular vibrational energy redistribution (IVR)、charge transfer and conformational relaxation processes to the final equilibrium distribution, respectively. According to a simple theoretical model, charge transfer rate and distance between electron donor and electron acceptor shows an exponential decay relationship. In the four cations studied here, the distance between amino and phenyl sites in MNMA is the longest, followed by MPPA and MPEA, and MPMA is the shortest. According to our fitting result, τ2 (16、11、2.1 and 1.2 ps) shows a trend consistent with the above mentioned simple theoretical model when He was used as the carrier gas.When Ar was used as the carrier gas, τ2 were found to be 15、4.2、8.5 and 1.7 ps. Apparently, τ2 of MPEA cation is not consistent with above mentioned relationship. These observations imply that there might be other important factors affecting the charge transfer rate in addition to the distance between the electron donor and electron acceptor.
摘要
目錄
第一章 緒論...............................1
1.1 前言...................................1
1.2 文獻資料回顧............................2
1.3 研究動機................................7
第二章 實驗系統與技術.......................10
2.1基本實驗方法:質量解析離子瞬時訊號.........10
2.2 超快飛秒雷射系統........................12
2.2.1. 雷射產生源...........................13
2.2.2. 能量再生放大器.......................18
2.3 波長調變器..............................24
2.3.1 倍頻與混頻技術........................24
2.4分子束系統...............................25
2.4.1分子束樣品進氣裝置.....................29
2.5飛行時間質譜儀...........................31
2.6 實驗架設圖..............................35
2.7訊號擷取系統.............................36
2.8儀器響應函數(instrument response function, IRF).......38
第三章 實驗結果與討論........................40
3.1 MNMA、MPPA、MPEA、MPMA質譜..............40
3.2 MNMA、MPPA、MPEA之質譜與雷射脈衝能量依存性............41
3.3 MNMA母離子損耗率與雷射脈衝能量依存性..................45
3.4 MNMA陽離子時間解析質譜(time-resolved mass spectra)...49
3.5 MNMA母離子光游離-光裂解離子損耗瞬時訊號驗證...........51
3.6 MNMA、MPPA、MPEA、MPMA離子損耗瞬時訊號比較...........52
3.7 MNMA、MPPA、MPEA、MPMA離子損耗瞬時訊號適解...........58
第四章 理論計算與討論........................70
4.1中性S0態之計算結果........................70
4.1.1. MNMA中性S0態之計算結果................70
4.1.2. MPPA中性S0態之計算結果................74
4.1.3. MPEA中性S0態之計算結果................79
4.1.4. MPMA中性S0態之計算結果................82
4.2陽離子D0態之計算結果......................85
4.2.1. MNMA陽離子D0態之計算結果..............85
4.2.2. MPPA陽離子D0態之計算結果..............87
4.2.3. MPEA陽離子D0態之計算結果..............89
4.2.4. MPMA陽離子D0態之計算結果..............90
4.3 綜合討論................................91
第五章 結論.................................95
附錄........................................97
參考文獻....................................115

1. J. Barber and B. Andersson, Nature 1994, 31, 370
2. G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, Nat. Chem. 2011, 763, 3
3. A. Shah, B. Adhikari, S. Martic, A. Munir, S. Shahzad, K. Ahmad, and H.-B. Kraatz, Chem. Soc. Rev. 2015, 1015, 44
4. E. W. Schlag, S. Y. Sheu, D. Y. Yang, H. L. Selzle, and S. H. Lin, Angew. Chem. Int. Ed. 2007, 3196, 46
5. E. W. Schlag, S. Y. Sheu, D. Y. Yang, H. L. Selzle, and S. H. Lin, Proc. Natl. Acad. Sci. U.S.A 2000, 1068, 97
