|
參考文獻
1. Di Lullo, G. A.; Sweeney, S. M.; Körkkö, J.; Ala-Kokko, L.; San Antonio, J. D., Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 2002, 277, 4223-4231. 2. Kar, K.; Ibrar, S.; Nanda, V.; Getz, T. M.; Kunapuli, S. P.; Brodsky, B., Aromatic interactions promote self-association of collagen triple-helical peptides to higher-order structures. Biochemistry 2009, 48, 7959-7968. 3. Shoulders, M. D.; Raines, R. T., Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929-958. 4. Makareeva, E.; Mertz, E. L.; Kuznetsova, N. V.; Sutter, M. B.; DeRidder, A. M.; Cabral, W. A.; Barnes, A. M.; McBride, D. J.; Marini, J. C.; Leikin, S., Structural heterogeneity of type I collagen triple helix and its role in osteogenesis imperfecta. J. Biol. Chem. 2008, 283, 4787-4798. 5. Nuytinck, L.; Freund, M.; Lagae, L.; Pierard, G.; Hermanns-Lê, T.; De Paepe, A., Classical ehlers-danlos syndrome caused by a mutation in type I collagen. Am. J. Hum. Genet. 2000, 66, 1398-1402. 6. Cowan, P. M.; McGavin, S.; North, A. C. T., The polypeptide chain configuration of collagen. Nature 1955, 176, 1062-1064. 7. Ramshaw, J. A. M.; Shah, N. K.; Brodsky, B., Gly-X-Y tripeptide frequencies in collagen: A context for host–guest triple-helical peptides. J. Struct. Biol. 1998, 122, 86-91. 8. Ramachandran, G. N., Structure of collagen. Nature 1956, 177, 710-711. 9. Moradi, M.; Babin, V.; Roland, C.; Sagui, C., A classical molecular dynamics investigation of the free energy and structure of short polyproline conformers. J. Chem. Phys. 2010, 133, 125104. 10. https://www.supplyhealthbook.com/2018/10/collagen.html.(accessed on 2020/07/01) 11. Nemoto, T.; Horiuchi, M.; Ishiguro, N.; Shinagawa, M., Detection methods of possible prion contaminants in collagen and gelatin. Arch. Virol. 1999, 144, 177-184. 12. Okuyama, K., Revisiting the molecular structure of collagen. Connect. Tissue Res. 2008, 49, 299-310. 13. Brodsky, B.; Ramshaw, J. A. M., The collagen triple-helix structure. Matrix Biol. 1997, 15, 545-554. 14. Choudhary, A.; Pua, K. H.; Raines, R. T., Quantum mechanical origin of the conformational preferences of 4-thiaproline and its S-oxides. Amino Acids 2011, 41, 181-186. 15. Hinderaker, M. P.; Raines, R. T., An electronic effect on protein structure. Protein Sci. 2003, 12, 1188-1194. 16. Persikov, A. V.; Ramshaw, J. A. M.; Kirkpatrick, A.; Brodsky, B., Amino acid propensities for the collagen triple-helix. Biochemistry 2000, 39, 14960-14967. 17. 黃俞強.利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為.國立中央大學, 2014. 18. Ma, J. C.; Dougherty, D. A., The cation−π interaction. Chem. Rev. 1997, 97, 1303-1324. 19. Kumpf, R.; Dougherty, D., A mechanism for ion selectivity in potassium channels: Computational studies of cation-pi interactions. Science 1993, 261, 1708-1710. 20. Dougherty, D. A., Cation-π interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp. Science 1996, 271, 163-168. 21. Dennis, G. R.; Ritchie, G. L. D., Dilute-solution field gradient-induced birefringence and molecular quadrupole moment of benzene. J. Phys. Chem. 1991, 95, 656-660. 22. Mecozzi, S.; West, A. P.; Dougherty, D. A., Cation−π interactions in simple aromatics: Electrostatics provide a predictive tool. J. Am. Chem. Soc. 1996, 118, 2307-2308. 23. Mecozzi, S.; West, A. P., Jr.; Dougherty, D. A., Cation-π interactions in aromatics of biological and medicinal interest: Electrostatic potential surfaces as a useful qualitative guide. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 10566-10571. 24. Caldwell, J. W.; Kollman, P. A., Cation-π interactions: Nonadditive effects are critical in their accurate representation. J. Am. Chem. Soc. 1995, 117, 4177-4178. 25. Kearney, P. C.; Mizoue, L. S.; Kumpf, R. A.; Forman, J. E.; McCurdy, A.; Dougherty, D. A., Molecular recognition in aqueous media. New binding studies provide further insights into the cation-π interaction and related phenomena. J. Am. Chem. Soc. 1993, 115, 9907-9919. 26. Meot-Ner, M.; Deakyne, C. A., Unconventional ionic hydrogen bonds. 1. CHδ+···X. Complexes of quaternary ions with n- and π-donors. J. Am. Chem. Soc. 1985, 107, 469-474. 27. Gallivan, J. P.; Dougherty, D. A., Cation-π interactions in structural biology. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 9459-9464. 28. Brocchieri, L.; Karlin, S., Geometry of interplanar residue contacts in protein structures. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 9297-9301. 29. Burley, S. K.; Petsko, G. A., Amino-aromatic interactions in proteins. FEBS Lett. 1986, 203, 139-143. 30. Singh, J.; Thornton, J. M., SIRIUS. An automated method for the analysis of the preferred packing arrangements between protein groups. J. Mol. Biol. 1990, 211, 595-615. 31. Mitchell, J. B. O.; Nandi, C. L.; McDonald, I. K.; Thornton, J. M.; Price, S. L., Amino/Aromatic interactions in proteins: Is the evidence stacked against hydrogen bonding? J. Mol. Biol. 1994, 239, 315-331. 32. Zheng, H.; Lu, C.; Lan, J.; Fan, S.; Nanda, V.; Xu, F., How electrostatic networks modulate specificity and stability of collagen. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 6207-6212. 33. Chen, C.-C.; Hsu, W.; Hwang, K.-C.; Hwu, J. R.; Lin, C.-C.; Horng, J.-C., Contributions of cation–π interactions to the collagen triple helix stability. Arch. Biochem. Biophys. 2011, 508, 46-53. 34. Chiang, C. H.; Horng, J. C., Cation-π interaction induced folding of AAB-type collagen heterotrimers. J. Phys. Chem. B 2016, 120, 1205-1211. 35. Bhate, M.; Wang, X.; Baum, J.; Brodsky, B., Folding and conformational consequences of glycine to alanine replacements at different positions in a collagen model peptide. Biochemistry 2002, 41, 6539-6547. 36. Merrifield, B., Solid phase synthesis. Science 1986, 232, 341-347. 37. http://www.isa.au.dk/facilities/astrid2/beamlines/au-cd/AU-CD_3.asp. (accessed on 2020/07/01) 38. https://www.japanistry.com/polarization/.(accessed on 2020/07/01) 39. https://en.wikipedia.org/wiki/Circular_polarization. (accessed on 2020/07/02) 40. https://www.researchgate.net/figure/Circular-basis-representation-of-the-elliptically-polarized-light-E-as-the-sum-of-two_fig1_51983084. (accessed on 2020/07/02) 41. Greenfield, N. J., Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876-2890. 42. Yang, W.; Chan, V. C.; Kirkpatrick, A.; Ramshaw, J. A.; Brodsky, B., Gly-Pro-Arg confers stability similar to Gly-Pro-Hyp in the collagen triple-helix of host-guest peptides. J. Biol. Chem. 1997, 272, 28837-28840.
|