6. E. Meggers, M. E. Michel-Beyerle, and B. Giese, J. Am. Chem. Soc. 1998, 12950, 120
7. K. Kawai and T. Majima, Acc. Chem. Res. 2013, 2616, 46
8. J. Jortner, M. Bixon, H. Heitele, and M. E. Michelbeyerle, Chem. Phys. Lett. 1992, 131, 197
9. J. Jortner, M. Bixon, B. Wegewijs, J. W. Verhoeven, and R. P. H. Rettschnick, Chem. Phys. Lett. 1993, 451, 205
10. R. Weinkauf, P. Schanen, D. Yang, S. Sonkara, and E. W. Schlag, J. Phys. Chem-Us. 1995, 11255, 99
11. R. Weinkauf, P. Schanen, A. Metsala, E. W. Schlag, M. Burgle, and H. Kessler, J. Phys. Chem. 1996, 18567, 100
12. S. S. Isied, M. Y. Ogawa, and J. F. Wishart, Chem. Rev. 1992, 381, 92
13. M. R. Wasielewski, Chem. Rev. 1992, 435, 92
14. M. Gilbert and B. Albinsson, Chem. Soc. Rev. 2015, 845, 44
15. F. D. Lewis, R. L. Letsinger, and M. R. Wasielewski, Acc. Chem. Res. 2001, 159, 34
16. D. M. Adams, L. Brus, C. E. D. Chidsey, S. Creager, C. Creutz, C. R. Kagan, P. V. Kamat, M. Lieberman, S. Lindsay, R. A. Marcus, R. M. Metzger, M. E. Michel-Beyerle, J. R. Miller, M. D. Newton, D. R. Rolison, O. Sankey, K. S. Schanze, J. Yardley, and X. Y. Zhu, J. Phys. Chem. B. 2003, 6668, 107
17. W. B. Davis, W. A. Svec, M. A. Ratner, and M. R. Wasielewski, Nature 1998, 60, 396
18. J. W. Ho, W. K. Chen, and P. Y. Cheng, J. Chem. Phys. 2009, 134308, 131
19. C. C. Shen, T. T. Tsai, J. W. Ho, Y. W. Chen, and P. Y. Cheng, J. Chem. Phys. 2014, 141
20. C. C. Shen, T. T. Tsai, J. Y. Wu, J. W. Ho, Y. W. Chen, and P. Y. Cheng, J. Chem. Phys. 2017,147
21. R. Weinkauf, L. Lehr, and A. Metsala, J. Phys. Chem. A. 2003, 2787, 107
22. W. Cheng, N. Kuthirummal, J. L. Gosselin, T. I. Solling, R. Weinkauf, and P. M. Weber, J. Phys. Chem. A. 2005, 1920, 109
23. E. W. Schlag, H. L. Selzle, P. Schanen, R. Weinkauf, and R. D. Levine, J. Phys. Chem. A. 2006, 110, 8497
24. L. Lehr, T. Horneff, R. Weinkauf, and E. W. Schlag, J. Phys. Chem. A. 2005, 109, 8074
25. S. T. Sun, B. Mignolet, L. Fan, W. Li, R. D. Levine, and F. Remacle, J. Phys. Chem. A. 2017, 121, 1442
26. P. F. Barbara, T. J. Meyer, and M. A. Ratner, J. Phys. Chem. 1996, 100, 13148
27. G. L. Closs, L. T. Calcaterra, N. J. Green, K. W. Penfield, and J. R. Miller, J Phys Chem-Us 1986, 90, 3673
28. G. L. CLOSS and J. R. MILLER, Science 1988, 240, 440
29. M. D. Johnson, J. R. Miller, N. S. Green, and G. L. Closs, J Phys Chem-Us 1989, 93, 1173
30. 宋桓宇, 氣相超快光游離誘發雙官能基陽離子內之電荷轉移動態學研究 2019
31. 楊博俊, 超快光游離誘發2-苯基乙基-N,N-二甲基胺陽離子內之電荷轉移動態學研究 2018
32. 蔡宗廷, 超快光游離誘發酚-氨錯合物陽離子內之質子轉移動態學研究 2015
33. 陳依微, 酚-氨陽離子錯合物中之超快質子轉移反應動態學研究 2011
34. 陳捷琳, 以超快時間解析螢光光譜研究四氰基乙烯與苯錯合物電子轉移動態學之溶劑效應 2010, 11
35. 周威銧, 胞嘧啶之氣相超快激發態動態學研究:激發態衰減時間與激發能量的依存性 2008
36. Eldredge, B.A.A.P., General Chemistry: Principles, Patterns, and Applications, v. 1.0 (2 Volume Set).
37. Wiley, W.C. and I.H. McLaren, Rev. Sci. Instrum. 1955, 1150, 26
38. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A., et al. Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009
39. A. Amirav, U. Even, J. Jortner, Chem. Phys. 1980, 51, 31-42

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *